
Introduktion till att skriva
insticksprogram för RKWard

Thomas Friedrichsmeier
Meik Michalke

Översättare: Stefan Asserhäll

Introduktion till att skriva insticksprogram för RKWard

2

Innehåll

1 Inledning 9

2 Förberedelse: Vad är insticksprogram i RKWard? Hur fungerar de? 10

3 Skapa menyalternativ 11

3.1 Bestämma menyalternativens ordning . 13

4 Definiera det grafiska användargränssnittet 15

4.1 Definiera en dialogruta . 15

4.2 Lägga till ett guidegränssnitt . 18

4.3 Några hänsynstaganden vid konstruktion av det grafiska användargränssnittet . . 19

4.3.1 <radio> mot <checkbox> mot <dropdown> 19

5 Generera R-kod från inställningar i det grafiska användargränssnittet 21

5.1 Använda JavaScript i RKWard-insticksprogram . 21

5.1.1 preprocess() . 21

5.1.2 calculate() . 22

5.1.3 printout() . 22

5.2 Konventioner, principer och bakgrund . 23

5.2.1 Förstå omgivningen local() . 23

5.2.2 Kodformatering . 23

5.2.3 Hantera komplexa alternativ . 24

5.3 Tips och trick . 24

6 Skriva en hjälpsida 26

7 Logisk interaktion mellan element i det grafiska användargränssnittet 29

7.1 Logik för grafiskt användargränssnitt . 29

7.2 Skriptbaserad logik för det grafiskt användargränssnittet 31

Introduktion till att skriva insticksprogram för RKWard

8 Inbädda insticksprogram i insticksprogram 32

8.1 Användarfall för inbäddning . 32

8.2 Inbäddning inne i en dialogruta . 32

8.3 Kodgenerering vid inbäddning . 33

8.4 Inbäddning inne i en guide . 33

8.5 Mindre inbäddad inbäddning: Knappen Ytterligare alternativ 34

8.6 Inbädda eller definiera ofullständiga insticksprogram 34

9 Hantera många liknande insticksprogram 36

9.1 Översikt av olika tillvägagångssätt . 36

9.2 Använda JS include-sats . 36

9.3 Inkludera .xml-filer . 37
9.4 Använda <snippets> . 38

9.5 <include> och <snippets> mot <embed> . 40

10 Koncept för användning i specialiserade insticksprogram 41

10.1 Insticksprogram som skapar ett diagram . 41

10.1.1 Rita ett diagram i utmatningsfönstret . 41

10.1.2 Lägga till funktionalitet för förhandsgranskning 41

10.1.3 Generella diagramalternativ . 42

10.1.4 Ett standardexempel . 43

10.2 Förhandsgranskningar av data, utmatning och andra resultat 44

10.2.1 Förhandsgranskning av (HTML-)utmatning 44

10.2.2 Förhandsgranskningar av (importerad) data 45

10.2.3 Anpassade förhandsgranskningar . 46

10.3 Sammanhangsberoende insticksprogram . 46

10.3.1 X11-enhetssammanhang . 47

10.3.2 Importdatasammanhang . 47

10.4 Begära information från R . 48

10.5 Referera till det aktuella objektet eller aktuella filen 49

10.6 Repetera (ett antal) alternativ . 50

10.6.1 ˝Drivna˝ optionsets . 51

10.6.2 Alternativ: När optionsets inte ska användas 52

11 Hantera beroenden och kompatibilitetsfrågor 53

11.1 RKWard versionskompatibilitet . 53

11.2 Kompatibilitet med R-version . 54

11.3 Beroenden av R-paket . 55

11.4 Beroenden av andra RKWard.pluginmap . 55

11.5 Ett exempel . 55

4

Introduktion till att skriva insticksprogram för RKWard

12 Översättning av insticksprogram 57

12.1 Allmänna hänsynstaganden . 57

12.2 i18n i RKWards XML-filer . 57
12.3 i18n i RKWards JS-filer och sektioner . 58

12.3.1 i18n och citationstecken . 59
12.4 Underhåll av översättningar . 59

12.5 Skriva översättningar för insticksprogram . 60

13 Information om upphovsman, licens och version 61

14 Dela med dig av ditt arbete med andra 63

14.1 Externa insticksprogram . 63

14.2 Varför externa insticksprogram? . 63

14.3 Strukturen hos ett insticksprogrampaket . 64

14.3.1 Filhierarki . 64
14.3.1.1 Grundläggande insticksprogramkomponenter 65

14.3.1.2 Ytterligare information (valfri) . 65

14.3.1.3 Automatiserad test av insticksprogram (valfri) 66

14.4 Bygga insticksprogrampaketet . 66

15 Utveckling av insticksprogram med paketet rkwarddev 67

15.1 Översikt . 67
15.2 Praktiskt exempel . 67

15.2.1 Beskrivning av det grafiska användargränssnittet 68

15.2.2 JavaScript-kod . 70

15.2.3 Insticksavbildning . 72

15.2.4 Hjälpsida . 72

15.2.5 Generera insticksprogrammets filer . 72

15.2.6 Hela skriptet . 73

15.3 Lägga till hjälpsidor . 75

15.4 Översätta insticksprogram . 75

A Referens 77
A.1 Typer av egenskaper och modifierare . 77

A.2 Element för allmänna syften att använda i vilken XML-fil som helst (.xml, .rkh,
.pluginmap) . 79

A.3 Element att använda i insticksprogrammets XML-beskrivning 79

A.3.1 Allmänna element . 79
A.3.2 Gränssnittsdefinitioner . 80
A.3.3 Layoutelement . 81

A.3.4 Aktiva element . 82
A.3.5 Logiksektion . 89

5

Introduktion till att skriva insticksprogram för RKWard

A.4 Egenskaper för element i insticksprogram . 92

A.5 Inbäddningsbara insticksprogram som levereras med den officiella utgåvan av
RKWard . 96

A.6 Element att använda i .pluginmap-filer . 97

A.7 Element att använda i .rkh-filer (hjälp) . 101

A.8 Funktioner tillgängliga för att skriva skriptlogik för grafiska användargränssnitt . 102

B Felsökning under utveckling av insticksprogram 105

C Licens 106

6

Introduktion till att skriva insticksprogram för RKWard

Tabeller

A.1 Inbäddningsbara standardinsticksprogram . 97

7

Sammanfattning

Det här är en handledning för att skriva insticksprogram i RKWard.

Introduktion till att skriva insticksprogram för RKWard

Kapitel 1

Inledning

Det här dokumentet beskriver hur man skriver egna insticksprogram. Dokumentationen har växt
sig stor med tiden. Låt inte det skrämma dig. Vi rekommenderar att läsa igenom de fyra grundste-
gen (enligt översikten nedan) för att få en grundidé om hur saker och ting fungerar. Därefter
kanske du vill skumma igenom innehållsförteckningen för att se vilka avancerade ämnen som
kan vara relevanta för dig.

För frågor och kommentarer, skriv gärna till RKWards e-postlista för utveckling.

Du behöver inte läsa det här för att använda RKWard. Dokumentet handlar om att utöka RKWard.
Det är riktat till avancerade användare eller personer som är villiga att hjälpa till att förbättra
RKWard.
Att skriva ett standardinsticksprogram är i grunden en process med fyra steg:

• Placera en ny åtgärd i menyhierarkin

• Beskriva utseendet och beteendet hos insticksprogrammets grafiska användargränssnitt

• Definiera hur R-kod ska skapas från inställningarna som användaren gör i det grafiska använ-
dargränssnittet

• Lägga till en hjälpsida för insticksprogrammet

De hanteras i tur och ordning.

Vissa avancerade koncept kan användas i de fyra stegen, men hanteras i separata kapitel för att
hålla saker och ting enkla:

• Logik för grafiskt användargränssnitt

• Inbädda insticksprogram i insticksprogram

• Användbara koncept för att skapa många serier av liknande insticksprogram

Dessutom visar inga av kapitlen alla alternativ, utan bara grundkoncepten. En fullständig refe-
rens av alternativ tillhandahålls separat.

9

Introduktion till att skriva insticksprogram för RKWard

Kapitel 2

Förberedelse: Vad är insticksprogram
i RKWard? Hur fungerar de?

Den första frågan man kan ställa sig är naturligtvis: Vilka delar av RKWards funktionalitet åstad-
koms genom att använda insticksprogram? Eller: Vad kan insticksprogram göra?

Ett sätt att svara på det är: Avmarkera alla .pluginmap-filer under Inställningar→Anpassa RK-
Ward→ Insticksprogram, och se vad som saknas. Ett något mer hjälpsamt svar: De flesta verkli-
ga statistikfunktioner som kan kommas åt via det grafiska användargränssnittet är förverkligade
med insticksprogram. Du kan också skapa ganska flexibla grafiska användargränssnitt för alla
typer av operationer med insticksprogram.

Den grundläggande paradigmen bakom insticksprogram i RKWard är den vi går igenom i det
här dokumentet: En XML-fil beskriver hur det grafiska användargränssnittet ser ut. En ytterli-
gare JavaScript-fil används för att skapa R-syntax från inställningarna i det grafiska användar-
gränssnittet. Alltså behöver insticksprogram egentligen inte utföra några statistiska beräkningar.
Istället skapar insticksprogram R-syntaxen som behövs för att utföra beräkningarna. R-syntaxen
skickas sedan till R-bakgrundsprogrammet för utvärdering, och oftast visas ett resultat i utdata-
fönstret.
Läs vidare i följande kapitel för att se hur det görs.

10

Introduktion till att skriva insticksprogram för RKWard

Kapitel 3

Skapa menyalternativ

När ett nytt insticksprogram skapas, måste RKWard få reda på det. Den första saken att göra är
alltså att skriva en .pluginmap-fil (eller ändra en befintlig). Formatet för en .pluginmap är XML.
Jag leder dig igenom ett exempel (försäkra dig också naturligtvis om att RKWard är inställt att
läsa in din .pluginmap med Inställningar→Anpassa RKWard→ Insticksprogram):

TIPS
Efter att ha läst det här kapitlet, ta också en titt på paketet rkwarddev. Det tillhandahåller några R-
funktioner för att skapa de flesta av RKWards XML-taggar åt dig.

<!DOCTYPE rkpluginmap >

Värdet doctype tolkas egentligen inte, men ställ in det till ˝rkpluginmap˝ ändå.

<document base_prefix="" namespace="myplugins" id="mypluginmap">

Egenskapen base_prefix kan användas om alla insticksprogram befinner sig i en gemensam
katalog. Då kan man därmed utelämna katalogen från filnamnen angivna nedan. Det är säkert
att låta den vara ˝˝ .
Som du kommer att märka nedan, får alla insticksprogram en unik identifierare, id. Att använ-
da namespace är ett sätt att organisera sådana id, och göra det mindre troligt att duplicerade
identifierare skapas av misstag. Internt läggs namnrymden följt av ‘::’ till före alla identifierare
som anges i en .pluginmap. I allmänhet, om du avser att distribuera dina insticksprogram i ett R-
paket, är det en god idé att använda paketnamnet som parametern namespace. Insticksprogram
som levereras med den officiella distributionen av RKWard har namespace=˝rkward˝ .

Egenskapen id är valfri, men att ange id för din .pluginmap gör det möjligt för andra att låta sina
.pluginmap:ar läsa in din .pluginmap automatiskt (se avsnittet om beroenden).

<components >

Komponenter? Talar vi inte om insticksprogram? Ja, men i framtiden kommer insticksprogram
inte vara mer än en särskild klass av komponenter. Vad vi gör här är då att registrera alla kom-
ponenter/insticksprogram med RKWard. Låt oss ta en titt på en exempelpost:

<component type="standard" id="t_test_two_vars" file="t_test_two_vars.xml" ←↩
label="Two Variable t-Test" />

Först egenskapen type: Lämna den som ˝standard˝ för tillfället. Ytterligare typer är inte im-
plementerade ännu. Vi har redan nämnt id. Varje komponent måste ha en unik identifierare (i

11

Introduktion till att skriva insticksprogram för RKWard

sin namnrymd). Välj en som är enkel att känna igen. Undvik mellanslag och specialtecken. De
är hittills inte förbjudna, men kan ha särskilda betydelser. Med egenskapen file anger man var
beskrivningen av själva insticksprogrammet finns. Det är relativt till katalogen där .pluginmap-
filen finns, och till base_prefix ovan. Ge till sist komponenten en beteckning. Beteckningen var
än insticksprogrammet placeras i menyn (eller i framtiden kanske också på andra ställen).

Typiskt innehåller .pluginmap-filen flera komponenter, så här är några fler:

<component type="standard" id="unimplemented_test" file="means/ ←↩
unimplemented.xml" />

<component type="standard" id="fictional_t_test" file=" ←↩
means/ttests/fictional.xml" label="This is a fictional t ←↩
-test" />

<component type="standard" id="descriptive" file=" ←↩
descriptive.xml" label="Descriptive Statistics" />

<component type="standard" id="corr_matrix" file=" ←↩
corr_matrix.xml" label="Correlation Matrix" />

<component type="standard" id="simple_anova" file=" ←↩
simple_anova.xml" label="Simple Anova" />

</components >

OK, det var första steget. RKWard känner nu till att insticksprogrammen finns. Men hur aktiverar
man dem? De måste läggas till i en menyhierarki:

<hierarchy >
<menu id="analysis" label="Analysis">

Direkt under taggen <hierarchy> börjar man beskriva i vilken meny (<menu>) som insticks-
programmet ska finnas. Med raden ovan säger man att insticksprogrammet ska vara i menyn
Analysis (inte nödvändigtvis direkt i den, utan i en undermeny). Menyn Analysis är standard i
RKWard, så den behöver i själva verket inte skapas från början. Om den dock inte fanns ännu,
skulle egenskapen label användas för att ge den sitt namn. Till sist, identifierar återigen id den
här menyn (<menu>). Det behövs så att flera .pluginmap-filer kan placera sina insticksprogram
i samma menyer. De gör det genom att leta efter en meny (<menu>) med angivet id. Om id inte
ännu finns, skapas en ny meny. Annars läggs alternativen till i den befintliga menyn.

<menu id="means" label="Means">

Egentligen samma sak här: Nu definierar vi en undermeny i menyn Analysis. Den ska heta Me-
ans.

<menu id="ttests" label="t-Tests">

Och en sista nivå i menyhierarkin: En undermeny i undermenyn Väntevärden.

<entry component="t_test_two_vars" />

Nu till sist är det menyn vi vill placera insticksprogrammet i. Taggen <entry> signalerar att det
här är det verkliga värdet istället för en annan undermeny. Egenskapen component refererar till
id som angavs i insticksprogrammet/komponenten ovan.

<entry component="fictional_t_test" />
</menu >
<entry component="fictional_t_test" />

</menu >
<menu id="frequency" label="Frequency" index="2"/>

Om du har förlorat spåret: Det är en annan undermeny i menyn Analys. Se skärmbilden nedan.
Vi hoppar över en del av det som inte syns, markerat med [...].

12

Introduktion till att skriva insticksprogram för RKWard

[...]
</menu >
<entry component="corr_matrix"/>
<entry component="descriptive"/>
<entry component="simple_anova"/>

</menu >

De är de slutliga alternativen synliga på skärmbilden nedan.

<menu id="plots" label="Plots">
[...]

</menu >

Det går naturligtvis också att placera insticksprogrammen i andra menyer än Analys.

<menu id="file" label="File">
[...]

</menu >

Till och med i standardmenyer såsom Arkiv. Allt som behövs är rätt id.

</hierarchy >
</document >

Det är så man gör, och skärmbilden visar resultatet:

Förvirrad? Det enklaste sättet att komma igång är troligen att ta några av de befintliga .pluginm
ap-filerna som levereras med distributionen och ändra dem enligt dina behov. Dessutom, om du
behöver hjälp, tveka inte att skriva till utvecklarnas e-postlista.

3.1 Bestämma menyalternativens ordning

Normalt sorteras automatiskt alla poster (alternativ, undermenyer) alfabetiskt inne i en meny.
I vissa fall kan man vilja ha bättre kontroll. I sådana fall kan man gruppera element enligt det
följande:

• Det går att definiera grupper i vilken meny som helst så här. Alla element som hör till samma
grupp kommer att grupperas ihop:

13

Introduktion till att skriva insticksprogram för RKWard

<group id="somegroup"/>

• Om gruppen ska vara visuellt separerad från andra alternativ, använd:

<group id="somegroup" separated="true"/>

• Alternativ, menyer och grupper kan läggas till sist i en angiven grupp genom att använda:

<entry component ="..." group="somegroup"/>

• Det är i själva verket också möjligt att definiera grupper (utan avskiljande linjer) implicit:

<entry component="first" group="a"/>
<entry component="third"/>
<entry component="second" group="a"/>

• Gruppnamn är specifika för varje meny. Grupp ˝a˝ i menyn ˝Data˝ ger exempelvis ingen
konflikt med grupp ˝a˝ i menyn ˝Analys˝.

• Det vanligaste användarfallet är att definiera grupper längst upp eller längst ner i en meny. De
fördefinierade grupperna ˝top˝ och ˝bottom˝ finns i alla menyer för det.

• Poster inom varje grupp sorteras alfabetiskt. Grupper visas i den ordning de deklareras (om
de inte läggs till sist i en annan grupp naturligtvis).

• Menyer och alternativ utan gruppspecifikation utgör också logiskt en grupp (˝˝).

14

Introduktion till att skriva insticksprogram för RKWard

Kapitel 4

Definiera det grafiska
användargränssnittet

4.1 Definiera en dialogruta

I föregående kapitel har du sett hur man registrerar ett insticksprogram i RKWard. Den viktigaste
ingrediensen är att ange sökvägen till en XML-fil med en beskrivning av hur insticksprogrammet
faktiskt ser ut. I detta kapitel lär du dig hur XML-filen skapas.

TIPS
Efter att ha läst det här kapitlet, ta också en titt på paketet rkwarddev. Det tillhandahåller några R-
funktioner för att skapa de flesta av RKWards XML-taggar åt dig.

Återigen leder vi dig genom ett exempel. Exemplet är en (något förenklad) version av en tvåva-
riablers t-test.

<!DOCTYPE rkplugin >

Värdet doctype tolkas egentligen inte, ännu. Ställ in det till rkplugin ändå.

<document >
<code file="t_test_two_vars.js"/>

Alla insticksprogram genererar någon kod. För närvarande är det enda sättet att göra det att
använda JS, som beskrivs i detalj i nästa kapitel. Det här definierar var JS-koden kan hittas. Fil-
namnet är relativt katalogen som insticksprogrammets XML finns i.

<help file="t_test_two_vars.rkh"/>

Det är oftast en god idé att också tillhandahålla en hjälpsida för insticksprogrammet. Filnamnet
på hjälpsidan anges här, relativt till katalogen där insticksprogrammets XML-fil finns. Att skriva
hjälpsidor är dokumenterat här. Utelämna raden om du inte tillhandahåller en hjälpfil.

<dialog label="Two Variable t-Test">

Som du känner till, kan insticksprogram antingen ha ett dialog- eller guidegränssnitt, eller båda.
Här börjar vi definiera ett dialoggränssnitt. Egenskapen label anger dialogrutans rubrik.

15

Introduktion till att skriva insticksprogram för RKWard

<tabbook >
<tab label="Basic settings">

Element i det grafiska användargränssnittet kan organiseras med en flikbok. Här definierar vi en
flikbok som det första elementet i dialogrutan. Använd <tabbook>[...]</tabbook> för att defini-
era flikboken och använd därefter <tab>[...]</tab> för varje sida i flikboken. Egenskapen label i
elementet <tab> låter dig ange en rubrik för den sidan i flikboken.

<row id="main_settings_row">

Taggarna <row> och <column> anger utläggningen av elementen i det grafiska användargräns-
snittet. Här talar du om att du vill placera några element sida vid sida (vänster till höger). Egen-
skapen id är inte helt nödvändig, men vi använder den senare när vi lägger till ett guidegräns-
snitt i vårt insticksprogram. Det första elementet att placera i raden är:

<varselector id="vars"/>

Genom att använda den här enkla taggen skapar du en lista där användaren kan välja variabler.
Du måste ange en id för elementet så att RKWard vet hur man hittar det.

VARNING
Det går inte att använda en punkt (.) i strängen id.

<column >

Därefter nästlar vi en kolumn, <column>, inne i raden. Det vill säga att följande element placeras
ovanpå varandra (uppifrån och ner), och alla är till höger om <varselector>.

<varslot types="number" id="x" source="vars" required="true" label="compare ←↩
"/>

<varslot types="number" id ←↩
="y" source="vars" ←↩
required="true" label=" ←↩
against" i18n_context=" ←↩
compare against"/>

De här elementen är motsvarigheten till <varselector>. De representerar ‘platser’ där användaren
kan placera variabler. Observera att source tilldelas samma värde som id i <varselector>. Det
betyder att varje <varslot> tar sina variabler från en varselector. Varje <varslot> måste också ges
en id. De kan ha en label, och de kan sättas till required. Det betyder att knappen Submit inte
aktiveras förrän dess <varslot> har ett giltigt värde. Till sist tolkas inte egenskapen type ännu,
men den kommer att användas för att försäkra att bara korrekta typer av variabler tillåts i en
<varslot>.
Om du undrar över egenskapen i18n_context, finns den för att ge sammanhang för att hjälpa
till att översätta ordet ˝against˝ på ett riktigt sätt, använt som rubrik för <varslot>, men det
påverkar inte insticksprogrammets funktionalitet. Mer om det i ett separat kapitel.

<radio id="hypothesis" label="using test hypothesis">
<option value="two. ←↩

sided" label=" ←↩
Two-sided"/>

<option value=" ←↩
greater" label=" ←↩
First is greater ←↩
"/>

16

Introduktion till att skriva insticksprogram för RKWard

<option value="less ←↩
" label="Second ←↩
is greater"/>

</radio >

Här definieras en grupp alternativknappar med <radio>. Gruppen har en rubrik, label, och en
id. Varje knapp, <option>, har en rubrik, label och är tilldelad ett värde, value. Det är värdet
som elementet <radio> returnerar när alternativet väljes.

</column >
</row>

</tab>

Varje tagg måste avslutas. Vi har lagt till alla element vi vill ha (två <varslots> och <radio>) i
kolumnen <column>. Vi har lagt till alla element vi ville (<varselector> och <column> med de
här elementen) i raden <row>. Och vi har lagt till alla elementen vi ville på första sidan i flikboken
<tabbook>. Vi är inte klara med att definiera flikboken <tabbook> ännu (fler sidor tillkommer),
och naturligtvis tillkommer det också mer i dialogrutan <dialog>. Men den här skärmbilden
visar i stort vad vi har gjort så här långt:

Observera att vi inte har angivit knapparna Skicka, Stäng, etc. eller kodvyn. De här elementen
genereras automatiskt. Men vi måste förstås också definiera den andra sidan i flikboken <tab-
book>:

<tab label="Options">
<checkbox id="varequal" label="assume equal ←↩

variances" value=", var.equal=TRUE"/>

Normalt läggs element till uppifrån och ner som i en kolumn <column>. Eftersom det är vad vi
vill här, behöver vi inte explicit ange radlayout med <row> eller kolumnlayout med <column>.
Det första elementet vi definierar är en kryssruta. Precis som med <radio><option>, har kryssru-
tan en rubrik label och ett värde value. Värdet value är det som returneras om kryssrutan
markeras. Naturligtvis behöver kryssrutan också ett id.

<frame label="Confidence Interval" id="frame_conf_int">

Här är ytterligare ett layoutelement: För att signalera att de två elementen nedan hör ihop, ritar
vi en ram <frame> (ruta). Ramen kan ha en rubrik label. Eftersom ramen bara är ett passivt

17

Introduktion till att skriva insticksprogram för RKWard

layoutelement, behöver den inte ett id. Vi definierar ändå ett här, eftersom vi refererar till det
senare, när vi definierar ett ytterligare guidegränssnitt.

<checkbox id="confint" label="print confidence interval" value="1" checked ←↩
="true"/>

<spinbox type="real" id="conflevel" ←↩
label="confidence level" min ←↩

="0" max="1" initial="0.95"/>
</frame >

Inne i ramen <frame> placerar vi en annan kryssruta <checkbox> (och genom att använda che
cked=˝true˝ , signalerar vi att kryssrutan normalt ska vara markerad), och en nummerruta med
<spinbox>. Nummerrutan gör det möjligt för användaren att välja ett värde mellan ˝min˝ och
˝max˝ med förvalda startvärdet ˝0.95˝ . Att ange typen type som ˝real˝ signalerar att reella tal
accepteras i motsats till typen type=˝integer˝ som bara skulle acceptera heltal.

NOT
Det är också möjligt, och ofta att föredra, att göra själva ramen <frame> valbar, istället för att lägga till
en kryssruta med <checkbox> inne i den. Se referensen för detaljerad information. Det görs inte här i
illustrationssyfte.

</tab>
</tabbook >

</dialog >

Det är allt för den andra sidan i flikboken <tabbook> och alla element i dialogrutan <dialog>. Vi
är klara med att definiera hur dialogrutan ser ut.

</document >

Till sist avslutar vi taggen <document>, och det är allt. Det grafiska användargränssnittet är
definiera. Nu går det att spara filen. Men hur skapas R-syntax från inställningarna i det grafiska
användargränssnittet? Det tar vi itu med senare i nästa kapitel. Först undersöker vi dock hur ett
guidegränssnitt kan läggas till, och några allmänna hänsynstaganden.

4.2 Lägga till ett guidegränssnitt

I själva verket behöver vi inte definiera något ytterligare guidegränssnitt med <wizard>, men
så här är hur man skulle göra det. Man lägger till taggen <wizard> på samma nivå som taggen
<dialog>:

<wizard label="Two Variable t-Test">
<page id="firstpage">

<text >As a first step , select the two ←↩
variables you want to compare against

each other. And specify , which one ←↩
you theorize to be greater. ←↩
Select two-sided ,

if your theory does not tell you, ←↩
which variable is greater.</text ←↩
>

<copy id="main_settings_row"/>
</page >

18

Introduktion till att skriva insticksprogram för RKWard

En del av det här är rätt självförklarligt: Vi lägger till taggen <wizard> med en label för guiden.
Eftersom en guide kan innehålla flera sidor som visas en i taget, definierar vi därefter den första
sidan, <page>, och lägger till en förklarande anmärkning där med <text>. Därefter använder vi
taggen <copy>. Vad den gör är att vi slipper att återigen definiera vad vi redan gjorde för dia-
logrutan <dialog>: Taggen letar efter en annan tagg med samma id tidigare i XML-koden. Den
råkar vara definierad i sektionen <dialog>, och är raden <row> där det finns en <varselector>,
<varslots> och ‘hypotesen’ med alternativknapparna <radio>. Allt det kopieras ett-till-ett och
infogas direkt vid elementet <copy>.

Nu till den andra sidan:

<page id="secondpage">
<text >Below are some advanced options. It’s ←↩

generally safe not to assume the
variables have equal variances. An ←↩

appropriate correction will be ←↩
applied then.

Choosing "assume equal variances" ←↩
may increase test -strength , ←↩
however.</text >

<copy id="varequal"/>
<text >Sometimes it’s helpful to get an ←↩

estimate of the confidence interval of
the difference in means. Below you ←↩

can specify whether one should ←↩
be shown , and

which confidence -level should be ←↩
applied (95% corresponds to a 5% ←↩
level of

significance).</text >
<copy id="frame_conf_int"/>

</page >
</wizard >

I stort sett samma sak här. Vi lägger till en del texter, och däremellan kopierar ytterligare sektioner
från dialoggränssnittet med <copy>.

Du kan förstås låta guidegränssnittet se mycket annorlunda ut än den enkla dialogrutan, och inte
använda taggen <copy> alls. Försäkra dig dock om att motsvarande element tilldelas samma id i
båda gränssnitten. Det används inte bara för att överföra inställningarna från dialoggränssnittet
till guidegränssnittet och tillbaka, när användaren byter gränssnitt (vilket inte sker ännu i den
nuvarande versionen av RKWard), men förenklar också att skriva kodmallen (se nedan).

4.3 Några hänsynstaganden vid konstruktion av det grafiska an-
vändargränssnittet

Det här avsnittet innehåller några allmänna hänsynstaganden om vilka element i det grafiska an-
vändargränssnittet som ska användas var. Om det här är ditt första försök att skapa ett insticks-
program, hoppa gärna över avsnittet, eftersom det inte är relevant för att få ett grundläggande
grafiska användargränssnitt att fungera. Kom tillbaka hit senare, för att se om du kan förfina
insticksprogrammets grafiska användargränssnitt på ett eller annat sätt.

4.3.1 <radio> mot <checkbox> mot <dropdown>

De tre elementen <radio>, <checkbox>, <dropdown> har alla liknande funktion, att välja ett
av flera olika alternativ. Naturligtvis tillåter en kryssruta bara att välja mellan två alternativ:

19

Introduktion till att skriva insticksprogram för RKWard

markerad eller inte markerad, så du kan inte använda den om det finns fler än två alternativ att
välja mellan. Men när ska vilket av elementen användas? Några tumregler:

Om du märker att du skapar en alternativknapp, <radio> eller kombinationsruta, <dropdown>
med bara två alternativ, fråga dig då om valet i stort sett är en fråga med svaret ja eller nej. Är
det t.ex. ett val mellan att ‘justera resultat’ och ‘justera inte resultat’, eller mellan ‘ta bort saknade
värden’ och ‘behåll saknade värden’. I detta fall är en kryssruta, <checkbox>, det bästa valet:
Den använder lite utrymme, har så få ord i beteckningen som möjligt, och är lättast att läsa för
användaren. Det finns några få situationer där en alternativknapp, <radio>, bör användas istället
för kryssrutan <checkbox>, när det bara finns två alternativ. Ett exempel kan vara: ‘Beräknings-
metod: ’pearson’/’spearman”. Här kan det tänkas finnas fler metoder, och de är egentligen inte
ett motsatspar.

Att välja mellan alternativknappen <radio> och kombinationsrutan <dropdown> är i huvudsak
en fråga om utrymme. En <dropdown> har fördelen att ta upp lite utrymme även om det finns
många alternativ att välja mellan. Å andra sidan, har en <radio> fördelen att alla möjliga alterna-
tiv är synliga för användaren på en gång, utan att klicka på kombinationsrutans pil. I allmänhet,
om det finns sex eller fler alternativ att välja mellan är en <dropdown> att föredra. Om det finns
fem eller färre alternativ är en <radio> det bättre valet.

20

Introduktion till att skriva insticksprogram för RKWard

Kapitel 5

Generera R-kod från inställningar i
det grafiska användargränssnittet

5.1 Använda JavaScript i RKWard-insticksprogram

Nu har vi definierat ett grafiskt användargränssnitt, men vi måste fortfarande skapa R-kod från
det. För att göra det behöver vi en textfil till, code.js, placerad i samma katalog som descripti
on.xml. Du kanske eller kanske inte är bekant med JavaScript (eller, för att vara tekniskt precis:
ECMA-script). Dokumentation om JS finns i överflöd, både på tryckt form och på Internet (t.ex.
https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide). Men för de flesta syften behö-
ver du inte kunna så mycket om JS alls, eftersom vi bara använder några mycket grundläggande
funktioner.

TIPS
Ta också en titt på paketet rkwarddev efter att ha läst det här kapitlet. Det tillhandahåller några R-
funktioner för att skapa JavaScript-kod som ofta används i RKWard. Det kan också automatiskt de-
tektera variabler som används i ett insticksprograms XML-fil och skapa grundläggande JavaScript-kod
från det som en startpunkt för dig.

NOT
Insticksprogrammets .js-filer antas vara kodade med UTF-8. Var noga med att kontrollera editorns
kodning, om du använder några tecken som inte är ASCII.

För tvåvariablers t-testen, ser filen code.js ut som följer (med kommentarer emellan):

5.1.1 preprocess()

function preprocess () {
}

JS-filen är organiserad i tre separata funktioner: preprocess(), calculate() och printout(). Det
beror på att all kod inte behövs i alla steg. För närvarande används inte funktionen preprocess
på många ställen (typiskt utelämnas den helt och hållet).

21

https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide

Introduktion till att skriva insticksprogram för RKWard

5.1.2 calculate()

function calculate () {
echo (’res <- t.test (x=’ + getString ("x") + ’, y=’ + getString (" ←↩

y") + ’, hypothesis="’ + getString ("hypothesis") + ’"’ + ←↩
getString ("varequal"));

var conflevel = getString ("conflevel");
if (conflevel != "0.95") echo (’, conf.level=’ + conflevel);
echo (’)\n’);

}

Funktionen skapar själva R-syntaxen som körs från inställningarna i det grafiska användargräns-
snittet. Låt oss ta en titt på den i detalj: Koden att använda skapas med satsen echo(). Vid en
närmare titt på satsen echo() steg för steg, är den första delen

res <- t.test (

som enkel text. Därefter måste vi fylla i värdet som användaren valde som första variabel. Vi
hämtar det genom att använda getString(˝x˝) och lägger till det i strängen som ska ‘ekas’.
Det skriver ut värdet på elementet i det grafiska användargränssnittet med id=˝x˝ : vår första
kryssruta, <checkbox>. Därefter lägger vi till ’,’, och gör samma sak för att hämta värdet av ele-
mentet ˝y˝ , den andra kryssrutan <checkbox>. För hypotesen (gruppen <radio>) och kryssru-
torna med varianserna, <checkbox>, är proceduren nästan likadan.

Observera att istället för att sammanfoga de utskrivna delarna med ‘+’, kan också flera olika ech
o() satser användas. Allt skrivs ut på en enda rad. För att skapa en ny rad i den skapade koden,
infoga ˝\n˝ i strängen som ekas. Teoretiskt sett kan du till och med skapa många rader med en
enda ekosats, men håll den helst till en rad (eller mindre) skapad god per echo().

NOT
Förutom getString() finns också funktionerna getBoolean(), som försöker returnera ett logiskt
värde (lämpligt för användning i en villkorssats, if()), och getList(), som försöker returnera data
som liknar listan i en JS Array(). Vi visar exempel på dem senare.
Om du tittar på befintliga insticksprogram finner du också många som använder getValue() istället
för getString(), och i själva verket är de två nästan identiska. Dock är rekommenderad användning
sedan version 0.6.1 att använda getString(), getBoolean() och getList().

Det blir lite krångligare för konfidensnivån. Av estetiska skäl vill vi inte explicit ange konfiden-
snivån som ska användas, om den motsvarar förvalt värde. Sålunda lagrar vi den först till en
variabel istället för att ovillkorligt skriva ut värdet. Därefter kontrollerar vi om variabeln skiljer
sig från ˝0.95˝ och i så fall skriver vi ut ett ytterligare argument. Till sist ekar vi en avslutande
parentes och en ny rad: ˝)\n˝ . Det är allt i funktionen calculate.

5.1.3 printout()

function printout () {
echo (’rk.header (’ + i18n ("Two Variable t-Test") + ’)\n’);
echo (’rk.print (res)\n’);

}

Och det är allt i funktionen printout i de flesta fall. rk.header() skriver ut en standardrubrik
för resultaten. Observera att alla översättningsbara strängar måste markeras för hand i .js-filen,
genom att använda i18n() eller några alternativa kommandon. Mer om detta i kapitlet om inter-
nationalisering. Du kan också lägga till en del ytterligare information här, om du vill, exempelvis:

22

Introduktion till att skriva insticksprogram för RKWard

function printout () {
new Header (i18n ("Two Variable t-Test"))

.addFromUI ("varequal")

.add (i18n ("Confidence level"), getString ("conflevel")) ←↩
// Observera: skrivet såhär i illustrationssyfte. ←↩

Mer automatiskt:
// .addFromUI ("conflevel")

.print ();
echo (’rk.print (res)\n’);
}

rk.print() utnyttjar paketet R2HTML för att tillhandahålla utmatning formaterad med HTML.
En annan hjälpsam funktion är rk.results(), som också kan skriva ut olika sorters resultattabel-
ler. Om du dock tvekar, använd bara rk.print(), så är du klar. JS-klassen Header är en hjälpklass
på JS-nivå för att skapa ett anrop till rk.header() (ta bara en titt på den genererade R-koden). I
vissa fall kan du behöva anropa echo (’rk.header (...)’) direkt för att skriva ut en rubrik för
utmatningen.

Observera att internt är utmatningen för närvarande bara ett enkelt HTML-dokument. Därför
kan du bli frestad att lägga till egen HTML genom att använda rk.cat.output(). Även om det
fungerar, gör helst inte det. Utdataformatet kan ändras i framtiden (t.ex. till ODF), så det är bäst
att inte introducera HTML-specifik kod. Behåll hellre allt enkelt med rk.header(), rk.print(),
rk.results(), och vid behov rk.print.literal(). Om det inte verkar uppfylla dina formate-
ringsbehov, kontakta oss på e-postlistan för att få hjälp.

Gratulerar! Du har skapat ditt första insticksprogram. Läs vidare i nästa kapitel om mer avance-
rade begrepp.

5.2 Konventioner, principer och bakgrund

Det finns många sätt att skriva R-kod för en viss uppgift, och det finns ännu fler sätt att generera
R-koden från JS. Exakt hur du gör det, bestämmer du själv. Det finns ändå ett antal hänsynsta-
ganden som du bör följa, och bakgrundsinformation som du bör förstå.

5.2.1 Förstå omgivningen local()

Vanligtvis måste man skapa en eller flera tillfälliga R-objekt i koden som genereras av insticks-
programmet. Normalt vill man inte att de ska placeras i användarens arbetsrymd, och potentiellt
till och med skriva över användarvariabler. Därför görs all kod genererad av insticksprogram
i en lokal omgivning, local() (se hjälpsidan i R om funktionen local()). Det betyder att alla
variabler som skapas är tillfälliga och sparas inte permanent.

Om användaren explicit ber om att en variabel ska sparas, måste tilldelningar till objektet gö-
ras genom att använda .GlobalEnv$objectname <- value. I allmänhet ska inte operatorn <<-
användas. Den tilldelar inte nödvändigtvis i .GlobalEnv.

En viktig fallgrop är användning av eval(). Här måste man observera att eval normalt använder
den aktuella omgivningen för utvärdering, dvs. den lokala. Det fungerar oftast bra, men inte
alltid. Om du sålunda behöver använda eval(), bör du ange parametern envir: eval(..., env
ir=globalenv()).

5.2.2 Kodformatering

Det viktigaste är att den genererade R-koden fungerar, men den bör också vara lättläst. Håll
därför också ett öga på formateringen. Några överväganden:

23

Introduktion till att skriva insticksprogram för RKWard

Normala toppnivå R-satser ska vara vänsterjusterade.

Satser i ett lägre block ska indenteras med en flik (se exemplet nedan).

Om du utför mycket komplexa beräkningar, lägg till en kommentar här och där, i synnerhet för
att markera logiska avsnitt. Observera att det finns en särskild funktion, comment(), för att infoga
översättningsbara kommentarer i genererad kod.

Generad kod kan exempelvis se ut så här. Samma kod utan indentering eller kommentarer skulle
vara ganska svårläst, trots dess blygsamma svårighetsgrad:

bestäm först svaj och rotation
my.wobble <- wobble (x, y)
my.rotation <- wobble.rotation (my.wobble , z)

vacklingsmetod måste väljas enligt rotation
if (my.rotation > wobble.rotation.limit (x)) {

method <- "foo"
result <- boggle.foo (my.wobble , my.rotation)

} else {
method <- "bar"
result <- boggle.bar (my.wobble , my.rotation)

}

5.2.3 Hantera komplexa alternativ

Många insticksprogram kan göra mer än en sak. Exempelvis kan insticksprogrammet ‘Beskri-
vande statistik’ beräkna medelvärde, intervall, summa, produkt, median, längd, etc. Dock väljer
användaren typiskt att bara utföra vissa av beräkningarna. Försök hålla den genererade koden så
enkel som möjligt i sådana fall. Den ska bara innehålla delarna som är relevanta för alternativen
som faktiskt har valts. För att åstadkomma det är här ett exempel på ett vanligt konstruktions-
mönster som det skulle användas (i JS skulle elementen ˝domean˝, ˝domedian˝ och ˝dosd˝ här
vara kryssrutor, <checkbox>):

function calculate () {
echo (’x <- <’ + getString ("x") + ’)\n’);
echo (’results <- list ()\n’);

if (getBoolean ("domean.state")) echo ("results$" + i18n ("Mean ←↩
value") + " <- mean (x)\n");

if (getBoolean ("domedian.state")) echo ("results$" + i18n ("Median ←↩
") + " <- median (x)\n");

if (getBoolean ("dosd.state")) echo ("results$" + i18n ("Standard ←↩
deviation") + " <- sd (x)\n");

//...
}

5.3 Tips och trick

Här är några blandade trick som kan göra det mindre arbetsamt att skriva insticksprogram:

Om värdet av en inställning i det grafiska användargränssnittet behövs på flera platser i insticks-
programmets kod, överväg att tilldela det till en variabel i JS, och använda den istället för att
hämta det upprepade gånger med getString()/getBoolean()/getList(). Det är snabbare, mer
läsbart, och mindre att skriva på en gång:

24

Introduktion till att skriva insticksprogram för RKWard

function calculate () {
var narm = ""; // na.rm=FALSE är förvalt värde i alla ←↩

funktioner nedan
if (getBoolean ("remove_nas")) {

$narm = ", na.rm=TRUE";
}
// ...
echo ("results$foo <- foo (x" + narm + ")\n");
echo ("results$bar <- bar (x" + narm + ")\n");
echo ("results$foobar <- foobar (x" + narm "\n");
// ...

}

Den enkla hjälpfunktionen makeOption() kan göra det enklare att utelämna parametrar som har
sina förvalda värden, i många fall:

function calculate () {
var options
//...
// Den här gör ingenting , om VALUE är 0,95 (förvalt värde). Annars ←↩

lägger den till ’, conf.int=VALUE ’ i alternativen.
options += makeOption ("conf.int", getString ("confint"), "0.95");
//...

}

25

Introduktion till att skriva insticksprogram för RKWard

Kapitel 6

Skriva en hjälpsida

När insticksprogrammet i grund och botten fungerar, är det dags att tillhandahålla en hjälpsida.
Även om man typiskt inte vill förklara alla bakomliggande koncepten från grunden, kanske du
vilja lägga till några fler förklaringar för vissa av alternativen, och länka till relaterade insticks-
program och R-funktioner.

TIPS
Efter att ha läst det här kapitlet, ta också en titt på paketet rkwarddev. Det tillhandahåller några R-
funktioner för att skapa de flesta av RKWards XML-taggar åt dig. Det klarar också av att skapa grund-
mallar för hjälpfiler från insticksprogrammets befintliga XML-filer att utgå ifrån.

Du kanske minns att du lagt till det här i insticksprogrammets XML (om du inte har det, lägg till
det nu):

<document >
[...]
<help file="filnamn.rkh" />
[...]

</document >

Där du naturligtvis ersätter filnamn med ett lämpligare namn. Nu är det dags att skapa .rkh-
filen. Här är ett självbeskrivande exempel:

<!DOCTYPE rkhelp >
<document >

<summary >
I det här avsnittet skriver man in kort , mycket grundläggande information ←↩

om vad insticksprogrammet gör.
Avsnittet visas alltid allra längst upp på hjälpsidan.

</summary >

<usage >
Sektionen usage kan innehålla lite mer praktisk information. Den ska dock ←↩

inte förklara
alla inställningarna i detalj (det görs i sektionen "settings").

Infoga en ny rad för att påbörja ett nytt stycke , som visas ovan.
I motsats till det, ingår den här raden i samma stycke.

Enkel HTML -kod kan infogas i alla avsnitt , såsom text med fetstil ←↩
eller

26

Introduktion till att skriva insticksprogram för RKWard

<i>kursiv stil </i>. Använd dock helst minimal formatering som är nödvändig.

Avsnittet usage är alltid det andra avsnittet som visas på en hjälpsida.
</usage >

<section id="sectionid" title="Generic section" short_title=" ←↩
Generic">

Om det behövs , kan ytterligare avsnitt läggas till mellan avsnitten usage ←↩
och settings.

Dock behövs det oftast inte när insticksprogram dokumenteras. Egenskapen " ←↩
id"

tillhandahåller en ankringspunkt för att gå till avsnittet i ←↩
navigeringsmenyn. Egenskapen "short_title"

tillhandahåller en kort rubrik att använda i navigeringsraden. Den är ←↩
valfri , normalt

använd "title" både som rubrik för avsnittet , och som länknamnet i
navigeringsraden.

Man kan vilja infoga länkar till ytterligare information i vilket avsnitt ←↩
som helst. Det gör man genom att lägga till

<link href="webbadress">länknamn </link >

Där webbadress skulle kunna vara en extern adress som http://rkward.kde.org ←↩
.

Flera speciella webbadresser stöds i hjälpsidorna:

<link href="rkward://sida/sökväg/sid-id"/>

Länkar till en rkward hjälpsida på toppnivå (inte för ett insticksprogram).

<link href="rkward://component/[namnrymd/]komponent -id"/>

Länkar till hjälpsidan för ett annat insticksprogram. Delen [namnrymd/] kan ←↩
utelämnas

(i så fall , antas rkward som standardnamnrymd , exempelvis är
<link href="rkward://component/import_spss"/> och
<link href="rkward://component/rkward/import_spss"/> ekvivalenta).
Komponent -id är samma som anges av .pluginmap.

<link href="rkward://rhelp/r-funktion"/>

Länkar till R-hjälpsidan om "r-funktion".

Observera att länknamn skapas automatiskt för följande typer av länkar.
</section >

<settings >
<caption id="id_of_tab_or_frame"/>
<setting id="id_of_element">

Beskrivning av elementet i det grafiska användargränssnittet identifierat ←↩
av angivet id

</setting >
<setting id="id_of_elementb" title="description">

Oftast extraherar rubriken för elementet i det grafiska ←↩
användargränssnittet automatiskt från

insticksprogrammets XML-definition. Dock
kanske beskrivningen inte är nog för att tillförlitligt identifiera dem för ←↩

27

Introduktion till att skriva insticksprogram för RKWard

vissa element i det grafiska användargränssnittet.
I så fall kan en explicit rubrik läggas till med egenskapen "title".

</setting >
<setting id="id_of_elementc">

Beskrivning av elementet i det grafiska användargränssnittet identifierat ←↩
av "id_of_elementc"

</setting >
[...]

</settings >

<related >
Avsnittet related innehåller oftast bara några länkar , såsom:

<link href="rkward://rhelp/mean"/>
<link href="rkward://rhelp/median"/>
<link href="rkward://component/related_component"/>

</related >

<technical >
Avsnittet technical (valfritt , alltid sist) kan innehålla några tekniska ←↩

detaljer om insticksprogrammets
implementering , som bara är av intresse för utvecklare av RKWard. Det är ←↩

särskilt relevant
för insticksprogram som är konstruerade för att inbäddas i många andra ←↩

insticksprogram , och kan ange vilka
alternativ är tillgängliga för att anpassa det inbäddade insticksprogrammet ←↩

, och vilka kodsektioner som innehåller vilken
R-kod.

</technical >
</document >

28

Introduktion till att skriva insticksprogram för RKWard

Kapitel 7

Logisk interaktion mellan element i
det grafiska användargränssnittet

7.1 Logik för grafiskt användargränssnitt

Alla grundkoncepten för att skapa ett insticksprogram för RKWard har beskrivits i de tidigare
kapitlen. Grundkoncepten bör vara tillräckliga för många fall, kanske de allra flesta. Dock vill
man ibland ha mer kontroll över hur insticksprogrammets grafiska användargränssnitt beter sig.

Antag exempelvis att du vill utöka t-test exemplet som används i den här dokumentationen
för att både tillåta att en variabel jämförs med en annan variabel (som visas här), och jämföra en
variabel mot ett konstantvärde. Ja, ett sätt att göra det skulle vara att lägga till en alternativknapp
som byter mellan de två lägena och lägga till en nummerruta för att skriva in konstantvärdet att
jämföra med. Betrakta det här förenklade exemplet:

<!DOCTYPE rkplugin >
<document >

<code file="code.js"/>

<dialog label="T-Test">
<row>

<varselector id="vars"/>
<column >

<varslot id="x" types="number" source="vars ←↩
" required="true" label="compare"/>

<radio id="mode" label="Compare against">
<option value="variable" checked=" ←↩

true" label="another variable (←↩
select below)"/>

<option value="constant" label="a ←↩
constant value (set below)"/>

</radio >
<varslot id="y" types="number" source="vars ←↩

" required="true" label="variable" ←↩
i18n_context="Noun; a variable"/>

<spinbox id="constant" initial="0" label=" ←↩
constant" i18n_context="Noun; a constant ←↩
"/>

</column >
</row>

</dialog >

29

Introduktion till att skriva insticksprogram för RKWard

</document >

Så långt är allt gott och väl, men det finns ett antal problem med det här grafiska användar-
gränssnitt. För det första visas både varslot elementet och nummerrutan, medan bara en av de
två verkligen används. Vad värre är, varslot elementet kräver alltid ett giltigt val, även vid jäm-
förelse med en konstant. Om vi skapar ett grafiskt användargränssnitt med flera syften, vill vi
uppenbarligen ha mer flexibilitet. Lägg då till sektionen <logic> (infogad på samma nivå som
<code>, <dialog> eller <wizard>).

[...]
<code file="code.js"/>

<logic >
<convert id="varmode" mode="equals" sources="mode.string" ←↩

standard="variable" />

<connect client="y.visible" governor="varmode" />
<connect client="constant.visible" governor="varmode.not" ←↩

/>
</logic >

<dialog label="T-Test">
[...]

Den första raden inne i sektionen logic är taggen <convert>. Den tillhandahåller egentligen en
ny Boolesk egenskap (på eller av, sann eller falsk), som kan användas senare. Egenskapen (˝
varmode˝) är sann så snart den övre alternativknappen är vald, och falsk så snart den nedre
alternativknappen är vald. Hur görs det?

För det först listas källegenskaperna att arbeta med under sources (i detta fall bara en vardera,
flera skulle kunna listas som sources=˝mode.string;någonting-annat˝ , då skulle ˝varmode˝
bara vara sann om både ˝mode.string˝ och ˝någonting-annat˝ är lika med strängen ˝varia
ble˝). Observera att i detta fall skriver vi inte bara ˝mode˝ (som vi skulle göra i getString(˝mo
de˝)), utan ˝mode.string˝ . Det är det faktiska interna sättet som en alternativknapp fungerar:
Den har egenskapen ‘string’ som innehåller dess strängvärde. getString(˝mode˝) är bara en
kortform, och ekvivalent med getString(˝mode.string˝). Se referensen för alla egenskaper hos
de olika elementen i det grafiska användargränssnittet.

För det andra, ställer vi in konverteringens läge till mode=˝equals˝ . Det betyder att vi vill kon-
trollera om källan eller källorna är lika med ett visst värde. Till sist är standard värdet att jämföra
med, så med standard=˝variable˝ kontrollerar vi om egenskapen ˝mode.string˝ är lika med
strängen ˝variable˝ (värdet av den övre alternativknappen). Om de är lika, är egenskapen var-
mode sann, annars är den falsk.

Nu till själva kärnan: Vi använder <connect> för att ansluta egenskapen ˝varmode˝ till y.visible,
vilket bestämmer om varslot ˝y˝ visas eller inte. Observera att eventuella element som görs osyn-
liga implicit inte krävs. Sålunda, om den övre alternativknappen väljes, krävs varslot ˝y˝ och är
synlig. Annars krävs den inte och är dold.

För nummerrutan vill vi ha exakt det motsatta. Som tur är behöver vi inte ett annat <convert> för
den: Booleska egenskaper kan enkelt negeras genom att lägga till modifieraren ˝not˝ , så vi an-
vänder <connect> ˝varmode.not˝ för nummerrutans egenskap visibility. På så sätt krävs anting-
en elementet varslot och visas, eller krävs nummerrutan och visas, beroende på vilket alternativ
som är valt av alternativknapparna. Det grafiska användargränssnittet ändras enligt alternativ-
knapparna. Prova exemplet, om du har lust.

Se referenskapitlet för en fullständig lista över egenskaper. Ytterligare en egenskap är dock spe-
ciell på det sättet att alla element i det grafiska användargränssnittet har den: ‘enabled’. Den är
något mindre drastisk än ‘visible’. Den visar eller döljer inte elementet i det grafiska användar-
gränssnittet, utan bara aktiverar eller inaktiverar det. Inaktiverade element visas typiskt med
grått, och reagerar inte på användarinmatning.

30

Introduktion till att skriva insticksprogram för RKWard

NOT
Förutom <convert> och <connect>, finns det flera ytterligare element att använda i sektionen <lo-
gic>. Villkorliga konstruktioner kan exempelvis också implementeras genom att använda elementet
<switch>. Se referenskapitlet om logiska element för detaljerad information.

7.2 Skriptbaserad logik för det grafiskt användargränssnittet

Medan anslutning av egenskaper som beskrivs ovan ofta är nog, är det flexiblare eller bekvämare
att använda JS för att hantera det grafiska användargränssnittets logik med ett skript. På detta
sätt skulle exemplet ovan kunna skrivas om som:

[...]
<code file="code.js"/>

’
<logic >

<script ><![CDATA[
// ECMA -skript kod i blocket
// toppnivåsatsen anropas bara en gång
gui.addChangeCommand ("mode.string", "modeChanged ←↩

()");

// funktionen anropas så fort "mode" ändras
modeChanged = function () {

var varmode = (gui.getString ("mode.string ←↩
") == "variable");

gui.setValue ("y.enabled", varmode);
gui.setValue ("constant.enabled", !varmode) ←↩

;
}

]]></script >
</logic >

<dialog label="T-Test">
[...]

Den första kodraden talar om för RKWard att funktionen modeChanged() ska anropas så fort
värdet på alternativknappen id=˝mode˝ ändras. Inne i funktionen definierar vi hjälpvariabeln ˝v
armode˝ som är sann när läget är ˝variable˝ och falsk när det är ˝constant˝ . Sedan använder
vi gui.setValue() för att ställa in egenskaperna ‘enabled’ för ˝y˝ och ˝constant˝ , precis på
samma sätt som vi tidgare gjorde med satsen <connect>.

Skriptmetoden för logik i det grafiska användargränssnittet är särskilt användbart när de till-
gängliga alternativen behöver ändras enligt typ av objekt som användaren väljer. Se referenska-
pitlet för tillgängliga funktioner.

Observera att skriptmetoden för logik i det grafiska användargränssnittet kan blandas med sat-
serna <connect> och <convert> om du vill. Observera också att taggen <script> tillåter ett skript-
filnamn som tillägg till eller alternativ till att inbädda skriptkoden. Oftast är det dock bekvämast
att inbädda den som visas ovan.

31

Introduktion till att skriva insticksprogram för RKWard

Kapitel 8

Inbädda insticksprogram i
insticksprogram

8.1 Användarfall för inbäddning

När du skriver insticksprogram, märker du ofta att du skapar ett antal insticksprogram som bara
skiljer sig i några avseenden, men har mycket mer gemensamt. Exempelvis för att rita diagram
finns ett antal generella R-alternativ som kan användas med nästan alla sorters diagram. Ska man
skapa ett grafiskt användargränssnitt och JS-mall för dem gång på gång?

Uppenbarligen skulle det vara rätt besvärligt. Som tur är behöver man inte göra det. Istället ska-
par man kärnan med den gemensamma funktionen en gång, och kan senare inbädda den i flera
olika insticksprogram. I själva verket är det möjligt att inbädda vilket insticksprogram som helst i
vilket annat insticksprogram som helst, även om de ursprungliga upphovsmännen till de inbäd-
dade insticksprogrammen aldrig trodde att någon skulle vilja inbädda deras insticksprogram i
något annat.

8.2 Inbäddning inne i en dialogruta

OK, nog sagt. Hur fungerar det? Enkelt: Använd bara taggen <embed>. Här är ett avkortat ex-
empel:

<dialog >
<tabbook >

<tab [...]>
[...]

</tab>
<tab label="Plot Options" i18n_context="Options concerning ←↩

the plot">
<embed id="plotoptions" component="rkward:: ←↩

plot_options"/>
</tab>
<tab [...]>

[...]
</tab>

</tabbook >
</dialog >

32

Introduktion till att skriva insticksprogram för RKWard

Vad som händer här är att hela det grafiska användargränssnittet för insticksprogrammet med di-
agramalternativ (utom förstås standardelementen som knappen Verkställ, etc.) inbäddas direkt
i ditt insticksprogram (prova det!).

Som du märker är syntaxen för taggen <embed> rätt enkel. Den har en id som de flesta element.
Parameterkomponenten anger vilket insticksprogram som ska inbäddas, som definierad i .plug
inmap-filen (˝rkward::plot_options˝ är resultatet av att sammanfoga namnrymden ‘rkward’,
en avskiljare ‘::’ och komponentens namn ‘plot_options’).

8.3 Kodgenerering vid inbäddning

Så långt är allt gott och väl, men vad händer med den genererade koden? Hur sammanfogas
koden för det inbäddande och det inbäddade insticksprogrammen? Skriv helt enkelt någonting
som liknar det här i det inbäddande insticksprogrammet:

function printout () {
// ...
echo ("myplotfunction ([...]" + getString ("plotoptions.code. ←↩

printout"); + ")\n");
// ...

}

I grund och botten hämtar vi alltså koden som skapas av det inbäddade insticksprogrammet pre-
cis som vi hämtar alla andra inställningar av det grafiska användargränssnittet. Här kan strängen
˝plotoptions.code.printout˝ tolkas del för del som: ‘Utskriftssektionen av den skapade ko-
den för elementet med id plotoptions’ (plotoptions är den id som vi angav för taggen <embed>
ovan). Och jovisst, om du behöver avancerad kontroll, kan du till och med hämta värden av en-
skilda element i det grafiska användargränssnittet för det inbäddade insticksprogrammet (men
inte tvärtom, eftersom det inbäddade insticksprogrammet inte vet någonting om sin omgivning).

8.4 Inbäddning inne i en guide

Om insticksprogrammet tillhandahåller ett grafiskt användargränssnitt med en guide, fungerar
inbäddning i stort sett på samma sätt. I allmänhet använder man:

<wizard [...]>
[...]
<page id="page12">

[...]
</page >
<embed id="plotoptions" component="rkward::plot_options"/>
<page id="page13">

[...]
</page >
[...]

</wizard >

Om det inbäddade grafiska användargränssnittet tillhandahåller ett guidegränssnitt, infogas
dess sidor direkt mellan page12 och page13 i ditt insticksprogram. Om det inbäddade grafis-
ka användargränssnittet bara tillhandahåller ett dialoggränssnitt, infogas en enda ny sida mellan
dina sidor page12 och page13. Användaren märker aldrig något.

33

Introduktion till att skriva insticksprogram för RKWard

8.5 Mindre inbäddad inbäddning: Knappen Ytterligare alterna-
tiv

Med inbäddning är häftigt, bör man vara försiktig så att man inte överdriver. För många funk-
tioner i ett grafiskt användargränssnitt gör det bara svårt att hitta de relevanta alternativen. Man
kan naturligtvis ibland vilja inbädda ett stort antal alternativ (som alla alternativ i plot()), men
eftersom de är helt valfria, vill man inte att de ska synas på en framträdande plats i det grafiska
användargränssnittet.

Ett alternativ är att inbädda alternativen ‘som en knapp’:

<dialog >
<tabbook >

[...]
<tab label="Options">

[...]
<embed id="plotoptions" component="rkward:: ←↩

plot_options" as_button="true" label="Specify ←↩
plotting options"/>

</tab>
[...]

</tabbook >
</dialog >

I detta fall har en enda tryckknapp lagts till i insticksprogrammet, med beteckningen Specify
plotting options. När knappen klickas, dyker en separat dialogruta upp med alla det inbäddade
insticksprogrammets alternativ. Även om det inbäddade grafiska användargränssnittet inte är
synligt för det mesta, kan inställningarna hämtas precis som beskrevs ovan.

OBSERVERA
Troligen bör metoden med en ‘knapp’ enbart användas för insticksprogram som aldrig kan vara ogiltiga
(för saknade eller felaktiga inställningar). Annars skulle inte användaren kunna verkställa koden, men
kan ha svårt att få reda på det, eftersom orsaken är dold bakom någon knapp.

8.6 Inbädda eller definiera ofullständiga insticksprogram

Vissa insticksprogram är inte fullständiga i sig själva, och i själva verket är plot_options använt
som exempel ovan ett av dem. De har helt enkelt inte elementen i det grafiska användargräns-
snittet för att välja vissa viktiga värden. De är bara avsedda att använda inbäddade i andra in-
sticksprogram.

Hur långt är insticksprogrammet plot_options ofullständigt? Jo, för vissa inställningsalternativ
behöver det veta namnet på objekten eller uttrycken för x- och y-axlarna (i själva verket fungerar
det bra om det har endera, men det behöver minst ett för att fungera som det ska). Dock har det
inte någon mekanism för att välja objekten, eller mata in dem på något annat sätt. Så hur känner
det då till dem?
I sektionen logic i insticksprogrammet plot_options finns ytterligare två rader, som inte behand-
lats ännu:

<logic >
<external id="xvar" />
<external id="yvar" />

[...]
</logic >

34

Introduktion till att skriva insticksprogram för RKWard

Det definierar ytterligare två egenskaper i insticksprogrammet plot_options, vars enda syfte är
att anslutas till några (ännu okända) egenskaper i det inbäddande insticksprogram. I instickspro-
grammet plot_options är de två egenskaperna använda precis som vilka andra som helst, och det
finns exempelvis anrop till getString(˝xvar˝) i JS-mallen i plot_options.

För det ofullständiga insticksprogrammet finns det inget sätt att veta var det inbäddas, och vad
de relevanta inställningarna i det inbäddande insticksprogram heter. Vi måste alltså dessutom
lägga till två ytterligare rader i det inbäddande insticksprogrammets sektion logic:

<logic >
[...]

<connect client="plotoptions.xvar" governor="xvarslot. ←↩
available" />

<connect client="plotoptions.yvar" governor="yvarslot. ←↩
available" />

</logic >

Det är principiellt ingenting nytt, vi har behandlat satsen <connect> i kapitlet om logik i det
grafiska användargränssnittet. Man ansluter helt enkelt värdena i två varslots (benämnda ˝xva
rslot˝ och ˝yvarslot˝ i exemplet) till de mottagande ‘externa’ egenskaperna i det inbäddade
insticksprogrammet. Det är allt. Allting annat hanteras automatiskt.

35

Introduktion till att skriva insticksprogram för RKWard

Kapitel 9

Hantera många liknande
insticksprogram

9.1 Översikt av olika tillvägagångssätt

Ibland kan man vilja utveckla insticksprogram för en serie liknande funktioner. Som ett exempel,
fundera på fördelningsdiagram. De genererar ganska lika kod, och det är naturligtvis önskvärt
att få det grafiska gränssnitten att likna varandra. Till sist kan stora delar av hjälpfilerna vara
identiska. Bara några få parametrar är olika i varje insticksprogram.

Det naiva tillvägagångssättet är att utveckla ett insticksprogram, därefter i stort sett kopiera och
klistra in hela innehållet i .js-, .xml- och .rkh-filerna, och ändra de få delarna som är olika. Men
vad händer om du någon gång senare hittar ett stavfel som har kopierats och klistrats in i alla
insticksprogrammen? Vad händer om du vill lägga till stöd för en ny funktion? Du måste hitta
alla insticksprogram igen, och ändra vart enda ett. En tröttsam och långdragen process.

Ett annat tillvägagångssätt skulle vara att använda inbäddning. Dock lämpar sig inte det väl för
det aktuella problemet i vissa fall, eftersom bitarna som kan inbäddas ibland är för stora för att
vara användbara, och det innebär vissa begränsningar av layouten. I sådan fall kan koncepten att
inkludera .js filer, inkludera .xml filer och använda kodsnuttar vara mycket användbara (med
se funderingarna om när det är att föredra att använda inbäddning).

Dock ett varningens ord innan du börjar läsa: Koncepten kan göra det enklare att hantera många
liknande insticksprogram, och kan förbättra insticksprogrammens underhåll och läsbarhet. Att
gå för långt kan dock enkelt ge motsatt effekt. Använd med viss försiktighet.

9.2 Använda JS include-sats

Det är enkelt att inkludera en skriptfil i en annan med RKWard insticksprogram. Värden av det
är omedelbart uppenbart om vissa delar av JS-koden är likadan mellan insticksprogram. Det går
helt enkelt att definiera sådana delar i en separat .js-fil och inkludera den i alla insticksprograms
.js-filer. Exempelvis så här:

// det här är en fil som heter "common_functions.js"

function doCommonStuff () {
// kanske hämta några alternativ , etc.
// ...
comment ("This is R code you want in several different plugins\n");

36

Introduktion till att skriva insticksprogram för RKWard

// ...
}

// det här är en av de vanliga .js filerna i ett insticksprogram

// inkludera common functions
include ("common_functions.js");

function calculate () {
// gör någonting
// ...

// infoga den gemensamma koden
doCommonStuff ();

}

Observera att det ibland är ännu mer användbart att vända på det, och definiera ‘mallar’ av
funktionerna preprocess(), calculate() och printout() i en gemensam fil, och låta dem anropa
tillbaka för delarna som är olika mellan insticksprogram. Exempelvis:

// det här är en fil som heter "common_functions.js"

function calculate () {
// gör någonting som är samma i alla insticksprogram
// ...

// lägg till något som är olika mellan insticksprogram
getSpecifics ();

// ...
}

// det här är en av de vanliga .js filerna i ett insticksprogram

// inkludera common functions
include ("common_functions.js");

// observera: funktionen calculate() definieras inte här.
// den finns istället i common_functions.js.

function getSpecifics () {
// skriv ut någon R-kod

}

Ett problem som man måste vara medveten om när tekniken används är variabelräckvidd. Se
JS-manualen om variabelräckvidd (variable scope).

Tekniken används flitigt i insticksprogrammen för fördelningsdiagram (distribution plot) och
CLT-fördelningsdiagram (distribution CLT plot), så det kan vara värt att titta där för exempel.

9.3 Inkludera .xml-filer

I stort sett samma funktion för att inkludera filer är också tillgänglig för användning i .xml, .p
luginmap och .rkh-filer. På vilket ställe som helst i filerna kan taggen <include> placeras, som
visas nedan. Effekten är att hela innehållet i den XML-filen (för att vara exakt: allting inom taggen
<document> i den filen) inkluderas ordagrant på det stället i filen. Observera att det bara går att
inkludera en annan XML-fil.

37

Introduktion till att skriva insticksprogram för RKWard

<document >
[...]
<include file="en_annan_xml_fil.xml"/>
[...]

</document >

Egenskapen file är filnamnet relativt katalogen där den aktuella filen finns.

9.4 Använda <snippets>

Medan det är ganska kraftfullt att inkludera filer som visas i föregående avsnitt, blir det som
mest användbart när det kombineras med <snippets>. De är egentligen mindre delar som kan
infogas på ett annat ställe i filen. Det åskådliggörs bäst av ett exempel:

<document >
<snippets >

<snippet id="note">
<frame >

<text >
Det här infogas på två ställen i det grafiska ←↩

användargränssnittet
</text >

</frame >
</snippet >

</snippets >
<dialog label="test">

<column >
<insert snippet="note"/>
[...]
<insert snippet="note"/>

</column >
</dialog >

</document >

Sålunda definieras delen på ett ställe längst upp i XML-filen, och sedan infogas den på vilket
eller vilka ställen som man vill med <insert>.
Medan exemplet inte är alltför användbart i sig, tänk på att kombinera det med en .xml-fil in-
kluderad med <include>. Observera att det också går att placera delar för .rkh-filen i samma
fil. Man inkluderar helt enkelt filen där också med <include>, och infogar relevanta delar med
<insert>:

<!-- Det här är en fil som heter "common_snippets.xml" -->
<document >

<snippet id="common_options">
<spinbox id="någonting" [...]/>
[...]

</snippet >
<snippet id="common_note">

<text >En viktig anmärkning för den här typen av ←↩
insticksprogram </text >

</snippet >

<snippet id="common_help">
<setting id="something">Det här gör någonting </setting >
[...]

38

Introduktion till att skriva insticksprogram för RKWard

</snippet >
</document >

<!-- Det här är insticksprogrammets .xml-fil -->
<document >

<snippets >
<!-- Importera common snippets -->
<include file="common_snippets.xml"/>

</snippets >

<dialog label="test2">
<insert snippet="common_note"/>
<spinbox id="någonting_insticksprogramspecifikt" [...] />
<insert snippet="common_options"/>

</dialog >
</document >

I likhet med att inkludera i JS, är det omvända tillvägagångssättet ofta ännu mer användbart:

<!-- Det här är en fil som heter "common_layout.xml" -->
<document >

<column >
<insert snippet="note">
[...]
<insert snippet="plugin_parameters">

</column >
[...]

</document >

<!-- Det här är insticksprogrammets .xml-fil -->
<document >

<snippets >
<snippet id="note">

<text >Anmärkningen använd för det här specifika ←↩
insticksprogrammet </text >

</snippet >

<snippet id="plugin_parameters">
<frame label="Parametrar specifika för det här ←↩

insticksprogrammet">
[...]

</frame >
</snippet >

</snippets >

<dialog label="test3">
<include file="common_layout.xml"/>

</dialog >
</document >

Till sist, är det också möjligt att infoga delar med <insert> i andra delar, under förutsättning att
det för det första bara finns en nivå av inkapsling, och för det andra att sektionen med <snippets>
placeras längst upp i filen (innan en inkapslad del infogas), beroende på att satser med <insert>
hanteras uppifrån och ner.

39

Introduktion till att skriva insticksprogram för RKWard

9.5 <include> och <snippets> mot <embed>

Vid första ögonkastet tillhandahåller <include> och <snippets> funktionalitet som är ganska lik
inbäddning: De möjliggör återanvändning av vissa delar av koden mellan insticksprogram. Vad
är då skillnaden mellan tillvägagångssätten, och när ska man använda vilket?

Den avgörande skillnaden mellan koncepten är att inbäddningsbara insticksprogram utgör ett
tätare kopplat paket. De kombinerar ett fullständigt grafiskt användargränssnitt, kod för att ge-
nerera R-kod från det och en hjälpsida. I motsats till det, tillåter include och insert mycket finkor-
nigare kontroll, men till priset av mindre modularitet.

Det vill säga, ett insticksprogram som inbäddar ett annat insticksprogram behöver typiskt inte
veta mycket om det inbäddade insticksprogrammets interna detaljer. Ett utmärkt exempel är in-
sticksprogrammet plot_options. Insticksprogram som vill inbädda det behöver inte nödvändigt-
vis känna till alla alternativ som tillhandahålls, och hur de tillhandahålls. Det är bra, eftersom
annars skulle en ändring av insticksprogrammet plot_options göra det nödvändigt att justera
alla insticksprogram som inbäddar det (många). I kontrast till det, exponerar include och insert
alla de interna detaljerna, och insticksprogram som använder dem, måste exempelvis känna till
exakt id och kanske till och med typ för de använda elementen.

Sålunda är tumregeln följande: include och insert är utmärkta om de relevanta alternativen bara
behövs för en tydligt begränsat grupp av insticksprogram. Inbäddade insticksprogram är bättre
om gruppen av insticksprogram som det kan vara användbart för inte är klart definierad, och om
funktionaliteten enkelt kan modulariseras. En annan tumregel: om det går att placera de gemen-
samma delarna i ett enda ‘block’, gör det och använd inbäddning. Om det behövs många små
delar för att definiera allt gemensamma, använd då <snippets>. Ett sista sätt att se på det: Om
alla insticksprogram tillhandahåller mycket liknande funktionalitet, är include och insert troligen
en god idé. Om de bara delar en eller två gemensamma ‘moduler’ är inbäddning sannolikt bättre.

40

Introduktion till att skriva insticksprogram för RKWard

Kapitel 10

Koncept för användning i
specialiserade insticksprogram

Kapitlet innehåller information om några ämnen som bara är användbara för vissa klasser av
insticksprogram.

10.1 Insticksprogram som skapar ett diagram

Att skapa ett diagram från ett insticksprogram är lätt att göra. Dock finns det några subtila miss-
tag att undvika, och också en del utmärkt generell funktionalitet som man bör vara medveten om.
Det här avsnittet visar grundkoncepten, och avslutas med ett standardexempel som bör följas så
snart diagraminsticksprogram skapas.

10.1.1 Rita ett diagram i utmatningsfönstret

Använd rk.graph.on() direkt innan diagrammet skapas, och rk.graph.off() direkt efteråt, för
att rita ett diagram i utmatningsfönstret. Det liknar t.ex. anrop av postscript() och dev.off() i
en vanlig R-session.

Det är dock viktigt att alltid anropa rk.graph.off() efter att ha anropat rk.graph.on(). Annars
lämnas utdatafilen i ett felaktigt tillstånd. För att försäkra att rk.graph.off() verkligen anropas,
måste alla R-kommandon mellan de två anropen omges med en try()-sats. Har du aldrig hört
talas om det? Var inte orolig, det är enkelt. Allt du behöver göra är att följa mönstret som visas i
exemplet nedan.

10.1.2 Lägga till funktionalitet för förhandsgranskning

NOT
Det här avsnittet beskriver hur förhandsgranskningsfunktionalitet läggs till i insticksprogram som ska-
par diagram. Det finns separata avsnitt om förhandsgranskning av (HTML-)utmatning, förhandsgransk-
ningar av (importerad) data och anpassade förhandsgranskningar. Dock rekommenderas du att läsa
det här avsnittet först, eftersom tillvägagångssättet är liknande i alla tre fallen.

41

Introduktion till att skriva insticksprogram för RKWard

En mycket användbar funktion för alla insticksprogram som skapar ett diagram eller graf är att
tillhandahålla en förhandsgranskning med automatisk uppdatering. Det behövs två saker för att
göra det: Tillägg av kryssrutan <preview> i definitionen av det grafiska användargränssnittet,
och justering av den genererade koden för förhandsgranskningen.

Att lägga till kryssrutan <preview> är enkelt. Placera bara följande någonstans i det grafiska an-
vändargränssnittet. Det tar hand om all magi bakom kulisserna för att skapa en förhandsgransk-
ningsenhet, uppdatera förhandsgranskningen så fort inställningarna har ändrats, etc. Exempel:

NOT
Från version 0.6.5 av RKWard hanteras förhandsgranskningselement med <preview> speciellt i in-
sticksprogrammens dialogrutor (inte guider). De placeras i knappkolumnen, oberoende av exakt var
de definieras i användargränssnittet. Det är ändå en bra idé att definiera dem på ett vettigt ställe i
layouten, för bakåtkompatibilitet.

<document >
[...]
<dialog [...]>

[...]
<preview id="preview"/>
[...]

</dialog >
[...]

</document >

Och det är allt för definitionen av det grafiska användargränssnittet.

Att justera JS-mallen är bara lite mer arbete. Här måste man säkerställa att bara själva diagram-
met skapas, och visas på en skärmenhet, istället för att skickas som utdata, dvs. ingen utskrift
av rubriker, rk.graphics.on(), eller liknande anrop. För att hjälpa till med det, anropar RK-
Ward funktionerna preprocess(), calculate() och printout() med en ytterligare parameter
som ställs in till true när kod genereras för en förhandsgranskning. (Parametern utelämnas när
den slutliga koden skapas. I Javascript utvärderas det som false när det används inne i en if-
sats.) Se exemplet nedan för det typiska mönstret man ska använda.

Som ett alternativ, om mer kontroll behövs än så här, kan man istället lägga till en ny funktion
vid namn preview() i JS-mallen, och generera koden som krävs för en förhandsgranskning där
(troligen, åtminstone delvis, igen genom att anropa calculate(), etc.).

10.1.3 Generella diagramalternativ

Du har märkt att de flesta diagraminsticksprogram i RKWard tillhandahåller ett stort antal gene-
rella alternativ, t.ex. för att anpassa axlarnas rubriker eller figurmarginaler. Det är enkelt att lägga
till alternativen i ett insticksprogram. De tillhandahålls av ett inbäddningsbart insticksprogram
som heter rkward::plot_options. Inbädda det i insticksprogrammets användargränssnitt så här:

<document >
[...]
<logic [...]>

<connect client="plotoptions.xvar" governor="x. ←↩
available"/>

<set id="plotoptions.allow_type" to="true"/>
<set id="plotoptions.allow_ylim" to="true"/>
<set id="plotoptions.allow_xlim" to="false"/>
<set id="plotoptions.allow_log" to="false"/>
<set id="plotoptions.allow_grid" to="true"/>

</logic >

42

Introduktion till att skriva insticksprogram för RKWard

<dialog [...]>
[...]
<embed id="plotoptions" component="rkward:: ←↩

plot_options" as_button="true" label="Plot ←↩
Options"/>

[...]
</dialog >
[...]

</document >

Det lägger till en knapp i användargränssnittet för att visa ett fönster med diagramalternativ.
Sektionen logic är bara ett exempel. Den ger en viss kontroll över insticksprogrammet för dia-
gramalternativ. Läs mer på insticksprogrammet plot_options hjälpsida (länkad från hjälpsidan i
alla insticksprogram som tillhandahåller de generella alternativen).

Därefter måste du försäkra dig om att koden som motsvarar diagramalternativen läggs till i ko-
den som genereras för ditt diagram. Hämta egenskaperna code.preprocess, code.printout och
code.calculate från det inbäddade insticksprogrammet för diagramalternativ för att göra det,
och infoga dem i din kod som visas i exemplet nedan.

10.1.4 Ett standardexempel

Här är ett exempel på en .JS-fil som bör användas som mall, så fort ett diagraminsticksprogram
skapas:

function preprocess () {
// "somepackage" behövs för att skapa diagrammet
echo ("require (somepackage)\n");

}

function printout (is_preview) {
// Om "is_preview" tilldelas false/odefinierad ,skapas fullständig kod, ←↩

inklusive rubriker.
// Om "is_preview" tilldelas true , skapas bara det viktigaste.

if (!is_preview) {
echo (’rk.header (’ + i18n ("Ett exempeldiagram") + ’)\n\n’);
echo (’rk.graph.on ()\n’);

}
// bara följande del skapas när is_preview==true

// kom ihåg att allting mellan rk.graph.on() och rk.graph.off() ska ←↩
omges med en try()-sats:

echo (’try ({\n’);
// infoga eventuell kod för inställning av alternativ som ska köras ←↩

innan själva uppritningskommandona.
// Själva koden tillhandahålls av det inbäddade insticksprogrammet för ←↩

uppritningsalternativ. printIndentedUnlessEmpty() tar hand om snygg ←↩
formatering.

printIndentedUnlessEmpty (’\t’, getString ("plotoptions.code.preprocess ←↩
"), ’’, ’\n’);

// skapa själva diagrammet. plotoptions.code.printout tillhandahåller ←↩
de generella uppritningsalternativen

// som måste läggas till i själva uppritningsanropet.
echo (’plot (5, 5’ + getString ("plotoptions.code.printout") + ’)\n’);

43

Introduktion till att skriva insticksprogram för RKWard

// infoga eventuell kod för inställning av alternativ som ska köras ←↩
efter själva uppritningen.

printIndentedUnlessEmpty (’\t’, getString ("plotoptions.code.calculate ←↩
"), ’\n’);

echo (’})’\n); // avslutning av try()-satsen

if (!is_preview) {
echo (’rk.graph.off ()\n’);

}
}

10.2 Förhandsgranskningar av data, utmatning och andra resul-
tat

10.2.1 Förhandsgranskning av (HTML-)utmatning

NOT
Det här avsnittet beskriver hur förhandsgranskningsfunktionalitet läggs till i insticksprogram som ska-
par utmatning eller HTML-utskrifter. Vi rekommenderar att du läser det separata avsnittet om förhands-
granskning av diagram innan det här avsnittet.

Att skapa en förhandsgranskning av HTML-utmatning använder nästan samma procedur som
att skapa en förhandsgranskning av ett diagram. I det här fallet måste man bara försäkra sig om
att preview() genererar relevanta kommandon med rk.print()/rk.results(). Det är i allmänhet en
god idé att utelämna rubriksatser i förhandsgranskningen. Här är ett avkortat exempel:

<!-- I insticksprogrammets XML-fil -->>
<dialog label="Import CSV data" >

<browser id="file" type="file" label="File name"/>
<!-- [...] -->>
<preview id="preview" mode="output"/>

</dialog >
>

Observera specifikationen av mode=˝output˝ i elementet <preview>.

// In the plugin ’s JS file
function preview () {

// skapa koden som används för förhandsgranskningen
printout (true);

}

function printout (is_preview) {
// genererar bara en rubrik om is_preview==false
if (!is_preview) {

new Header ("This is a caption").print ();
}
echo (’rk.print (result)’);

}

44

Introduktion till att skriva insticksprogram för RKWard

10.2.2 Förhandsgranskningar av (importerad) data

NOT
Det här avsnittet beskriver hur förhandsgranskningsfunktionalitet läggs till i insticksprogram som skapar
(importerar) data. Vi rekommenderar att du läser det separata avsnittet om förhandsgranskning av
diagram innan det här avsnittet.

Att skapa en förhandsgranskning av importerad data (vilken typ av data som helst som rk.edit()
kan hantera), liknar mycket att skapa en förhandsgranskning av diagram. Följande avkortade
exemplet bör hjälpa till att illustrera hur en dataförhandsgranskning skapas:

<!-- I insticksprogrammets XML-fil -->>
<dialog label="Import CSV data" >

<browser id="file" type="file" label="File name"/>
<!-- [...] -->>
<preview id="preview" active="true" mode="data"/>

</dialog >
>

Observera att elementet <preview> anger mode=˝data˝ den här gången. active=˝true˝ gör
helt enkelt förhandsgranskningen normalt aktiv.

// In the plugin ’s JS file
function preview () {

// genererar koden använd för förhandsgranskning
calculate (true);

}

function calculate (is_preview) {
echo (’imported <- read.csv (file="’ + getString ("file") ←↩

/* [+ options] */);
if (is_preview) {

echo (’preview_data <- imported\n’);
} else {

echo (’.GlobalEnv$ ’ + getString ("name") + ’ >- ←↩
imported\n’);

}
}

function printout () {
// [...]

}

Återigen genererar funktionen preview() nästan samma R-kod som funktionen calculate(), så
vi skapar hjälpfunktionen doCalculate() för att plocka ut de gemensamma delarna. Det vikti-
gaste att observera är att importerad data måste tilldelas till objektet som heter preview_data
(inne i den aktuella, lokala, omgivningen). Allt annat sker automatiskt (grovt sett anropar RKWard
rk.edit(preview_data), omgivet av ett anrop till .rk.with.window.hints()).

45

Introduktion till att skriva insticksprogram för RKWard

NOT
Medan förhandsgranskningar är en utmärkt funktion, kräver de resurser. I fallet med dataförhands-
granskningar, kan det finnas fall då förhandsgranskningar kan orsaka betydande prestandaproblem.
Det kan vara för import av mycket stora datamängder (som helt enkelt är för stora att öppna för redi-
gering i RKWards editorfönster), men också för ˝normala˝ datamängder som kan importeras felaktigt,
vilket skapar ett mycket stort antal rader eller kolumner. Det rekommenderas starkt att preview_data
begränsas till en dimension som ger en användbar förhandsgranskning, utan risk att skapa märkbara
prestandaproblem (t.ex. 50 rader och 50 kolumner bör vara mer än tillräckligt i de flesta fall).

10.2.3 Anpassade förhandsgranskningar

Elementet <preview> kan användas för att skapa förhandsgranskningar av godtycklig typ av
˝dokumentfönster˝ som kan anslutas till RKWards arbetsrymd. Förutom diagram och dataföns-
ter, inkluderar det HTML-filer, R-skript och fönster med objektsammanfattningar. För de senare,
måste <preview mode=˝custom˝> användas.

Om du har läst avsnitten som beskriver förhandsgranskningar av diagram och data, bör du
ha en allmän idé om proceduren, men förhandsgranskningar av typen ˝custom˝ kräver nå-
got mer manuellt arbete bakom kulisserna. Den viktigaste R-funktionen att titta på här är
rk.assign.preview.data(). Följande korta listning visar hur den genererade R-koden (för för-
handsgranskning) skulle kunna se ut för ett insticksprogram som skapar textfilutmatning:

Att genereras i kodsektionen preview() i ett insticksprogram
pdata <- rk.get.preview.data("SOMEID")
if (is.null (pdata)) {

outfile <- rk.get.tempfile.name(prefix="preview", extension ←↩
=".txt")

pdata <- list(filename=outfile , on.delete=function (id) {
unlink(rk.get.preview.data(id)$filename)

})
rk.assign.preview.data("SOMEID", pdata)

}
try ({

cat ("This is a test", pdata$filename)
rk.edit.files(file=pdata$filename)

})

Här ska värdet SOMEID hämtas från egenskapen id i elementet <preview>, dvs. genom att an-
vända getString (˝preview.id˝) i insticksprogrammets .js-fil.

10.3 Sammanhangsberoende insticksprogram

Hittills har vi antagit att alla insticksprogram alltid är meningsfulla, och alla placerade i hu-
vudmenyn. Dock är vissa insticksprogram bara (eller mer) meningsfulla i vissa sammanhang.
Exempelvis är ett insticksprogram för att exportera innehållet i en R X11-grafikenhet uppenbar-
ligen mest användbar när den är placerad i menyn för en X11-enhet, inte i huvudmenyraden.
Dessutom bör ett sådant insticksprogram känna till enhetsnumret som den ska arbeta med, utan
att behöva fråga användaren om det.

Vi kallar sådana insticksprogram sammanhangsberoende. På motsvarande sätt är de inte (eller
inte bara) placerade i huvudhierarkin i .pluginmap-filen med <hierarchy>, utan istället i elemen-
tet <context>. Hittills stöds bara två olika sammanhang (fler kommer senare): x11 och filimport.
Vi hanterar dem i tur och ordning. Även om du bara är intresserad av importsammanhanget, läs
också gärna avsnittet om x11-sammanhanget, eftersom det är något mer utvecklat.

46

Introduktion till att skriva insticksprogram för RKWard

10.3.1 X11-enhetssammanhang

För att använda ett insticksprogram i sammanhang med en x11-enhet, det vill säga placera det
i menyraden för fönstret som man får när x11() anropas i terminalen, deklarera det först som
vanligt i filen .pluginmap:

<document [...]>
<components >

[...]
<component id="my_x11_plugin" file="my_x11_plugin.xml" ←↩

label="An X11 context plugin"/>
[...]

</components >

Dock behövs det inte definieras i hierarkin (det går, om det också är meningsfullt som ett in-
sticksprogram på toppnivå):

<hierarchy >
[...]

</hierarchy >

Lägg istället till en definition av sammanhanget ˝x11˝, och lägg till det i menyn där:

<context id="x11">
[...]
<menu id="edit">

[...]
<entry id="my_x11_plugin"/>

</menu >
</context >

</document >

I insticksprogrammets XML-sektion logic, kan nu två egenskaper deklareras med <external>:
devnum och context (om deklarerad) sätts till ˝x11˝ när insticksprogrammet startas i det sam-
manhanget. devnum sätts till grafikenhetens nummer som ska arbetas med. Och det är allt.

10.3.2 Importdatasammanhang

Innan du läser det här avsnittet, se till att du har läst avsnittet om X11-enhetssammanhang, ef-
tersom det förklarar grundkoncepten.

Sammanhanget ˝import˝ används för att deklarera filterinsticksprogram för importfiler. De pla-
ceras helt enkelt i ett sammanhang med id=˝import˝ i .pluginmap-filen. Dock finns det en extra
knepighet när sådana insticksprogram deklareras: För att erbjuda en enhetlig filvalsdialogruta
för alla filtyper som stöds, måste en del extra information deklareras för komponenten:

<document [...]>
<components >

[...]
<component id="my_xyz_import_plugin" file=" ←↩

my_xyz_import_plugin.xml" label="Import XYZ files">
<attribute id="format" value="*.xyz *.zyx" label=" ←↩

XYZ data files"/>
</component >
[...]

</components >
<hierarchy >

[...]

47

Introduktion till att skriva insticksprogram för RKWard

</hierarchy >
<context id="import">

[...]
<menu id="import">

[...]
<entry id="my_xyz_import_plugin"/>

</menu >
</context >
[...]

</document >

Egenskapslinjen talar helt enkelt om att de tillhörande filnamnsändelserna för XYZ-filer är *.xyz
eller *.zyx, och att filtret ska namnges ‘ XYZ data files’ i filvalsdialogrutan.

Du kan deklarerar två egenskaper med <external> i insticksprogrammet. filename sätts till den
valda filens namn, och context sätts till ˝import˝ .

10.4 Begära information från R

I vissa fall kan man vilja hämta ytterligare information från R, som ska presenteras i insticks-
programmets användargränssnitt. Man kanske exempelvis vill erbjuda ett urval av nivåer för en
faktor som användaren har valt att analysera. Från version 0.6.2 av RKWard är det möjligt att
göra det. Innan vi börjar är det viktigt att du är medveten om några förbehåll:

R-kod som körs inne i insticksprogrammets logik för användargränssnittet utvärderas i R:s hän-
delsesnurra, vilket betyder att de kan köras medan andra beräkningar pågår. Det görs för att se
till att insticksprogrammets användargränssnitt är användbart även när R är upptaget med att
göra andra saker. Dock gör detta att det är mycket viktigt att koden inte har några sidoeffekter. I
synnerhet:

• Gör inte några tilldelningar i .GlobalEnv eller några andra icke-lokala omgivningar.

• Skriv inte ut någonting i utdatafilen.

• Rita inte någonting på skärmen.

• I allmänhet, gör ingenting som får sidoeffekter. Koden kan läsa in information, inte ˝göra˝ någon-
ting.

Med det i åtanke, här är det allmänna mönstret. Det används inne i en sektion med skriptbaserad
logik för användargränssnittet:

<script ><![CDATA[
last_command_id = -1;
gui.addChangeCommand ("variable", "update ←↩

()");
update = function () {

gui.setValue ("selector.enabled", ←↩
0);

variable = gui.getValue ("variable ←↩
");

if (variable == "") return;

last_command_id = doRCommand (’ ←↩
levels (’ + variable + ’)’, " ←↩
commandFinished");

}

48

Introduktion till att skriva insticksprogram för RKWard

commandFinished = function (result , id) {
if (id != last_command_id) return; ←↩

// ett annat resultat är på väg ←↩
att anlända

if (typeof (result) == "undefined") ←↩
{

gui.setListValue ("selector ←↩
.available", Array (" ←↩
ERROR"));

return;
}
gui.setValue ("selector.enabled", ←↩

1);
gui.setListValue ("selector. ←↩

available", result);
}

]]></script >

Här är variable en egenskap som innehåller ett objektnamn (t.ex. inne i en <varslot>). Så snart
den ändras, vill man uppdatera visningen av nivåer inne i <valueselector>, benämnd select
or. Nyckelfunktionen här är doRCommand(), som har kommandosträngen att köra som första
parameter, och namnet på en funktion att anropa när kommandot är klart som andra parameter.
Observera att kommandot körs asynkront, och det gör saker och ting lite mer komplicerat. Man
vill åtminstone försäkra sig om att <valueselector> förblir inaktiverad medan den inte innehåller
aktuell information. En annan sak är att man potentiellt kan ha köat mer än ett kommando innan
det första resultatet levereras. Det är därför varje kommando ges en ˝id˝, som vi lagrar i ast_co
mmand_id för senare referens.

När kommandot är klart, anropas det angivna återanropet (commandFinished i det här fallet)
med två parametrar: Själva resultatet, och id för motsvarande kommando. Resultatet har en typ
som liknar representationen i R, dvs. ett numeriskt fält, om resultatet är numeriskt, etc. Det kan
till och med vara en list() i R, men i det här fallet representeras det som en Array() i JS utan namn.

Observera att till och med det här exemplet är något förenklat. I verkligheten bör man vidta yt-
terligare försiktighetsåtgärder, för att t.ex. undvika att lägga till ett extremt antal nivåer i väljaren.
De goda nyheterna är att du troligtvis inte behöver göra allt själv. Exemplet ovan kommer från
insticksprogrammet rkward::level_select, som du helt enkelt kan inbädda i ditt eget instickspro-
gram. Det låter dig till och med ange ett annat uttryck att köra istället för levels().

10.5 Referera till det aktuella objektet eller aktuella filen

I många insticksprogram är det önskvärt att arbeta med det aktuella objektet, ‘current’. Exempel-
vis skulle ett ‘sorteringsinsticksprogram’ kunna välja data.frame som för närvarande redigeras
för sortering i förväg. Namnet på det aktuella objektet är tillgängligt för insticksprogram som en
fördefinierad egenskap vid namn current_object. Det går att ansluta till egenskapen på van-
ligt sätt. Om inget objekt är aktuellt, utvärderas egenskapen till en tom sträng. På liknande sätt
är webbadressen för den aktuella skriptfilen tillgänglig som en fördefinierad egenskap som kal-
las current_filename. Egenskapen är tom om ingen skriptfil för närvarande redigeras, eller om
skriptfilen inte ännu har sparats.

För närvarande kan current_object bara ha klassen data.frame, men förlita dig inte på det,
eftersom det kommer att utökas till andra datatyper i framtiden. Om du bara är intresserad av
objekt av klassen data.frame, anslut istället till egenskapen current_dataframe. Som alternativ
kan typkrav påtvingas genom att använda lämpliga begränsningar för de använda <varslot>,
eller genom att använda skriptlogik för det grafiska användargränssnittet.

49

Introduktion till att skriva insticksprogram för RKWard

10.6 Repetera (ett antal) alternativ

Ibland vill man upprepa ett antal alternativ för att godtyckligt antal objekt. Antag t.ex. att du vill
implementera ett insticksprogram för att sortera en data.frame. Du vill tillåta sortering enligt ett
godtyckligt antal kolumner (i händelse av liket i den första kolumnen eller de första kolumnerna).
Det skulle helt enkelt kunna realiseras genom att tillåta att användare väljer flera variabler i en
<varslot> med multi=˝true˝ . Men om du vill utöka det, t.ex. tillåta att användaren anger om
varje variabel ska konverteras till tecken eller ett nummer, eller om sorteringen ska vara stigande
eller fallande, behövs större flexibilitet. Andra exempel skulle kunna vara uppritning av flera
linjer i ett diagram (med möjlighet att välja objekt, linjestil, linjefärg, etc. för varje linje), eller ange
en avbildning för att koda om från en mängd gamla värden till nya.

Här kommer <optionset> in. Låt oss föst ta en titt på ett enkelt exempel:

<dialog [...]>
[...]
<optionset id="set" min_rows="1">

<content >
<row>

<input id="firstname" label="Given name(s)" ←↩
size="small">

<input id="lastname" label="Family name" ←↩
size="small">

<radio id="gender" label="Gender">
<optioncolumn label="Male" value="m ←↩

"/>
<optioncolumn label="Female" value ←↩

="f"/>
</radio >

</row>
</content >

<optioncolumn id="firstnames" label="Given name(s)" connect ←↩
="firstname.text">

<optioncolumn id="lastnames" label="Family name" connect=" ←↩
lastname.text">

<optioncolumn id="gender" connect="gender.string">
</optionset >
[...]

</dialog >

Här skapade vi ett användargränssnitt för att ange ett antal personer (t.ex. upphovsmän). An-
vändargränssnittet gräver minst en post (min_rows=˝1˝). Inne i elementet <optionset> börjar vi
med att ange innehållet med <content>, dvs, de element som hör till alternativmängden. Du bör
redan vara bekant med de flesta elementen inne i <content>.
Därefter anger vi de intressanta variabler som vi vill läsa från alternativmängden i vår JS-fil.
Eftersom vi hanterar ett godtyckligt antal objekt, kan vi inte bara läsa getString (˝firstname˝)
i JS. Istället anger vi en <optioncolumn> för varje intressant värde. För den första optioncolumn
i exemplet, betyder <connect=˝firstname.text˝> att innehållet i elementet <input>, ˝firstname˝,
läses för varje objekt. Alla <optioncolumn> där en label anges visas på skärmen i en kolumn
med den beteckningen. Nu kan vi hämta förnamnen på alla upphovsmän genom att använda
getList(˝set.firstname˝), getList(˝set.lastnames˝) för efternamnen, och getList(˝set.ge
nder˝) för ett strängfält med ˝m˝ eller ˝f˝.

Observera att det inte finns några begränsningar för vad som kan placeras inne i <optionset>.
Det går till och med att använda inbäddade komponenter. Precis som med alla andra element,
är det enda man måste göra att samla utmatningsvariablerna av intresse i en specifikation med
<optioncolumn>. I fallet med inbäddade insticksprogram, är det ofta en sektion med egenskapen
˝code˝. Till exempel:

50

Introduktion till att skriva insticksprogram för RKWard

<dialog [...]>
[...]
<optionset id="set" min_rows="1">

<content >
[...]
<embed id="color" component="rkward::color_chooser" ←↩

label="Color"/>
</content >

[...]
<optioncolumn id="color_params" connect="color.code. ←↩

printout">
</optionset >
[...]

</dialog >

Man kan förstås också använda gränssnittslogik inne i ett optionset. Det finns två sätt att göra
det: Man kan skapa en anslutning (eller ett skript) i huvudsektionen <logic> av insticksprogram-
met, som vanligt. Dock måste användargränssnittets element i innehållsregionen kommas åt som
(t.ex.) ˝set.contents.firstname.XYZ˝. Observera prefixet ˝set˝ (det id som har tilldelats till mäng-
den och ˝contents˝). Som alternativ kan en separat sektion läggas till som ett underliggande
objekt till <optionset> med <logic>. I detta fall, adresseras alla id relativt till innehållsregionen,
t.ex. ˝firstname.XYZ˝. Endast elementet <script> tillåts inte i logiksektionen för ett optionset.
Om skript ska användas, måste insticksprogrammets huvudsektion <logic> utnyttjas.

NOT
När skriptlogik används i optionset, är allt man kan göra att komma åt aktuell innehållsregionen. Sålun-
da är den typiskt bara användbar för att ansluta element inne i innehållsregionen till varandra. Att an-
sluta en egenskap utanför <optionset> till en egenskap inne i innehållsregionen kan vara användbart
för initiering. Dock gäller inte ändring av innehållsregionen efter initieringen objekten som användaren
redan har definierat, bara objektet i mängden som för närvarande är markerat.

10.6.1 ˝Drivna˝ optionsets

Hittills har vi betraktat ett <optionset> som tillhandahåller knappar för att lägga till eller ta bort
objekt. Dock är det i vissa fall mycket naturligare att välja objekt utanför <optionset>, och bara
tillhandahålla alternativ för att anpassa vissa aspekter av varje objekt i ett <optionset>. Antag
t.ex. att du vill låta användaren rita upp flera objekt inne i ett diagram. Användaren ska kunna
ange linjefärg för varje objekt. Du skulle kunna lösa det genom att lägga till en <varselector> och
<varslot> inne i området <content>, vilket låter användaren välja ett objekt i taget. Dock blir
det mycket färre klick för användaren, om <varslut multi=˝true˝> används utanför <optionset>
istället. Därefter ansluts de utvalda objekten till ett så kallat ˝drivet˝ optionset. Så här gör man:

<dialog [...]>
<logic >

<connect client="set.vars" governor="vars.available"/>
<connect client="set.varnames" governor="vars.available. ←↩

shortname"/>
</logic >
[...]
<varselector id="varsel"/>
<varslot id="vars" label="Objects to plot"/>
<optionset id="set" keycolumn="var">

<content >
[...]

51

Introduktion till att skriva insticksprogram för RKWard

<embed id="color" component="rkward::color_chooser" ←↩
label="Line color"/>

</content >

[...]
<optioncolumn id="vars" external="true">
<optioncolumn id="varnames" external="true" label="Variable ←↩

">
<optioncolumn id="color_params" connect="color.code. ←↩

printout">
</optionset >
[...]

</dialog >

Vi börjar med att titta på exemplet längst ner. Observera att två specifikationer av <option-
column> har external=˝true˝ . Det talar om för RKWard att de kontrolleras från utsidan av
<optionset>. Här är det enda syftet med alternativkolumnen ˝varnames˝ att tillhandahålla lätt-
lästa beteckningar vid visning av optionset (den är ansluten till värdet ˝shortname˝ i egenska-
pen som innehåller de valda objekten). Syftet med alternativkolumnen ˝vars˝ är att fungera
som ˝nyckelkolumn˝, enligt specifikationen <optionset keycolumn=˝vars˝...>. Det betyder att
för varje post i listan, erbjuder mängden en uppsättning alternativ, och alternativen är logiskt
kopplade till posterna. Kolumnen är ansluten till egenskapen som innehåller de valda objekten i
<varslot>. Det vill säga för varje objekt som är valt där, tillåter <optionset> att ange linjefärg.

NOT
Externa kolumner kan också anslutas med connect till egenskaper inne i regionen <content>. Dock
är det viktigt att observera att optioncolumns deklarerade med external=˝true˝ aldrig ska änd-
ras inne i <optionset>, och optioncolumns deklarerade med external=˝false˝ (förval) aldrig ska
ändras utanför <optionset>.

10.6.2 Alternativ: När optionsets inte ska användas

Att använda optionset är ett kraftfullt verktyg, men de kan ibland göra mer skada än nytta,
eftersom de adderar betydande komplexitet, både från insticksprogramutvecklarens och använ-
darens perspektiv. Tänk dig alltså för en extra gång innan du använder dem. Här är några råd:

• I några enkla fall kan elementet <matrix> vara ett användbart lättviktigt alternativ.

• Låt inte insticksprogrammet göra för mycket. Vi gav exemplet att använda optionset för ett
insticksprogram för att rita flera linjer i ett diagram. Men i allmänhet är det inte en god idé
att skapa ett insticksprogram som producerar enskilda diagram för varje objekt i ett optionset.
Låt istället insticksprogrammet skapa ett diagram, som användaren kan anropa flera gånger.

• Om du inte förväntar dig mer än två eller tre objekt i en mängd, överväg att upprepa alterna-
tiven manuellt istället.

52

Introduktion till att skriva insticksprogram för RKWard

Kapitel 11

Hantera beroenden och
kompatibilitetsfrågor

11.1 RKWard versionskompatibilitet

Vi gör vårt bästa för att se till att insticksprogram utvecklade för en gammal version av RKWard
fortsätter fungera i senare versioner av RKWard. Dock är det omvända inte alltid sant, eftersom
nya funktioner läggs till. Eftersom inte alla användare kör senaste versionen av RKWard, kan det
betyda att ditt insticksprogram inte fungerar för alla.

När du är medveten om sådana kompatibilitetsproblem, bör du se till att detta faktum dokumen-
teras i din .pluginmap-fil, genom att använda <dependencies>. Elementet <dependencies> kan
antingen specificeras som ett direkt underliggande objekt till elementet <document> i en .plu
ginmap, eller som underliggande objekt till individuella <component>-definitioner. I det första
fallet, gäller beroendena alla insticksprogram i avbildningen. I det senare fallet bara de individu-
ella komponenterna, <component>. Det går också att blanda toppnivå ˝globala˝ och ˝specifika˝
beroenden. I det fallet läggs de ˝globala˝ beroendena till de för individuella komponenter.

Låt oss titta på ett litet exempel:

<document ...>
<dependencies rkward_min_version ="0.5.0c" />
<components ...>

<component id="myplugin" file="reduced_version_of_myplugin. ←↩
xml" ...>

<dependencies rkward_max_version ="0.6.0z" />
</component >
<component id="myplugin" file="fancy_version_of_myplugin. ←↩

xml" ...>
<dependencies rkward_min_version ="0.6.1" />

</component >
...

x </components ...>
</document >

I det här exemplet är det känt att alla insticksprogram kräver minst version 0.5.0c av RKWard. Ett
insticksprogram, med id=˝myplugin˝ tillhandahålls i två olika varianter. Den första, förenklade,
versionen används för RKWard versioner innan 0.6.1. Den senare utnyttjar funktioner som är nya
i RKWard 0.6.1 och används bara i RKWard 0.6.1 och framåt.
Att tillhandahålla alternativa varianter på detta sätt är ett mycket användarvänligt sätt att ut-
nyttja nya funktioner, och fortfarande behålla stöd för tidigare versioner av RKWard. Alternativa

53

Introduktion till att skriva insticksprogram för RKWard

versioner ska dela samma id (annars produceras varningar), och kan bara definieras inne i samma
.pluginmap-fil.

Insticksprogram som inte är kompatibla med versionen av RKWard som kör, och som inte leve-
reras med en alternativversion, ignoreras med en varning.

NOT
I själva verket är RKWard 0.6.1 den första versionen som tolkar beroenden, och rapporterar beroen-
defel, överhuvudtaget. Sålunda, i motsats till vad exemplet förespeglar, blir det ingen direkt effekt av
att specificera några tidigare versioner i beroenden (men kan ändå vara en god idé i dokumentations-
syfte).

Ibland kan det till och med vara möjligt att hantera inkompatibilitetsproblem mellan versioner
inne i en enda .pluginmap-fil, genom att använda elementet <dependency_check>, som beskrivs
i nästa avsnitt.

11.2 Kompatibilitet med R-version

I likhet med rkward_min_version och rkward_max_version, tillåter elementet <dependencies>
att egenskaperna R_min_version och R_max_version anges. Dock finns följande skillnader:

• Insticksprogram som inte uppfyller kraven på R-version hoppas för närvarande inte över när
en .pluginmap-fil läses. Användaren kan ändå anropa insticksprogrammet, och ser inte någon
omedelbar varning (i framtida versioner kommer troligen ett varningsmeddelande visas).

• Som en konsekvens är det alltså inte möjligt att definiera alternativa versioner av ett insticks-
program beroende på vilken version av R som kör.

• Dock är det oftast enkelt att uppnå bakåtkompatibilitet som visas nedan. Om du är medveten
om kompatibilitetsproblem med R, fundera på att använda den här metoden istället för att
definiera ett beroende av en viss version av R.

I många fall är det lätt möjligt att tillhandahålla reducerad funktionalitet, om en viss funktion
inte är tillgänglig i versionen av R som kör. Betrakta följande korta exempel på en .xml-fil för ett
insticksprogram:

<dialog [...]>
<logic >

<dependency_check id="ris210" R_min_version ="2.10.0"/>
<connect client="compression.xz.enabled" governor="ris210 ←↩

"/>
</logic >
[...]
<radio id="compression" label="Compression method">

<option label="None" value="">
<option label="gzip" value="gzip">
<option id="xz" label="xz" value="xz">

</radio >
[...]

</dialog >

I exemplet inaktiveras helt enkelt komprimeringsalternativet ˝xz˝ när den körbara R-versionen
är äldre än 2.10.0 (som inte stödde komprimering med xz). Elementet <dependency_check> stö-
der samma egenskaper som elementet <dependencies> i .pluginmap-filer. Det skapar en Boolesk
egenskap, som är sann om de angivna beroendena är uppfyllda, och annars falsk.

54

Introduktion till att skriva insticksprogram för RKWard

11.3 Beroenden av R-paket

Beroenden på specifika R-paket kan definieras, men för RKWard 0.6.1 kontrolleras varken sådana
beroenden eller installeras/läses in automatiskt. De visas dock i insticksprogrammets hjälpfiler.
Här är ett exempel på en definition:

<dependencies >
<package

name="heisenberg"
min_version ="0.11-2"
repository="http://rforge.r-project.org"

/>
</dependencies >

NOT
Försäkra dig alltid om att lägga till lämpliga anrop till require(), om insticksprogrammet kräver att
vissa paket ska läsas in.

NOT
Om en .pluginmap distribueras som ett R-paket, och alla insticksprogram beror på ett visst paket, ska
det beroendet definieras på R-paketnivå. Att definiera beroenden av R-paket på nivån för en RKWard
.pluginmap är mest användbart om bara vissa av insticksprogrammen har beroendet, om paketet
inte är tillgängligt från CRAN, eller för en .pluginmap som inte distribueras som ett R-paket.

11.4 Beroenden av andra RKWard.pluginmap

Om insticksprogram beror på insticksprogram definierade i en annan .pluginmap (som inte ingår
i paketet) kan beroendet definieras så här:

<dependencies >
<pluginmap

name="heisenberg_plugins"
url="http://eternalwondermaths.example.org/hsb"

/>
</dependencies >

För närvarande läses inte en saknad .pluginmap in, eller installeras, eller varnas för, men åt-
minstone visas information om beroenden (och var de kan erhållas) på insticksprogrammens
hjälpsidor. Man behöver inte (och ska inte) deklarera beroenden på en .pluginmap som levereras
med den officiella distributionen av RKWard, eller för en .pluginmap som är inne i det egna pa-
ketet. Dessutom, om en nödvändig .pluginmap distribueras som ett R-paket, ska ett beroende av
paketet deklareras (som visas i föregående avsnitt), istället för avbildningen.

För att se till att en nödvändig .pluginmap verkligen läses in, använd taggen <require> (se refe-
rensen för detaljerad information).

11.5 Ett exempel

För att klargöra hur beroendedefinitioner kan blandas, följer här ett kombinerat exempel:

55

Introduktion till att skriva insticksprogram för RKWard

<document ...>
<dependencies rkward_min_version ="0.5.0c">

<package
name="heisenberg"
min_version ="0.11-2"
repository="http://rforge.r-project.org"

/>
<package

name="DreamsOfPi"
min_version ="0.2"

/>
<pluginmap

name="heisenberg_plugins"
url="http://eternalwondermaths.example.org/hsb"

/>
<dependencies >

<require map="heisenberg::heisenberg_plugins"/>

<components ...>
<component id="myplugin" file="reduced_version_of_myplugin. ←↩

xml" ...>
<dependencies rkward_max_version ="0.6.0z" />

</component >
<component id="myplugin" file="fancy_version_of_myplugin. ←↩

xml" ...>
<dependencies rkward_min_version ="0.6.1" />

</component >
...

x </components ...>
</document >

56

Introduktion till att skriva insticksprogram för RKWard

Kapitel 12

Översättning av insticksprogram

Hittills hara vi använd några få begrepp rörande översättningar, eller ˝i18n˝ (kort för
˝internationalization˝ som har 18 tecken mellan i och n), i förbigående. I det här kapitlet ger
vi en mer djupgående redogörelse om i18n-funktionalitet för RKWard-insticksprogram. I de fles-
ta fall behövs inte allt detta i dina insticksprogram. Dock kan det vara en god idé att läsa igenom
hela kapitlet, eftersom förståelse av begreppen hjälper dig att skapa insticksprogram som är full-
ständigt översättningsbara, och tillåta översättningar med hög kvalitet.

12.1 Allmänna hänsynstaganden

En viktigt sak att förstå om översättning av programvara, i motsats till översättning av annat text-
material, är att översättare ofta har svårighet att få en fullständig bild av vad de översätter. Över-
sättningar av programvara är av nödvändighet ofta baserad på ganska korta textfragment: Varje
beteckning som anges för en <option> i en <radio>, varje sträng som markeras för översättning
med ett funktionsanrop till i18n(), utgör en separat ˝översättningsenhet˝. I allt väsentligt, pre-
senteras varje sådant fragment isolerat för översättaren. Nå, inte fullständigt isolerat, eftersom
vi försöker ge översättaren så mycket meningsfullt sammanhang som kan extraheras automa-
tiskt. Men på vissa ställen behöver översättare ytterligare sammanhang för att förstå en sträng, i
synnerhet när strängarna är korta.

12.2 i18n i RKWards XML-filer

För XML-filer i RKWard, kommer i18n oftast bara fungera. Om man skriver sin egen .pluginmap
(t.ex. för ett externt insticksprogram), måste po_id anges intill id för pluginmap. Det definierar
˝meddelandekatalog˝ att använda. I allmänhet ska det vara identiskt med id för en .plugin-
map, men om man tillhandahåller flera relaterade .pluginmap i ett enda paket, vill man troligen
ange ett gemensamt po_id för alla. Ett po_id för en .pluginmap-fil ärvs av alla insticksprogram
deklarerade i den, om de inte deklarerar annorlunda po_id.

För insticksprogram och hjälpsidor behöver man inte tala om för RKWard vilka strängar som
ska översättas, eftersom det i allmänhet är uppenbart av deras användning. Dock bör man hålla
utkik efter strängar som kan vara tvetydiga eller kräver viss förklaring för att kunna översättas
korrekt, som förklarades ovan. Ange i18n_context för strängar som kan ha olika betydelse, på
följande sätt:

<checkbox id="scale" label="Scale" i18n_context="Show the scale"/>
<checkbox id="scale" label="Scale" i18n_context="Scale the plot"/>

57

Introduktion till att skriva insticksprogram för RKWard

Att ange i18n_context gör att de två strängarna översätts separat. Annars skulle de dela en
enda översättning. Dessutom visas sammanhanget för översättaren. Egenskapen i18n_context
stöd för alla element som kan ha översättningsbara strängar någonstans, inklusive element som
har text inne i sig (t.ex. element som <text>).

I andra fall har strängen en enda otvetydig betydelse, men kan ändå behöva en viss förklaring. I
detta fall kan en kommetar läggas till som visas för översättare. Exempel kan omfatta:

<!-- i18n: No, this is not a typo for screen plot! -->
<component id="scree_plot" label="Scree plot"/>

<!-- i18n: If you can, please make this string short. Having more than some ←↩
15 chars

looks really ugly at this point , and the meaning should be mostly self - ←↩
evident to the

user (selection from a list of values shown next to this element) -->
<valueslot id="selected" label="Pick one"/>

Observera att sådana kommentarer måste föregå elementen de gäller, och måste antingen börja
med ˝i18n˝ eller ˝TRANSLATORS:˝.
Till sist, i sällsynta fall kan man vilja undanta vissa strängar från översättning. Det kan vara
vettigt om man till exempel erbjuder ett val mellan olika R-funktionsnamn via alternativknappar
med <radio>. Då vill man inte att de ska översättas (men beroende på sammanhang, kanske man
istället skulle fundera på att ge dem beskrivande beteckningar):

<radio id="transformation" label="R function to apply">
<option id="as.list" noi18n_label="as.list()"/>
<option id="as.vector" noi18n_label="as.vector()"/>
[...]

</radio >

Observera att egenskapen label då ska utelämnas, och noi18n_label anges istället. Observera
också, att i motsats till i18n_context och kommentarer, blir insticksprogrammet inte kompati-
belt med versioner av RKWard tidigare än 0.6.3 om noi18n_label används.

12.3 i18n i RKWards JS-filer och sektioner

I motsats till .xml-filerna, krävs mer eget arbete för att göra .js-filerna i ett insticksprogram över-
sättningsbara. Den stora skillnaden är att här finns det inget rimligt sätt att automatiskt avgöra
om en sträng är avsedd att visas som en mänskligt läsbar sträng, eller är en bit kod. Man måste
alltså markera det själv. Vi har redan visat exempel på det, hela tiden. Här är en fullständigare
beskrivning av i18n-funktioner tillgängliga i js-kod, och några tips för komplexare fall:

i18n (msgid, [...])

Den viktigaste funktionen. Markerar strängen för översättning. Strängen (vare sig den över-
sätts eller inte) returneras inom dubbla citationstecken (˝˝). Ett godtyckligt antal platsmar-
körer kan användas i strängen som visas nedan. Att använda sådana platsmarkörer istället
för att sammanfoga små delsträngar gör det mycket lättare för översättare:

i18n ("Compare objects %1 and %2", getString (’x’), getString (’y’));

i18nc (msgctxt, msgid, [...])

Samma som i18n() men tillhandahåller dessutom ett meddelandesammanhang:

i18nc ("proper name , not state of mind", "Mood test");

58

Introduktion till att skriva insticksprogram för RKWard

i18np (msgid_singularis, msgid_pluralis, n, [...])

Samma som i18n() men för meddelanden som kan skilja sig i singularis och pluralis (och
vissa språk skiljer på ännu fler numerus). Observera att precis som med i18n() kan ett god-
tyckligt antal ersättningar användas, men den första (’%1’) krävs, och måste vara ett heltal.

i18np ("Comparing a single pair", "Comparing %1 distinct pairs", ←↩
n_pairs);

i18ncp (msgctxt, msgid_singularis, msgid_pluralis, n, [...])

i18np() med tillagt meddelandesammanhang.

comment (kommentar, [indentering])

Ekar en kodkommentar markerad för översättning. I motsats till övriga i18n()-funktioner
citeras den inte, men tecknet ’#’ läggs till på varje kommentarrad.

comment ("Transpose the matrix");
echo (’x <- t (x)\n’);

För att lägga till kommentarer för översättarna (se ovan för en diskussion om skillnaderna
mellan kommentarer och sammanhang), lägg till en kommentar som börjar med ˝i18n:˝ eller
˝translators:˝ direkt ovanför i18n()-anropet som ska kommenteras, till exempel:

// i18n: Spelling is correct: Scree plot.
echo (’rk.header (’ + i18n ("Scree plot") + ’)\n’);

12.3.1 i18n och citationstecken

I de flesta fall behöver man inte bekymra sig om hur i18n() beter sig när det gäller citations-
tecken. Eftersom översättningsbara strängar typiskt är stränglitteraler, är det helt rätt att citera
dem, och det sparar en del skrivarbete. Dessutom är i18n()-strängar skyddade från duplicerade
citationstecken i funktioner såsom makeHeaderCode()/Header() som normalt citerar sina argu-
ment. Väsentligen fungerar det genom att först skicka den översatta strängen via quote() (för att
citera den) och därefter genom noquote() (för att skydda den från ytterligare citering). Om en
översättningsbar sträng som inte är citerad behövs, använd i18n(noquote (˝My message˝)). Om
en översättningsbar sträng måste citeras en andra gång, skicka den genom quote() två gånger.

Trots det, är det i allmänhet inte en god idé att göra bitar som funktionsnamn eller variabelnamn
översättningsbara. För det första är R, programspråket, inneboende på engelska, och det finns
ingen internationalisering av själva språket. Kodkommentarer är en annan best, men man bör
använda funktionen comment() för dem. För det andra, genom att göra syntaktiskt relevanta
delar av den genererade koden översättningsbara, kan översättningar faktiskt orsaka fel i in-
sticksprogrammet, exempelvis om en intet ont anande översättare översätter en sträng som är
avsedd som ett variabelnamn med två separata ord skilda åt med ett mellanslag.

12.4 Underhåll av översättningar

Nu när insticksprogrammet har gjorts översättningsbart, hur får man det faktiskt översatt? I all-
mänhet behöver man bara bekymra sig om det när ett externt insticksprogram utvecklas. För
insticksprogram i RKWards huvudarkiv, görs allt magiskt åt dig. Här är det grundläggande ar-
betsflödet för externa insticksprogram. Observera att man måste ha ˝gettext˝-verktygen installe-
rade:

• Markera alla strängar, tillhandahåll sammanhang och kommentarer där det behövs

59

Introduktion till att skriva insticksprogram för RKWard

• Kör python3 scripts/update_plugin_messages.py --extract-only /sökväg/till/min.pluginmap.
Skriptet scripts/update_plugin_messages.py är för närvarande inte en del av källkodsutgå-
vorna, men finns när källkodsarkivet checkas ut.

• Distribuera den resulterande filen rkward__POID.pot till översättarna. För externa instickspro-
gram rekommenderas att placera den i underkatalogen ˝po˝ i inst/rkward.

• Översättaren öppnar filen i ett översättningsverktyg såsom lokalize. Även om du inte tänker
göra någon översättning själv, bör du prova steget. Bläddra igenom de extraherade stängarna
och titta efter problem eller tvetydigheter.

• Översättaren sparar översättningar som rkward__POID.xx.po (där xx är språkkoden), och
skickar tillbaka den till dig.

• Kopiera rkward__POID.xx.po till din källkod, intill rkward__POID.pot. Kör python3
scripts/update_plugin_messages.py /path/to/my.pluginmap (observera: utan --extract-o
nly den här gången). Det sammanfogar översättningen med eventuella senare ändring-
ar av strängarna, kompilerar översättningen och installerar den i DIR_OF_PLUGINMAP/po/x
x/LC_MESSAGES/rkward__POID.mo (där xx återigen är språkkoden).

• Du bör också inkludera den okompilerade översättningen (dvs. rkward__POID.xx.po) i distri-
butionen, i underkatalogen ˝po˝.

• För alla uppdateringar av insticksprogrammet, kör python3 scripts/upda-
te_plugin_messages.py /path/to/my.pluginmap för att uppdatera .pot-filen, liksom också de
befintliga .po-filerna, och de kompilerade meddelandekatalogerna.

12.5 Skriva översättningar för insticksprogram

Vi antar att du kan ditt hantverk som översättare, eller är villig att läsa på om det på annat håll.
Dock några få ord särskilt om översättning av RKWard insticksprogram:

• RKWard insticksprogram gick inte att översätta förrän version 0.6.3, och var i de flesta fall
inte skrivna med i18n i åtanke innan dess. Alltså kommer du att stöta på ganska många fler
tvetydiga strängar, och andra problem med i18n, än i andra mogna projekt. Gå inte bara runt
dem i tysthet, utan låt oss (eller underhållsansvariga för insticksprogrammet) få veta, så att vi
kan fixa problemen.

• Många insticksprogram i RKWard hänvisar till mycket speciella termer från datahantering
och statistik, men också från andra vetenskapliga fält. I många fall kräver en god översätt-
ning åtminstone grundkunskaper inom dessa fält. I vissa fall finns ingen god översättning för
en teknisk term, och det bästa alternativet är att lämna termen oöversatt, eller inkludera den
engelska termen inom parentes. Fokusera inte alltför mycket på att uppnå 100 % översatta
strängar, utan fokusera på att erbjuda en bra översättning, även om det betyder att hoppa över
vissa strängar (eller till och med hoppa över vissa meddelandekataloger i sin helhet). Andra
användare kan ha möjlighet att fylla i eventuella luckor för tekniska termer.

60

Introduktion till att skriva insticksprogram för RKWard

Kapitel 13

Information om upphovsman, licens
och version

Så du har skrivit ett antal insticksprogram och är klar att att dela med dig av ditt arbete. För
att vara säker på att användare vet vad ditt arbete handlar om, med vilka villkor de kan an-
vända och distribuera det, och vem de ska kontakta om problem eller idéer, bör du lägga till en
del information om insticksprogrammen. Det kan göras med elementet <about>, som antingen
kan användas i en .pluginmap eller i .xml-filer i enskilda insticksprogram (i båda fall som ett
direkt underliggande objekt till dokumenttaggen). När det anges i en .pluginmap gäller det alla
insticksprogram. Om <about> anges på båda ställen, överskrider informationen i <about> i in-
sticksprogrammets .xml-fil den i .pluginmap-filen. Det går också att lägga till elementet <about>
på .rkh-sidor, som inte är kopplade till ett insticksprogram, om det finns behov av det.

Nedan är ett exempel på en .pluginmap-fil med bara några få förklaringar. I tveksamma fall, kan
mer information finnas tillgänglig i referensen.

<document
namespace="rkward"
id="SquaretheCircle_rkward"

>
<about

name="Square the Circle"
shortinfo="Squares the circle using Heisenberg compensation ←↩

."
version="0.1-3"
releasedate ="2011-09-19"
url="http://eternalwondermaths.example.org/23/stc.html"
license="GPL"
category="Geometry"

>
<author

given="E.A."
family="Dölle"
email="doelle@eternalwondermaths.example.org"
role="aut"

/>
<author

given="A."
family="Assistant"
email="alterego@eternalwondermaths.example.org"
role="cre, ctb"

/>

61

Introduktion till att skriva insticksprogram för RKWard

</about >
<dependencies >

...
</dependencies >
<components >

...
</components >
<hierarchy >

...
</hierarchy >

</document >

Det mesta av det här bör vara självförklarande, så vi diskuterar inte varenda tagg-element. Men
låt oss ta en titt på en del detaljer som troligen behöver några kommentarer för bättre förståelse.

Elementet category i <about> kan definieras ganska fritt, men bör vara meningsfullt, eftersom
det är avsett att ordna insticksprogram i grupper. Alla andra egenskaper i den inledande taggen
krävs, och måste fyllas i med rimligt innehåll.

Åtminstone en <author> med en giltig e-postadress och rollen ‘aut’ (‘author’) måste också
anges. Ifall insticksprogrammet orsakar problem, eller någon skulle vilja dela sin tacksamhet
med dig, bör det vara enkelt att kontakta någon som är inblandad. För ytterligare information
om andra giltiga roller, såsom ‘ctb’ för bidragsgivare av kod eller ‘cre’ för paketunderhåll, se
R-dokumentation om person().

NOT
Kom ihåg att det går att använda <include> och/eller <insert> för att upprepa information i flera .xml-
filer (t.ex. information om en upphovsman som är inblandad i flera insticksprogram). Mer information.

TIPS
Du måste inte skriva XML-koden för hand. Om du använder funktionen rk.plugin.skeleton() från
paketet rkwarddev och tillhandahåller all nödvändig information via alternativet about, skapas auto-
matiskt en .pluginmap-fil med en fungerande <about>-sektion åt dig.

62

http://stat.ethz.ch/R-manual/R-patched/library/utils/html/person.html

Introduktion till att skriva insticksprogram för RKWard

Kapitel 14

Dela med dig av ditt arbete med
andra

14.1 Externa insticksprogram

Från version 0.5.5 tillhandahåller RKWard ett bekvämt sätt att installera ytterligare instickspro-
gram från tredje part, som inte hör till själva paketet. Vi kallar dem ‘externa insticksprogram’. De
levereras i form av ett R-paket, och kan direkt hanteras via de vanliga pakethanteringsfunktio-
nerna i R och/eller RKWard.

Det här avsnittet av dokumentationen beskriver hur externa insticksprogram ska paketeras så
att RKWard kan använda dem. Hur själva insticksprogrammet skapas är förstås identiskt med
föregående avsnitt. Det vill säga, det är troligen bäst att först skriva ett insticksprogram som
fungerar, och därefter komma tillbaka hit för att ta reda på hur man distribuerar det.

Eftersom externa insticksprogram är en relativt sen funktion, kan detaljer av detta troligen kom-
ma att ändras i framtida utgåvor. Du är välkommen att bidra med dina idéer för att förbättra
processen.

TIPS
Dokumentationen förklarar detaljerna hos externa insticksprogram så att du kan lära dig hur de funge-
rar. Förutom det, ta en titt på paketet rkwarddev, som konstruerats för att automatisera en stor del av
skrivprocessen.

14.2 Varför externa insticksprogram?

Antal paket för att utöka funktionaliteten hos R är redan enormt, och växande. Å ena sidan vill vi
uppmuntra dig att skriva insticksprogram även för de mest specialiserade uppgifter som behöver
lösas. Å andra sidan ska inte den vanliga användaren behöva gå vilse i jättestora menyträd fulla
av okända statistiska termer. Därför verkade det rimligt att låta hanteringen av insticksprogram
i RKWard också vara riktigt modulär. RKWard-gruppen underhåller sitt eget öppna paketarkiv
på http://files.kde.org/rkward/R, avsett att ta hand om externa insticksprogram.

Som en tumregel, bör insticksprogram som verkar tjäna ett syfte som används i stor utsträckning
(t.ex. t-tester) ingå i det centrala paketet, medan de som betjänar en ganska begränsad grupp
med särskilda intressen ska tillhandahållas som ett valfritt paket. För dig, som upphovsman till
insticksprogram, är den bästa metoden att helt enkelt börja med ett externt insticksprogram.

63

http://files.kde.org/rkward/R

Introduktion till att skriva insticksprogram för RKWard

14.3 Strukturen hos ett insticksprogrampaket

För att externa insticksprogram ska installeras och fungera riktigt, måste de följa några struktu-
rella tumregler när det gäller deras filhierarki.

14.3.1 Filhierarki

Låt oss ta en titt på en prototypliknande filhierarki för ett komplicerat insticksprogramarkiv. Man
behöver inte inkludera alla de här katalogerna och/eller filerna för att ett insticksprogram ska
fungera (läs vidare för att ta reda på vad som är absolut nödvändigt). Betrakta det här som en
‘bästa metodens’ exempel:

plugin_name/
inst/

rkward/
plugins/

plugin_name.xml
plugin_name.js
plugin_name.rkh
...

po/
ll/

LC_MESSAGES/
rkward__plugin_name_rkward ←↩

.mo
rkward__plugin_name_rkward.ll.po
rkward__plugin_name_rkward.pot

tests/
testsuite_name/

RKTestStandards. ←↩
sometest_name.rkcommands ←↩
.R

RKTestStandards. ←↩
sometest_name.rkout

...
testsuite.R

plugin_name.pluginmap
...

ChangeLog
README
AUTHORS
LICENSE
DESCRIPTION

NOT
I exemplet ska alla förekomster av plugin_name, testsuite_name och sometest_name ersättas med de
riktiga namnen. Dessutom är ll en platsmarkör för en språkförkortning (t.ex. ‘de’, ‘en’ eller ‘sv’).

TIPS
Du behöver inte skapa filhierarkin för hand. Om funktionen rk.plugin.skeleton() från paketet rk-
warddev, skapar den automatiskt alla nödvändiga filer och kataloger åt dig, utom katalogen po som
skapas och hanteras av översättningsskriptet.

64

Introduktion till att skriva insticksprogram för RKWard

14.3.1.1 Grundläggande insticksprogramkomponenter

Det är nödvändig att inkludera minst tre filer: en .pluginmap, en .xml-beskrivning av ett insticks-
program, och en .js-fil för ett insticksprogram. Det vill säga, till och med katalogen ˝plugins˝
är valfri. Den kan dock hjälpa till att ge filerna en viss ordning, särskilt om mer än ett insticks-
program eller dialog inkluderas i arkivet, vilket förstås inte är något problem. Det går att ha så
många kataloger för själva insticksprogramfilerna som anses lämpligt, de måste bara likna re-
spektive .pluginmap. Det är också till och med möjligt att inkludera flera .pluginmap-filer, om
det passar behoven, men då bör alla inkluderas i ‘plugin_name.pluginmap’.

Varje R-paket måste ha en giltig beskrivningsfil, DESCRIPTION, som också är väsentlig för att RK-
Ward ska känna igen att den tillhandahåller ett insticksprogram. Det mesta av informationen den
bär med sig behövs också i insticksprogrammets meta-information och möjligen beroenden, men
med ett annat format (R-dokumentationen förklarar beskrivningsfilen DESCRIPTION i detalj).

Förutom det allmänna innehållet i DESCRIPTION-filen, se till att också inkludera raden ‘Enhances:
rkward’. Det gör att RKWard automatiskt söker igenom paketet efter insticksprogram om det är
installerat. Ett exempel på en DESCRIPTION-fil ser ut så här:

Package: SquaretheCircle
Type: Package
Title: Square the circle
Version: 0.1-3
Date: 2011-09-19
Author: E.A. Dölle <doelle@eternalwondermaths.example.org>
Maintainer: A. Assistant <alterego@eternalwondermaths.example.org>
Enhances: rkward
Description: Squares the circle using Heisenberg compensation.
License: GPL
LazyLoad: yes
URL: http://eternalwondermaths.example.org/23/stc.html
Authors@R: c(person(given="E.A.", family="Dölle", role="aut",

email="doelle@eternalwondermaths.example.org"),
person(given="A.", family="Assistant", role=c("cre ←↩

",
"ctb"), email="alterego@eternalwondermaths.example. ←↩

org"))

TIPS
Du måste inte skriva filen för hand. Om du använder funktionen rk.plugin.skeleton() från paketet
rkwarddev och tillhandahåller all nödvändig information via alternativet about, skapas automatiskt en
fungerande ‘DESCRIPTION’-fil åt dig.

14.3.1.2 Ytterligare information (valfri)

ChangeLog, README, AUTHORS, LICENSE bör vara självförklarliga och är helt valfria. I själva ver-
ket tolkas de inte av RKWard, så de är istället avsedda att innehålla ytterligare information som
kan vara relevant för t.ex. distributörer. Det mesta av deras relevanta innehåll (erkännanden av
upphovsmän, licensvillkor, etc.)är dock ändå inkluderade i själva insticksprogrammets filer (se
avsnittet om meta-information). Observera att alla filerna skulle också kunna placeras någon-
stans i katalogen ˝Inst˝, om man inte vill att de bara ska vara tillgängliga i källkodsarkivet utan
också i det installerade paketet.

65

http://cran.r-project.org/doc/manuals/R-exts.html#The-DESCRIPTION-file

Introduktion till att skriva insticksprogram för RKWard

14.3.1.3 Automatiserad test av insticksprogram (valfri)

En annan valfri katalog är ˝tests˝, som är avsett att tillhandahålla filer som behövs för automa-
tiserad test av insticksprogram. Testerna är användbara för att snabbt kontrollera om insticks-
programmet fortfarande fungerar med nya versioner av R eller RKWard. Om du vill inkludera
tester, bör du verkligen begränsa dig till namnkonventionen och hierarkin som visas här. Det vill
säga, tester ska finnas i en katalog som heter tests, som inkluderar filen testsuite.R och en
katalog med teststandarder namngivna efter lämplig testsvit. Du kan dock tillhandahålla mer än
en testsvit: I så fall, om du inte vill lägga till alla i en enda testsuite.R, kan de t.ex. delas upp i
en fil för varje testsvit och en testsuite.R skapas som har anrop till varje svit med source(). I
båda fall, skapa separata underkataloger med teststandarder för varje definierad svit.

Fördelen med att upprätthålla strukturen är att tester av insticksprogram kan helt enkelt köras ge-
nom att anropa rktests.makplugintests() från paketet rkwardtests utan ytterligare argument.
Ta en titt på dokumentationen på nätet i Automated Plugin Testing för ytterligare information.

14.4 Bygga insticksprogrampaketet

Som tidigare förklarats, är externa RKWard-insticksprogram i själva verket R-paket, och där-
för är paketeringsprocessen identisk. I motsats till ˝riktiga˝ R-paket, innehåller ett rent insticks-
programpaket inte någon ytterligare R-kod (även om man förstås också kan lägga till RKWard-
insticksprogram i vanliga R-paket, genom att använda samma metoder som förklaras här). Det
bör göra det ännu enklare att skapa ett fungerade paket, under förutsättning att man har en giltig
DESCRIPTION-fil och håller sig till filhierarkin som förklaras i tidigare avsnitt.

Det enklaste sättet att faktiskt bygga och prova insticksprogrammet är att använda R-kommandot
på kommandoraden, till exempel:

R CMD build SquaretheCircle

R CMD INSTALL SquaretheCircle_0.1-3.tar.gz

TIPS
Paketet behöver inte byggas så här på kommandoraden. Om funktionen rk.build.package() i pa-
ketet rkwarddev används, bygger den och/eller kontrollerar insticksprogrammet åt dig.

66

http://sourceforge.net/apps/mediawiki/rkward/index.php?title=Automated_Plugin_Testing
http://sourceforge.net/apps/mediawiki/rkward/index.php?title=Automated_Plugin_Testing
rkward://rhelp/rkwardtests
http://sourceforge.net/apps/mediawiki/rkward/index.php?title=Automated_Plugin_Testing

Introduktion till att skriva insticksprogram för RKWard

Kapitel 15

Utveckling av insticksprogram med
paketet rkwarddev

15.1 Översikt

Att skriva externa insticksprogram innefattar att skriva filer på tre språk (XML, JavaScript och
R), och att skapa en standardiserad kataloghierarki. För att göra det mycket enklare för villiga
utvecklare av insticksprogram, tillhandahåller vi paketet rkwarddev. Det tillhandahåller ett antal
enkla R-funktioner för att skapa XML-koden för alla dialogelement som flikböcker, kryssrutor,
kombinationslistor eller filbläddrare, samt funktioner för att skapa JavaScript-kod och RKWard
hjälpfiler att börja med. Funktionen rk.plugin.skeleton() skapar det förväntade katalogträdet
och alla nödvändiga filer där det är meningen de ska finnas.

Paketet är inte normalt installerat, utan måste installeras för hand från RKWards eget arkiv. Du
kan antingen göra det genom att använda det grafiska användargränssnittet (Inställningar→
Anpassa paket), eller från en godtycklig R-session som kör:

install.packages("rkwarddev", repos="http://files.kde.org/rkward/R")
library(rkwarddev)

Paketet rkwarddev beror på ett annat litet paket som kallas ‘XiMpLe’, vilket är en mycket enkel
XML-tolk och generator som också finns i samma arkiv.

Hela dokumentationen på PDF-format hittas också där. En mer detaljerad introduktion till att
arbeta med paketet hittas i rkwarddev vinjetten.

15.2 Praktiskt exempel

För att ge dig en idé om hur det ser ut att ‘skapa ett insticksprogram med skript’, jämfört med
den direkta metod som du har sett i tidigare kapitel, skapar vi hela t-test insticksprogrammet
igen, denna gång bara med R-funktionerna i paketet rkwarddev.

TIPS
Paketet lägger till en ny dialogruta i det grafiska användargränssnittet i RKWard under Arkiv→ Export
→ Skapa RKWard insticksprogramskript. Som namnet anger, kan insticksprogrammallar för vidare
redigering skapas med det. Dialogrutan själv skapades i sin tur av ett rkwarddev-skript, som finns i
katalogen ‘demo’ i det installerade paketet och paketkällkoden, som ett ytterligare exempel. Det går
också att köra det genom att anropa demo(˝skeleton_dialog˝).

67

http://files.kde.org/rkward/R/
http://http://files.kde.org/rkward/R/pckg/rkwarddev/rkwarddev.pdf
http://files.kde.org/rkward/R/pckg/rkwarddev/rkwarddev_vignette.pdf

Introduktion till att skriva insticksprogram för RKWard

15.2.1 Beskrivning av det grafiska användargränssnittet

Man märker omedelbart att arbetsflödet är betydligt annorlunda: I motsats till att skriva XML-
koden direkt, börjar man inte med definitionen av <document>, utan direkt med elementen i
insticksprogram som man vill ha i dialogrutan. Det går att tilldela alla gränssnittselement, vare
sig de är kryssrutor, kombinationsmenyer, variabelplatser eller någonting annat, till individuella
R-objekt och därefter kombinera dessa objekt till det verkliga grafiska användargränssnittet. Pa-
ketet har funktioner för varje XML-tagg som kan användas för att definiera insticksprogrammets
grafiska användargränssnitt och de flesta har till och med samma namn, förutom prefixet rk.X
ML.*. Att exempelvis definiera ett <varselector>- och två <varslot>-element för variablerna ˝x˝
och ˝y˝ i t-testen kan göras med:

variables <- rk.XML.varselector(id.name="vars")
var.x <- rk.XML.varslot("compare", source=variables , types="number", ←↩

required=TRUE , id.name="x")
var.y <- rk.XML.varslot("against", source=variables , types="number", ←↩

required=TRUE , id.name="y")

Den mest intressanta detaljen är troligen source=variabler: En framträdande funktion i pake-
tet är att alla funktioner kan skapa automatiska id, så att man inte behöver vare sig bry sig om
att tänka på id-värden eller komma ihåg dem för att referera till ett specifikt element i insticks-
programmet. Man kan helt enkelt ange R-objekten som referens, eftersom alla funktioner som
behöver en id från något annat element också kan läsa det från dessa objekt. rk.XML.varselec
tor() är något speciell, eftersom den oftast inte har något särskilt innehåll att skapa en id från
(den kan göra det, men bara om du anger en beteckning), så vi måste ange ett id-namn. Men
rk.XML.varslot() skulle inte behöva argumenten id.name här, så följande skulle vara nog:

variables <- rk.XML.varselector(id.name="vars")
var.x <- rk.XML.varslot("compare", source=variables , types="number", ←↩

required=TRUE)
var.y <- rk.XML.varslot("against", source=variables , types="number", ←↩

required=TRUE)

För att återskapa exempelkoden exakt, skulle alla id värden behöva ställas in för hand. Men
eftersom paketet är avsett att göra livet enklare, bryr vi oss inte om det längre.

TIPS
rkwarddev har möjlighet att automatisera en hel del för att hjälpa till att skapa insticksprogram. Dock
kanske det är att föredra att inte använda det fullt ut. Om målet är att skapa kod som inte bara fungerar,
men är lättläst och jämförbart med genereringsskriptet av en person, bör man fundera på att alltid ange
användbara id med id.name. Namngivning av R-objekt identiska med dessa id, hjälper också för att
få skriptkod som är lätt att förstå.

Om man vill se hur XML-koden för det definierade elementet ser ut om det exporterades till en
fil, kan objektet bara anropas enligt namn. Om man nu anropar ‘var.x’ i R-sessionen, bör man se
någonting som liknar det här:

<varslot id="vrsl_compare" label="compare" source="vars" types="number" ←↩
required="true" />

Vissa taggar är bara användbara i sammanhang med andra. Därför finns exempelvis inte någon
funktion för taggen <option>. Istället definieras både alternativknappar och kombinationslistor
så att deras alternativ inkluderas som en namngiven lista, där namnen representerar beteckning-
ar som ska visas i dialogrutan, och deras värden är en namngiven vektor som kan ha två poster,
val för alternativets värde och Boolean chk för att ange att alternativet normalt ska kontrolleras.

68

Introduktion till att skriva insticksprogram för RKWard

test.hypothesis <- rk.XML.radio("using test hypothesis",
options=list(

"Two-sided"=c(val="two.sided"),
"First is greater"=c(val="greater"),
"Second is greater"=c(val="less")

)
)

Resultatet ser ut så här:

<radio id="rad_usngtsth" label="using test hypothesis">
<option label="Two-sided" value="two.sided" />
<option label="First is greater" value="greater" />
<option label="Second is greater" value="less" />

</radio >

Allt som saknas för elementen under fliken ‘Basic settings’ är kryssrutan för parade samplingar,
och strukturering av alla elementen i rader och kolumner.

check.paired <- rk.XML.cbox("Paired sample", value="1", un.value="0")
basic.settings <- rk.XML.row(variables , rk.XML.col(var.x, var.y, test. ←↩

hypothesis , check.paired))

rk.XML.cbox() är ett ovanligt undantag där funktionsnamnet inte innehåller hela taggnamnet,
för att minska skrivbördan för det här ofta använda elementet. Det här är vad basic.settings
nu innehåller:

<row id="row_vTFSPP10TF">
<varselector id="vars" />
<column id="clm_vrsTFSPP10">

<varslot id="vrsl_compare" label="compare" source="vars" ←↩
types="number" required="true" />

<varslot id="vrsl_against" label="against" i18n_context=" ←↩
compare against" source="vars" types="number" required=" ←↩
true" />

<radio id="rad_usngtsth" label="using test hypothesis">
<option label="Two-sided" value="two.sided" />
<option label="First is greater" value="greater" />
<option label="Second is greater" value="less" />

</radio >
<checkbox id="chc_Pardsmpl" label="Paired sample" value="1" ←↩

value_unchecked ="0" />
</column >

</row>

På ett liknande sätt, skapar följande rader R-objekt för elementen under fliken ‘Options’, inklusi-
ve funktioner för nummerrutor, ramar och utsträckning:

check.eqvar <- rk.XML.cbox("assume equal variances", value="1", un.value ←↩
="0")

conf.level <- rk.XML.spinbox("confidence level", min=0, max=1, initial ←↩
=0.95)

check.conf <- rk.XML.cbox("print confidence interval", val="1", chk=TRUE)
conf.frame <- rk.XML.frame(conf.level , check.conf , rk.XML.stretch(), label ←↩

="Confidence Interval")

Nu är allt vi behöver göra att lägga ihop objekten i en flikbok, och placera den i en dialogsektion:

69

Introduktion till att skriva insticksprogram för RKWard

full.dialog <- rk.XML.dialog(
label="Two Variable t-Test",
rk.XML.tabbook(tabs=list("Basic settings"=basic.settings , "Options ←↩

"=list(check.eqvar , conf.frame)))
)

Vi kan också skapa guidesektionen med dess två sidor genom att använda samma objekt, så att
deras id extraheras för taggarna <copy>:

full.wizard <- rk.XML.wizard(
label="Two Variable t-Test",
rk.XML.page(

rk.XML.text("As a first step , select the two ←↩
variables you want to compare against

each other. And specify , which one you ←↩
theorize to be greater. Select two-sided ←↩
,

if your theory does not tell you, which ←↩
variable is greater."),

rk.XML.copy(basic.settings)),
rk.XML.page(

rk.XML.text("Below are some advanced options. It’s ←↩
generally safe not to assume the

variables have equal variances. An ←↩
appropriate correction will be applied ←↩
then.

Choosing \"assume equal variances\" may ←↩
increase test -strength , however."),

rk.XML.copy(check.eqvar),
rk.XML.text("Sometimes it’s helpful to get an ←↩

estimate of the confidence interval of
the difference in means. Below you can ←↩

specify whether one should be shown , and
which confidence -level should be applied ←↩

(95% corresponds to a 5% level of
significance)."),

rk.XML.copy(conf.frame)))

Det är allt för det grafiska användargränssnittet. Det globala dokumentet kombineras till sist av
rk.plugin.skeleton().

15.2.2 JavaScript-kod

Hittills kanske det inte verkar som användning av paketet rkwarddev har hjälpt så mycket. Det
kommer att ändras nu.
För det första, precis som vi inte behövde bry oss om id för elementen när layouten av det grafiska
användargränssnittet definierades, behöver vi inte bry oss om namn på JavaScript-variabler i
nästa steg. Om man vill ha större kontroll, kan man skriva vanlig JavaScript-kod och få den
inklistrad i den genererade filen. Men det är troligen mycket effektivare att göra det på sättet
som i rkwarddev.
Framför allt behöver man inte definiera några variabler själv, eftersom rk.plugin.skeleton()
kan söka igenom XML-koden och automatiskt definiera alla variabler som troligen behövs. Man
skulle exempelvis inte bry sig om att inkludera en kryssruta om inte dess värde eller tillstånd
senare används. Så vi kan börja skriva den verkliga R-koden som skapar JS omedelbart.

70

Introduktion till att skriva insticksprogram för RKWard

TIPS
Funktionen rk.JS.scan() kan också söka igenom befintliga XML-filer efter variabler.

Paketet har några funktioner för JS-kodkonstruktioner som vanligtvis används i RKWard-
insticksprogram, såsom funktionen echo() eller villkor med if() {...} else {...}. Det finns
några skillnader mellan JS och R, t.ex. används kommatecken för att konkatenera teckensträngar
för funktionen paste() i R, medan för echo() i JS används ‘+’, och rader måste sluta med ett
semikolon. Genom att använda R-funktionerna kan man nästan glömma bort skillnaderna och
fortsätta skriva R-kod.
Funktionerna kan acceptera olika klasser av indataobjekt: Antingen vanlig text, R-objekt med
XML-kod som ovan, eller i sin tur resultat från några andra JS-funktioner i paketet. I slutändan
måste alltid rk.paste.JS() anropas, som beter sig på liknande sätt som paste(), men beroen-
de på indataobjekt, ersätter dem med deras XML id, JavaScript variabelnamn eller till och med
fullständiga JavaScript kodblock.

För t-test exemplet behöver vi två JS-objekt: Ett för att beräkna resultatet, och ett för att skriva ut
dem i funktionen printout().

JS.calc <- rk.paste.JS(
echo("res <- t.test (x=", var.x, ", y=", var.y, ", hypothesis=\"", ←↩

test.hypothesis , "\""),
js(

if(check.paired){
echo(", paired=TRUE")

},
if(!check.paired && check.eqvar){

echo(", var.equal=TRUE")
},
if(conf.level != "0.95"){

echo(", conf.level=", conf.level)
},
linebreaks=TRUE

),
echo(")\n"),
level=2

)

JS.print <- rk.paste.JS(echo("rk.print (res)\n"), level=2)

Som du kan se, tillhandahåller rkwarddev också en R-implementering av funktionen echo(). Den
returnerar exakt en teckensträng med en giltig JS-version av sig själv. Du kanske också märker
att alla R-objekten här är de vi skapade tidigare. De ersätts automatiskt av sina variabelnamn,
så det bör vara riktigt intuitivt. Så snart bara den här ersättningen behövs, kan funktionen id()
användas, som också returnerar exakt en teckensträng för alla objekt som anges (man kan säga
att den beter sig som paste() med en mycket specifik objektsubstitution).

Funktionen js() är en omgivande funktion som låter dig använda R-villkor, if(){...} else {...} som
du är van vid. De översätts direkt till JS-kod. Det bevarar också vissa operatorer som <, >= och
||, så det går att jämföra R-objekten logiskt utan behov av citering för det mesta. Låt oss ta en
titt på det resulterade objektet ‘JS.calc’, som nu har en teckensträng med följande innehåll:

echo("res <- t.test (x=" + vrslCompare + ", y=" + vrslAgainst + ", ←↩
hypothesis =\"" + radUsngtsth + "\"");

if(chcPardsmpl) {
echo(", paired=TRUE");

} else {}
if(!chcPardsmpl && chcAssmqlvr) {

echo(", var.equal=TRUE");
} else {}

71

Introduktion till att skriva insticksprogram för RKWard

if(spnCnfdnclv != "0.95") {
echo(", conf.level=" + spnCnfdnclv);

} else {}
echo(")\n");

NOT
Som alternativ till if()-villkor nästlade i js(), kan man använda funktionen ite(), som beter sig på
liknande sätt som ifelse() i R. Dock är det oftast svårare att läsa villkorssatser skapade med ite(),
och de bör ersättas med js() så fort det är möjligt.

15.2.3 Insticksavbildning

Det här avsnittet är mycket kort: Vi behöver inte skriva en .pluginmap alls, eftersom den kan
skapas automatiskt av rk.plugin.skeleton(). Menyhierarkin kan anges via alternativet plugin
map:

[...]
pluginmap=list(

name="Two Variable t-Test",
hierarchy=list("analysis", "means", "t-Test"))

[...]

15.2.4 Hjälpsida

Det här avsnittet är också mycket kort: rk.plugin.skeleton() kan inte skriva en hel hjälpsida
med den information den har. Men den kan söka igenom XML-dokumentet efter element som
troligen förtjänar att omnämnas på hjälpsidan, och automatiskt skapa en mall för vårt insticks-
program. Allt vi måste göra efteråt är att skriva några rader för varje sektion som listas.

TIPS
Funktionen rk.rkh.scan() kan också söka igenom befintliga XML-filer för att skapa en mall för hjälp-
filen.

15.2.5 Generera insticksprogrammets filer

Nu kommer det sista steget, då vi lämnar över alla genererade objekt till rk.plugin.skeleton():

plugin.dir <- rk.plugin.skeleton("t-Test",
xml=list(

dialog=full.dialog ,
wizard=full.wizard),

js=list(
results.header="Two Variable t-Test",
calculate=JS.calc ,
printout=JS.print),

pluginmap=list(
name="Two Variable t-Test",
hierarchy=list("analysis", "means", "t-Test")),

load=TRUE ,
edit=TRUE ,
show=TRUE)

72

Introduktion till att skriva insticksprogram för RKWard

Filerna skapa normalt i en tillfällig katalog. De tre sista alternativen är inte nödvändiga, men
mycket praktiska: load=TRUE lägger automatiskt till det nya insticksprogrammet i RKWards in-
ställning (eftersom det finns i en tillfällig katalog, och därför slutar existera när RKWard stängs,
tas det automatiskt bort igen av RKWard vid nästa start), edit=TRUE öppnar alla skapade filer för
redigering i RKWards editorflikar, och show=TRUE försöker att direkt starta insticksprogrammet,
så att du kan undersöka hur det ser ut utan något klick. Du kan överväga att lägga till overwrite
=TRUE om du tänker köra skriptet upprepade gånger (t.ex. efter kodändringar), eftersom normalt
skrivs inga filer över.

Resultatobjektet ‘plugin.dir’ innehåller sökvägen till katalogen där insticksprogrammet skapa-
des. Det kan vara användbart i kombination med funktionen rk.build.package() för att bygga
ett verkligt R-paket, för att dela insticksprogrammet med andra, t.ex. genom att skicka det till
RKWard-utvecklingsgruppen för att läggas till i vårt insticksprogramarkiv.

15.2.6 Hela skriptet

För att rekapitulera allt det ovanstående, här är hela skriptet för att skapa det fungerande t-
test exemplet. Som tillägg till koden som redan har förklarats, läser det också in paketet vid
behov, och använder miljön local(), så att de skapade objekten inte hamnar i din nuvarande
arbetsrymd (utom ‘plugin.dir’ förstås):

require(rkwarddev)

local({
variables <- rk.XML.varselector(id.name="vars")
var.x <- rk.XML.varslot("compare", source=variables , types="number ←↩

", required=TRUE)
var.y <- rk.XML.varslot("against", source=variables , types="number ←↩

", required=TRUE)
test.hypothesis <- rk.XML.radio("using test hypothesis",

options=list(
"Two-sided"=c(val="two.sided"),
"First is greater"=c(val="greater"),
"Second is greater"=c(val="less")

)
)
check.paired <- rk.XML.cbox("Paired sample", value="1", un.value ←↩

="0")
basic.settings <- rk.XML.row(variables , rk.XML.col(var.x, var.y, ←↩

test.hypothesis , check.paired))

check.eqvar <- rk.XML.cbox("assume equal variances", value="1", un. ←↩
value="0")

conf.level <- rk.XML.spinbox("confidence level", min=0, max=1, ←↩
initial =0.95)

check.conf <- rk.XML.cbox("print confidence interval", val="1", chk ←↩
=TRUE)

conf.frame <- rk.XML.frame(conf.level , check.conf , rk.XML.stretch() ←↩
, label="Confidence Interval")

full.dialog <- rk.XML.dialog(
label="Two Variable t-Test",
rk.XML.tabbook(tabs=list("Basic settings"=basic.settings , " ←↩

Options"=list(check.eqvar , conf.frame)))
)

full.wizard <- rk.XML.wizard(
label="Two Variable t-Test",

73

Introduktion till att skriva insticksprogram för RKWard

rk.XML.page(
rk.XML.text("As a first step , select the ←↩

two variables you want to compare ←↩
against

each other. And specify , which one ←↩
you theorize to be greater. ←↩
Select two-sided ,

if your theory does not tell you, ←↩
which variable is greater."),

rk.XML.copy(basic.settings)),
rk.XML.page(

rk.XML.text("Below are some advanced ←↩
options. It’s generally safe not to ←↩
assume the

variables have equal variances. An ←↩
appropriate correction will be ←↩
applied then.

Choosing \"assume equal variances\" ←↩
may increase test -strength , ←↩

however."),
rk.XML.copy(check.eqvar),
rk.XML.text("Sometimes it’s helpful to get ←↩

an estimate of the confidence interval ←↩
of

the difference in means. Below you ←↩
can specify whether one should ←↩
be shown , and

which confidence -level should be ←↩
applied (95% corresponds to a 5% ←↩
level of

significance)."),
rk.XML.copy(conf.frame)))

JS.calc <- rk.paste.JS(
echo("res <- t.test (x=", var.x, ", y=", var.y, ", ←↩

hypothesis=\"", test.hypothesis , "\""),
js(

if(check.paired){
echo(", paired=TRUE")
},
if(!check.paired && check.eqvar){
echo(", var.equal=TRUE")
},
if(conf.level != "0.95"){
echo(", conf.level=", conf.level)
},
linebreaks=TRUE

),
echo(")\n"), level=2)

JS.print <- rk.paste.JS(echo("rk.print (res)\n"), level=2)

plugin.dir <<- rk.plugin.skeleton("t-Test",
xml=list(

dialog=full.dialog ,
wizard=full.wizard),

js=list(
results.header="Two Variable t-Test",

74

Introduktion till att skriva insticksprogram för RKWard

calculate=JS.calc ,
printout=JS.print),

pluginmap=list(
name="Two Variable t-Test",
hierarchy=list("analysis", "means", "t-Test")),

load=TRUE ,
edit=TRUE ,
show=TRUE ,
overwrite=TRUE)

})

15.3 Lägga till hjälpsidor

Om du vill skriva en hjälpsida för insticksprogrammet, är det mest rättframma sättet att göra det
att direkt lägga till de specifika instruktionerna i definitionen av XML-elementen de hör till:

variables <- rk.XML.varselector(
id.name="vars",
help="Select the data object you would like to analyse.",
component="Data"

)

Texten som ges till parametern help kan då hämtas av rk.rkh.scan() och skrivas till hjälpsidan
för den komponenten i insticksprogrammet. För att det ska fungera tekniskt, måste dock rk.rk
h.scan() veta vilka R-objekt som hör till en komponenten i insticksprogrammet. Det är orsaken
till att du också måste tillhandahålla parametern component, och se till att den är identisk för alla
objekt som hör ihop.

Eftersom du oftast kombinerar många objekt i en dialogruta, och också kan vilja återanvända
objekt som <varslot> för flera komponenter i dina insticksprogram, är det möjligt att definiera
en komponent globalt med rk.set.comp(). Om det är gjort, antas att alla följande objekt som
används i skriptet hör till den specifika komponent, tills rk.set.comp() anropas igen med ett
annat komponentnamn. Då kan parametern component utelämnas:

rk.set.comp("Data")
variables <- rk.XML.varselector(

id.name="vars",
help="Select the data object you would like to analyse."

)

För att lägga till allmänna sektioner som <summary> eller <usage> på hjälpsidan, används funk-
tioner som rk.rkh.summary() eller rk.rkh.usage(). Deras resultat används sedan för att ange
listelement som summary eller usage i parametern rkh för rk.plugin.component() och rk.plug
in.skeleton().

15.4 Översätta insticksprogram

Paketet rkwarddev klarar av att skapa externa insticksprogram med fullständigt stöd för i18n.
Alla relevanta funktioner som genererar XML-objekt erbjuder en valfri parameter för att ange
i18n_context eller noi18n_label:

varComment <- rk.XML.varselector(id.name="vars", i18n=list(comment="Main ←↩
variable selector"))

75

Introduktion till att skriva insticksprogram för RKWard

varContext <- rk.XML.varselector(id.name="vars", i18n=list(context="Main ←↩
variable selector"))

cboxNoi18n <- rk.XML.cbox(label="Power", id.name="power", i18n=FALSE)

Exemplen ovan ger utmatning som ser ut så här:

varComment
<!-- i18n: Main variable selector -->

<varselector id="vars" />

varContext
<varselector id="vars" i18n_context="Main variable selector" />

cboxNoi18n
<checkbox id="power" noi18n_label="Power" value="true" />

Det finns också stöd för översättningsbar JS-kod. I själva verket försöker paketet lägga till anrop
till i18n() direkt på platser där det oftast är till hjälp. Funktionen rk.JS.header() är ett bra
exempel:

jsHeader <- rk.JS.header("Test results")

Det producerar följande JS-kod:

new Header(i18n("Test results")).print();

Men det går också att markera strängar i JS-koden som översättningsbara för hand, genom att
använda funktionen i18n() precis som man skulle göra om JS-filen skrevs direkt.

76

Introduktion till att skriva insticksprogram för RKWard

Bilaga A

Referens

A.1 Typer av egenskaper och modifierare

På några ställen i den här introduktionen har vi talat om ‘egenskaper’ hos element i det grafiska
användargränssnittet eller annars. I själva verket finns det flera olika typer av egenskaper. Oftast
behöver man inte bekymra sig om det, eftersom man kan använda sunt förnuft för att ansluta
vilken egenskap som helst till vilken annan egenskap som helst. Dock finns det internt olika
typer av egenskaper. När det har betydelse är när vissa särskilda värden hämtas i JS-mallen. I
satser som getString (˝id˝)/getBoolean (˝id˝)/getList (˝id˝) kan man också ange vissa så kallade
‘modifierare’ på följande sätt: getString (˝id.modifierare˝). En modifierare påverkar på vilket
sätt värdet skrivs ut. Läs vidare för listan över egenskaper, och de modifierare som var och en
tillhandahåller.

Strängegenskaper

Den enklaste typen av egenskap, som helt enkelt används för att innehålla ett textstycke.
Modifierare:

Ingen modifierare (˝˝)
Strängen som den definierades eller tilldelades.

quoted
Strängen i citerad form (lämplig att skicka till R som tecken).

Booleska egenskaper

Egenskaperna kan antingen vara på eller av, sanna eller falska. Exempelvis egenskaper ska-
pade av <convert>-taggar, samt egenskapen som följer en <checkbox> (se nedan). Följande
värden returneras enligt angiven modifierare:

Ingen modifierare (˝˝)
Normalt returnerar egenskapen 1 om den är sann, och 0 annars. Det rekommenderade
sättet att hämta Booleska värden är att använda getBoolean(). Observera att för get
String() returneras strängen ˝0˝ när egenskapen är falsk. Strängen kan utvärderas
som sann, inte falsk, i JS.

˝labeled˝
Returnerar strängen ˝true˝ när sann, ˝false˝ när falsk, eller de egna strängarna som
har angivits (typiskt i en <checkbox>).

˝true˝
Returnerar strängen som om egenskapen var sann, även om den är falsk

˝false˝
Returnerar strängen som om egenskapen var falsk, även om den är sann

77

Introduktion till att skriva insticksprogram för RKWard

˝not˝
Returnerar i själva verket en annan Boolesk egenskap, som är det omvända av den
nuvarande (dvs. falsk om sann, sann om falsk)

˝numeric˝
Föråldrad, tillhandahålls för bakåtkompatibilitet. Samma som ingen modifierare ˝˝.
Returnera ˝1˝ om egenskapen är sann, eller ˝0˝ om den är falsk.

Heltalsegenskaper

En egenskap konstruerad för att innehålla ett heltalsvärde (men returnerar förstås ändå
en sträng med numeriska tecken i JS-mallen). Den accepterar inga modifierare. Används i
<spinbox> (se nedan)

Egenskaper för reella tal

En egenskap konstruerad för att innehålla ett reellt numeriskt värde (men returnerar förstås
ändå en sträng med numeriska tecken i JS-mallen). Används i <spinbox> (se nedan)

Ingen modifierare (˝˝)
För getValue() / getString() returneras samman som ˝formatted˝. I framtida ver-
sioner kommer det att vara möjligt att erhålla en numerisk representation istället.

˝formatted˝
Returnerar det formaterade talet (som en sträng).

RObject-egenskaper

En egenskap konstruerad för urval av ett eller flera R-objekt. Används mest framträdande
i varselector och varslot. Följande värden returneras enligt angiven modifierare:

Ingen modifierare (˝˝)
Normalt returnerar egenskapen det valda objektets fullständiga namn. Om mer än ett
objekt är valt, skiljs objektnamnen åt av radbrytningar (˝\n˝).

˝shortname˝
Som ovan, men returnerar bara korta namn på objekten. Exempelvis skulle ett objekt
inne i en lista bara ges namnet det har inne i listan, utan listans namn.

˝label˝
Som ovan, men returnerar objektens RKWard beteckningar (om ingen beteckning är
tillgänglig, är det samma sak som ˝shortname˝).

Egenskaper för stränglistor

Egenskapen innehåller en lista med strängar.

Ingen modifierare (˝˝)
För getValue()/getString(), returneras alla strängar åtskilda av ˝\n˝. Eventuella
˝\n˝-tecken i varje objekt hanteras som litteralen ˝
n˝. Dock är den rekommenderade användningen att hämta värdet med getList()
istället, som returnerar ett fält av strängar.

˝joined˝
Returnerar listan som en enda sträng, med objekten sammanfogade av ˝\n˝. I motsats
till ingen modifierare (˝˝), ändras inte de individuella strängarna.

Kodegenskaper

En egenskap som hålls av insticksprogram som genererade kod. Den är viktig för inbädd-
ning av insticksprogram, för att kunna inbädda koden som genereras av det inbäddade
insticksprogrammet i koden som genereras av det inbäddande (toppnivå) insticksprogram-
met. Följande värden returneras enligt angiven modifierare:

Ingen modifierare (˝˝)
Returnerar den fullständiga koden, dvs. sektionerna ˝preprocess˝, ˝calculate˝,
˝printout˝ (men inte ˝preview˝) konkatenerade i en sträng.

78

Introduktion till att skriva insticksprogram för RKWard

˝preprocess˝
Returnerar bara kodens förbehandlingssektion preprocess

˝calculate˝
Returnerar bara kodens beräkningssektion calculate

˝printout˝
Returnerar bara kodens utskriftssektion printout

˝preview˝
Returnerar kodens förhandsgranskningssektion preview

A.2 Element för allmänna syften att använda i vilken XML-fil
som helst (.xml, .rkh, .pluginmap)

<snippets>

Tillåten som ett direkt underliggande objekt till noden <document> och bara där. Bör place-
ras nära filens början. Se avsnittet om att använda snippet. Det får bara finnas ett <snippet>-
element. Valfri, inga egenskaper.

<snippet>

Definierar en enskild snippet. Bara tillåten som ett direkt underliggande objekt till elemen-
tet <snippets>. Egenskaper:

<id>
En identifierarsträng för denna snippet. Krävs.

<insert>
Infoga innehållet i en <snippet>. Tillåten var som helst. Egenskaper:

<snippet>
Identifierarsträngen för den snippet som ska infogas. Krävs.

<include>
Inkluderar innehållet i en annan XML-fil (allting inne i elementet <document> i den filen).
Tillåten var som helst. Egenskaper:

<file>
Filnamnet, relativt till katalogen som den aktuella filen är i. Krävs.

A.3 Element att använda i insticksprogrammets XML-
beskrivning

Egenskaper som elementen innehåller listas i ett separat avsnitt.

A.3.1 Allmänna element

<document>
Måste finnas i alla beskrivning.xml-filer som rotnoden. Ingen specialfunktion. Inga egen-
skaper

79

Introduktion till att skriva insticksprogram för RKWard

<about>
Information om insticksprogrammet (upphovsman, licens, etc.). Elementet tillåts i både ett
individuellt insticksprograms .xml-fil, och i .pluginmap-filer. Se .pluginmap filreferens för
detaljerad referensinformation, och kapitlet om ’om’ information för en introduktion.

<code>
Definierar var JS-mallen för insticksprogrammet kan hittas. Använd bara en gång per fil,
som ett direkt underliggande objekt till taggen document. Egenskaper:

file
JS-mallens filnamn, relativt till katalogen som insticksprogrammets XML finns i

<help>

Definierar var hjälpfilen för insticksprogrammet kan hittas. Använd bara en gång per fil,
som ett direkt underliggande objekt till taggen document. Egenskaper:

file
Hjälpfilens filnamn, relativt till katalogen som insticksprogrammets XML finns i

<copy>

Kan användas som underliggande objekt (direkt eller indirekt) till huvudelementen för lay-
out, dvs. <dialog> och <wizard>. Används för att kopiera ett helt block av XML-element
ett-till-ett. Egenskaper:

id
Id att söka efter. Taggen <copy> söker efter ett tidigare XML-element som har givits
samma id, och kopierar det inklusive alla underliggande element.

copy_element_tag_name

I några få fall, vill man ha en nästan exakt kopia, men ändra taggnamnet på elemen-
tet som kopieras. Det viktigaste exemplet på det är när man vill kopiera en hel flik,
<tab>, från ett dialoggränssnitt till en sida, <page>, i ett guidegränssnitt. I detta fall,
skulle man ange copy_element_tag_name=˝page˝ för att automatiskt utföra konver-
teringen.

A.3.2 Gränssnittsdefinitioner

<dialog>

Definierar ett gränssnitt av dialogtyp. Placera definitionen av det grafiska användargräns-
snittet inne i taggen. Använd bara en gång per fil, som ett direkt underliggande objekt till
taggen document. Åtminstone en av taggarna ˝dialog˝ eller ˝wizard˝ krävs för ett insticks-
program. Egenskaper:

label
Dialogrutans rubrik

recommended
Ska dialogrutan användas som det ˝rekommenderade˝ gränssnittet (dvs. gränssnittet
som normalt visas, om användaren inte har ställt in RKWard att använda ett specifikt
förvalt gränssnitt)? Egenskapen har inte någon effekt för närvarande, eftersom den
implicit är ˝sann˝, om inte guiden rekommenderas.

<wizard>
Definierar ett gränssnitt av guidetyp. Placera definitionen av det grafiska användargräns-
snittet inne i taggen. Använd bara en gång per fil, som ett direkt underliggande objekt
till taggen document. Åtminstone en av taggarna ˝dialog˝ eller ˝wizard˝ krävs för ett in-
sticksprogram. Accepterar bara taggarna <page> eller <embed> som direkt underliggande
objekt. Egenskaper:

80

Introduktion till att skriva insticksprogram för RKWard

label
Guidens rubrik

recommended
Ska guiden användas som det ˝rekommenderade˝ gränssnittet (dvs. gränssnittet som
normalt visas, om användaren inte har ställt in RKWard att använda ett specifikt för-
valt gränssnitt)? Valfri, förvalt värde är ˝false˝.

A.3.3 Layoutelement

Alla element i den här sektionen accepterar egenskapen id=˝identifierarsträng˝. Egenskapen är
valfri för alla element. Den kan exempelvis användas för att dölja eller inaktivera hela layoutele-
mentet och alla element som finns i det (se kapitlet om logik i det grafiska användargränssnittet).
Id-strängen får inte innehålla ˝.˝ (punkt) eller ˝;˝ (semikolon), och bör i allmänhet begränsas till
alfanumeriska tecken och understreck (˝_˝). Bara ytterligare egenskaper listas.

<page>

Definierar en ny sida i en guide. Tillåts bara som ett direkt underliggande objekt av elemen-
tet <wizard>.

<row>
Alla direkt underliggande objekt till taggen ˝row˝ placeras från vänster till höger.

<column>
Alla direkt underliggande objekt till taggen ˝column˝ placeras uppifrån och ner.

<stretch>
Normalt upptar elementen i det grafiska användargränssnittet allt tillgängligt utrymme.
Om man exempelvis har två kolumner sida vid sida, där den vänstra är fylld med ele-
ment, medan den högra bara innehåller en ensam alternativknapp, <radio>, expanderas
<radio>-knappen vertikalt även om den inte egentligen behöver det tillgängliga utrym-
met, och det ser fult ut. I det här fallet vill man egentligen lägga till ett ˝tomrum˝ under
<radio>-knappen. Använd elementet <stretch> för det. Det upptar helt enkelt ett visst ut-
rymme. Använd inte elementet i onödan, oftast är det en god idé att låta elementen i det
grafiska användargränssnittet få allt tillgängligt utrymme. Det är bara ibland som layouten
blir utsträckt. Elementet <stretch> har inga argument, inte ens ˝id˝. Det går inte heller att
placera några underliggande objekt inne i elementet <stretch> (med andra ord, används
det bara som ˝<stretch/>˝).

<frame>
Ritar en ram eller ruta omkring sina direkt underliggande objekt. Kan användas för att
visuellt gruppera relaterade alternativ. Layouten inne i en ram är uppifrån och ner, om
man inte placerar en <row> inne i den. Egenskaper:

label
Ramens rubrik (valfri)

checkable
Ramar kan göras markeringsbara. I detta fall, inaktiveras alla ingående element när
ramen avmarkeras, och aktiveras när den är markerad (valfri, förvalt värde ˝false˝)

checked
Bara för markeringsbara ramar: Ska ramen normalt vara markerad? Förvalt värde är
˝true˝. Tolkas inte för ramar som inte är markeringsbara.

<tabbook>
Organiserar elementen i en flikbok. Accepterar bara <tab>-taggar som direkt underliggan-
de objekt.

81

Introduktion till att skriva insticksprogram för RKWard

<tab>
Definierar en sida i en flikbok. Placera flikens definition i det grafiska användargränssnittet
inne i taggen. Kan bara användas som ett direkt underliggande objekt till taggen <tab-
book>. En <tabbook> måste ha minst två flikar definierade. Egenskaper:

label
Fliksidans rubrik (krävs)

<text>
Visar texten innesluten i taggen i det grafiska användargränssnittet. Viss enkel HTML-
liknande markering stöds (i synnerhet , <i>, <p> och
). Håll dock formatering
till ett minimum. Att infoga en helt tom rad lägger till en hård radbrytning. Egenskaper:

type
Textens typ. Antingen ˝normal˝, ˝warning˝ (varning) eller ˝error˝ (fel). Det påverkar
textens utseende (valfri, förvalt värde är normal)

A.3.4 Aktiva element

Alla element i den här sektionen accepterar egenskapen id=˝identifierarsträng˝. Egenskapen
krävs för alla element. Bara ytterligare egenskaper listas. Id-strängen får inte innehålla ˝.˝
(punkt).

<varselector>
Tillhandahåller en lista över tillgängliga objekt, där användaren kan välja ett eller flera.
Kräver en eller flera <varslot> som motpart för att vara användbar. Egenskaper:

label
Beteckning för en varselector (valfri, förvalt värde är ˝Select variable(s)˝)

<varslot>
Används tillsammans med en ˝varselector˝ för att låta användare välja en eller flera vari-
abler. Egenskaper:

label
Beteckning för en varslot (rekommenderas, förvalt värde är ˝Variable:˝)

source
Den varselector som valet hämtas från (krävs, om man inte ansluter manuellt eller
använder source_property)

source_property
En godtycklig egenskap att kopiera värden från, när valknappen klickas. Om den
anges, överskrider den egenskapen ˝source˝.

required
Om det krävs att en varslot innehåller ett giltigt värde för att verkställa koden. Se
required-property (valfri, förvalt värde false)

multi
Om en varslot innehåller bara ett (förval, ˝false˝), eller flera objekt

allow_duplicates
Om en varslot bara kan acceptera unika objekt (förval, ˝false˝), eller om samma objekt
kan läggas till flera gånger.

min_vars
Bara meningsfull om multi=˝true˝: Minimalt antal variabler som kan markeras för att
markeringen ska anses giltig (valfri, förvalt värde ˝1˝)

min_vars_if_any
Bara meningsfull om multi=˝true˝: En varslot kan anses giltig om den exempelvis
antingen är tom eller innehåller minst två värden. Det anger hur många variabler
som måste väljas, om några överhuvudtaget (2 i exemplet). (valfri, förvalt värde ˝1˝)

82

Introduktion till att skriva insticksprogram för RKWard

max_vars

Bara meningsfull om multi=˝true˝: Minimalt antal variabler som kan markeras (val-
fri, förvalt värde ˝0˝, vilket betyder inget maximum)

classes
Om ett eller flera R klassnamn anges (åtskilda av mellanslag (˝ ˝)) här, accepterar
denna varslot bara objekt som hör till klasserna (valfri, använd med stor försiktighet,
användaren ska inte förhindras att göra giltiga val, och R har många olika klasser).

types

Om en eller flera variabeltyper anges (åtskilda med mellanslag (˝ ˝)) här, accepte-
rar bara denna varslot objekt av typerna. Giltiga typer är ˝unknown˝, ˝number˝,
˝string˝, ˝factor˝, ˝invalid˝. (valfri, använd med stor försiktighet, användaren ska in-
te förhindras att göra giltiga val, och RKWard känner inte alltid till en variabels typ)

num_dimensions

Antal dimensioner som ett objekt måste ha. ˝0˝ (förvalt värde) betyder att godtyckligt
antal dimensioner är acceptabla. (valfritt, förvalt värde ˝0˝)

min_length

Den minimala längden som ett objekt måste ha för att vara acceptabelt. (valfri, förvalt
värde ˝0˝)

max_length

Den maximala längden som ett objekt måste ha för att vara acceptabelt. (valfri, förvalt
värde är det största heltal som kan representeras i systemet)

<valueselector>
Tillhandahåller en lista över tillgängliga strängar (inte R-objekt) att väljas i en eller flera
medföljande <valueslot>. Strängalternativ kan definieras genom att använda taggarna <op-
tion> som direkt underliggande objekt (se nedan), eller anges med dynamiska egenskaper.
Egenskaper:

label
Beteckning för en valueselector (valfri, förvalt värde är ingen beteckning)

<valueslot>
Används tillsammans med en <valueselector> för att låta användaren välja ett eller flera
strängobjekt. Elementet är i huvudsak identiskt med <varslot> och delar samma egenska-
per, utom de som refererar till egenskaper för acceptabla objekt (dvs. klasser, typer, antal
dimensioner, minimal längd, maximal längd).

<radio>
Definierar en grupp av exkluderande alternativknappar (bara en kan väljas åt gången). Krä-
ver minst två <option>-taggar som direkt underliggande objekt. Inga andra taggar tillåts
som underliggande objekt. Egenskaper:

label
Alternativknapparnas beteckning (rekommenderas, förvalt värde ˝Select one:˝)

<dropdown>

Definierar en grupp alternativ där ett och endast ett kan väljas åt gången, med en kombina-
tionslista. Den är funktionellt ekvivalent med en <radio>, men ser annorlunda ut. Kräver
minst två <option>-taggar som direkt underliggande objekt. Inga andra taggar tillåts som
underliggande objekt. Egenskaper:

label
Kombinationslistans beteckning (rekommenderas, förvalt värde ˝Select one:˝)

<select>
Tillhandahåller en lista över tillgängliga strängar där användaren kan välja ett godtyck-
ligt antal. Strängalternativ kan definieras genom att använda <option>-taggar som direkt
underliggande objekt (se nedan), eller anges med dynamiska egenskaper. Egenskaper:

83

Introduktion till att skriva insticksprogram för RKWard

label
Beteckning för <select> (valfri, förval är ingen beteckning)

enkel
Om satt till sant, går det bara att välja ett enda värde, istället för flera värden på en
gång (Booleskt, förvalt värde falskt)

<option>

Kan bara användas som ett direkt underliggande objekt till elementen <radio>, <drop-
down>, <valueselector> eller <select>. Representerar ett valbart alternativ i en alternativ-
knapp eller kombinationslista. Eftersom elementen <option> alltid ingår som en del av ett
av urvalselementen, har de normalt ingen egen ˝id˝, men se nedan. Egenskaper:

label
Alternativets beteckning (krävs)

value
Strängvärdet det överliggande objektet returnerar om alternativet är markerat eller
valt (krävs)

checked
Om alternativet normalt ska vara markerat/valt, ˝true˝ eller ˝false˝. I en <radio> el-
ler <dropdown>, kan bara ett alternativ anges som checked=˝true˝ , och om inget
alternativ är angett som markerat, blir det första alternativet i det överliggande ob-
jektet automatiskt markerat/valt. I en <select> kan godtyckligt antal alternativ anges
som markerade. (valfritt, förvalt värde ˝false˝)

id
Att ange ˝id˝ parametrar för <option>-element är valfritt (och det rekommenderas i
själva verket att inte ange ˝id˝, om det inte verkligen behövs). Dock blir det möjligt
att aktivera/inaktivera en <option> dynamiskt om ˝id˝ anges, genom att ansluta till
den Booleska egenskapen id_of_radio.id_of_optionX.enabled. För närvarande
fungerar det bara för egenskaper inne i elementen <radio> och <dropdown>. Alter-
nativen <valueselector> och <select> stöder för närvarande inte ˝id˝.

<checkbox>
Definierar en kryssruta, dvs. ett enstaka alternativ som antingen kan vara av eller på. Egen-
skaper:

label
Kryssrutans beteckning (krävs)

value
Värdet som kryssrutan returnerar om den är markerad (krävs)

value_unchecked

Värdet som returneras om kryssrutan inte är markerad (valfritt, förvalt värde är ˝˝,
dvs. en tom sträng)

checked
Om alternativet normalt ska vara markerat, ˝true˝ eller ˝false˝ (valfritt, förvalt värde
˝false˝)

<frame>
Ramelementet används i allmänhet som ett rent layoutelement och det listas i avsnittet om
layoutelement. Det kan dock också göras markeringsbart, och sålunda samtidigt fungera
som en enkel kryssruta.

<input>

Definierar ett fritt inmatningsfält. Egenskaper:

label
Inmatningsfältets beteckning (krävs)

initial
Textfältets ursprungliga text (valfri, förvalt värde ˝˝, dvs. en tom sträng)

84

Introduktion till att skriva insticksprogram för RKWard

size
Ett av ˝small˝, ˝medium˝, or ˝large˝. ˝large˝ definierar ett inmatningsfält med fle-
ra rader, medan ˝small˝ och ˝medium˝ är fält med en rad (valfri, förvalt värde
˝medium˝)

required

Om det krävs att indata inte är tomt för att verkställa koden. Se required-property
(valfri, förvalt värde false)

<matrix>
En tabell för att mata in matrisdata (eller vektorer) i det grafiska användargränssnittet.

NOT
Det här inmatningselementet är inte optimerat för att mata in eller redigera stora mängder data.
Även om det inte finns någon fast gräns för storleken hos matrisen <matrix>, bör den i allmänhet
inte överstiga omkring tio rader eller kolumner. Om du förväntar dig mer data, låt användaren
välja den som ett R-objekt (vilket kan vara en god idé som ett alternativ vid nästan alla tillfällen
då ett matriselement används).

Egenskaper:

label
Tabellens beteckning (krävs)

mode
Ett av ˝integer˝, ˝real˝, or ˝string˝. Typ av data som accepteras i tabellen (krävs)

min
Minimalt acceptabelt värde (för matriser av typ ˝integer˝ eller ˝real˝) (valfritt, förvalt
värde är det minsta värde som kan representeras)

max
Maximalt acceptabelt värde (för matriser av typ ˝integer˝ eller ˝real˝) (valfritt, förvalt
värde är det största värde som kan representeras)

allow_missings

Om saknade (tomma) värden tillåts i matrisen. Det är underförstått för matriser av
typen ˝string˝ (valfritt, förvalt värde false).

allow_user_resize_columns

När satt till sant, kan användaren lägga till kolumner genom att skriva i (inaktiva)
cellerna längst till höger (valfritt, förvalt värde är true).

allow_user_resize_rows

När satt till sant, kan användaren lägga till rader genom att skriva i (inaktiva) cellerna
längst ner (valfritt, förvalt värde är true).

rows
Antal rader i matrisen. Har ingen effekt med allow_user_resize_rows=˝true˝.

NOT
Kan också bestämmas genom att ange egenskapen ˝rows˝

(valfritt, förvalt värde 2).
columns

Antal kolumner i matrisen. Har ingen effekt med al-
low_user_resize_columns=˝true˝.

NOT
Kan också bestämmas genom att ange egenskapen ˝columns˝

(valfritt, förvalt värde 2).

85

Introduktion till att skriva insticksprogram för RKWard

min_rows
Minimalt antal rader i matrisen. Matrisen vägrar att krympa under den här storleken
(valfritt, förvalt värde 0, se också: allow_missings).

min_columns
Minimalt antal kolumner i matrisen. Matrisen vägrar att krympa under den här stor-
leken (valfritt, förvalt värde 0, se också: allow_missings).

fixed_height
Tvinga elementet i det grafiska användargränssnittet att behålla sin ursprungliga
höjd. Använd det inte i kombination med matriser, där antal rader kan ändras på
vilket sätt som helst. Användbar i synnerhet när ett inmatningselement för en vektor
skapas (columns=˝1˝). När alternativet är satt till true, visas ingen horisontell rull-
ningslist, även om matrisen överskrider tillgänglig bredd (eftersom det skulle påver-
ka höjden). (valfritt, förvalt värde false).

fixed_width
Något felaktigt benämnt: Antag att kolumnantalet inte kommer att ändras. Den sista
(eller oftast enda) kolumnen sträcks ut för att uppta hela tillgängliga bredden. An-
vänd det inte i kombination med matriser, där antal kolumner kan ändras på vilket
sätt som helst. Användbar i synnerhet när ett inmatningselement för en vektor skapas
(rows=˝1˝). (valfritt, förvalt värde false).

horiz_headers
Strängar att använda för den horisontella rubriken, åtskilda av ˝;˝. Rubriken döljes
om satt till ˝˝. (valfri, förvalt värde är kolumnens nummer).

vert_headers
Strängar att använda för den vertikala rubriken, åtskilda av ˝;˝. Rubriken döljes om
satt till ˝˝. (valfri, förvalt värde är radens nummer).

<optionset>

Ett användargränssnitt för att upprepa en mängd alternativ för ett godtyckligt antal objekt
(Introduktion av optionsets). Egenskaper:

min_rows
Om angiven, markeras mängden som ogiltig, om den inte har åtminstone så här
många rader (valfri, heltal).

min_rows_if_any
Som min_rows, men testas bara om det finns minst en rad (valfri, heltal).

max_rows
Om angiven kommer mängden att markeras som ogiltig, om den inte har som mest
det här antalet rader (valfri, heltal).

keycolumn
Id för kolumnen som ska fungera som keycolumn. Ett optionset med en (giltig) keyco-
lumn, fungerar som ett ˝drivet˝ optionset. Ett optionset utan keycolumn tillåter att
manuellt infoga eller ta bort objekt. En keycolumn måste vara markerad som exter-
nal. (valfri, förvalt värde är ingen keycolumn).

Delelement:

<optioncolumn>
Deklarerar en optioncolumn i mängden. För varje värde som ska hämtas från ett op-
tionset, måste en separat <optioncolumn> deklareras. Egenskaper:
id

Id för en optioncolumn (krävs, sträng)
external

Sätt till sann, om en optioncolumn kontrolleras utifrån optionset (valfri, Boole-
an, förvalt värde är ˝false˝).

label
Om angiven visas en optioncolumn i en kolumn enligt beteckningen (valfri,
sträng, förvalt värde är att inte visa den).

86

Introduktion till att skriva insticksprogram för RKWard

connect
Egenskap att ansluta till optioncolumn to, angiven som id inne i området <con-
tent>. För en extern <optioncolumn> ändras motsvarande värde till det externt
inställda värdet. För en vanlig (inte extern) <optioncolumn> ändras motsvaran-
de rad i <optioncolumn>-egenskapen när egenskapen ändras inne i innehålls-
området (valfri, sträng, förvalt värde är inte ansluten).

default
Bara för externa kolumner: Värdet att anta för kolumnen, om inget värde är känt
för en post. Sällan användbar (valfri, förvalt värde är en tom sträng).

<content>
Deklarera innehållet i användargränssnittet/mängden. Inga egenskaper. Alla vanliga
aktiva, passiva och layoutelement tillåts som underliggande namnelement. Dessutom
tilläts det särskilda underliggande elementet <optiondisplay> i tidigare versioner av
RKWard (till och med 0.6.3). Det är föråldrat i RKWard 0.6.4, och ska helt enkelt tas
bort från befintliga insticksprogram.

<logic>
Valfri specifikation av logik i användargränssnitt som gäller inne i innehållsregionen
för ett optionset. Se referensen om <logic>.

<browser>
Ett element konstruerat att välja ett enda filnamn (eller katalognamn). Observera att fältet
accepterar vilken sträng som helst, även om det är avsett att bara användas för filer:

label
Bläddrarens beteckning (valfri, förvalt värde ˝Enter filename˝)

initial
Initialvärdet för texten i bläddraren (valfritt, förvalt värde ˝˝, dvs. en tom sträng)

type

Ett av ˝file˝, ˝dir˝ eller ˝savefile˝. För att välja respektive en befintlig fil, befintlig
katalog eller icke-befintlig fil (valfri, förvalt värde ˝file˝)

allow_urls

Om (icke-lokala) webbadresser kan väljas (valfri, förvalt värde ˝false˝)
filter

Filtypsfilter, t.ex. (˝*.txt *.csv˝ för .txt- och .csv-filer). En separat post för ˝Alla filer˝
läggs till automatiskt (valfritt, förvalt värde är ˝˝, dvs. Alla filer)

required

Om det krävs att fältet inte är tomt för att verkställa koden. Observera att det inte
nödvändigtvis betyder att det valda filnamnet är giltigt. Se required-property (valfri,
förvalt värde true)

<saveobject>

Ett element konstruerat för att välja namnet på ett R-objekt att spara i (dvs. i allmänhet inte
redan befintligt, i motsats till en varslot):

label
Inmatningsrutans beteckning (valfri, förvalt värde ˝Save to:˝)

initial
Initialvärdet för texten i inmatningsrutan (valfritt, förvalt värde ˝my.data˝)

required

Om det krävs att fältet innehåller ett tillåtet objektnamn för att verkställa koden. Se
required-property (valfri, förvalt värde true)

checkable
I många användarfall är det valfritt att spara i ett R-objekt. I dessa fall kan en kryssruta
integreras i saveobject-elementet genom att använda egenskapen. När den är satt till
true, aktiveras/inaktiveras saveobject-elementet av kryssrutan. Se egenskapen active
för saveobject (valfri, förvalt värde false)

87

Introduktion till att skriva insticksprogram för RKWard

checked
Bara för markeringsbara saveobject-element: Om objektet normalt är markerat eller
aktiverad (valfritt, förvalt värde är ˝false˝)

<spinbox>
En nummerruta där användaren kan välja ett numeriskt värde, antingen genom att använ-
da direkt tangentbordsinmatning eller små uppåt- och neråtpilar. Egenskaper:

label
Nummerrutans beteckning (rekommenderas, förvalt värde ˝Enter value:˝)

min
Det minsta värde som användaren får mata in i nummerrutan (valfritt, förval är det
minsta värdet som tekniskt kan representeras i nummerrutan)

max
Det största värde som användaren får mata in i nummerrutan (valfritt, förval är det
största värdet som tekniskt kan representeras i nummerrutan)

initial
Initialvärdet som visas i nummerrutan (valfritt, förvalt värde ˝0˝)

type
Antingen ˝real˝ eller ˝integer˝. Om nummerrutan accepterar reella tal eller bara hel-
tal (valfritt, förvalt värde är ˝real˝)

default_precision
Bara meningsfull om nummerrutan har type=˝real˝. Anger förvalt antal decimalsiff-
ror som visas i nummerrutan (bara så här många avslutande nollor visas). När använ-
daren klickar på uppåt- eller neråtpilen, ändras decimalsiffrorna. Användaren kan
dock ändå mata in värden med större precision (se nedan) (valfri, förvalt värde ˝2˝)

max_precision
Det maximala antalet siffror som kan representeras på ett meningsfullt sätt (valfritt,
förvalt värde är ˝8˝)

<formula>
Det här avancerade elementet tillåter användaren att välja en formel eller interaktions-
mängd från valda variabler. För en GLM kan elementet exempelvis användas för att tillåta
användaren att ange modellens interaktionstermer. Egenskaper:

fixed_factors
Id för den varslot som innehåller de markerade förbestämda faktorerna (krävs)

dependent
Id för den varslot som innehåller den valda beroende variabeln (krävs)

<embed>
Inbädda ett annat insticksprogram i det här (se kapitlet om inbäddning). Egenskaper:

component
Det registrerade namnet på komponenten att inbädda (se kapitlet om att registrera
komponenter) (krävs)

as_button
Om satt till ˝true˝, läggs bara en tryckknapp till i det inbäddande grafiska använ-
dargränssnittet, det inbäddade grafiska användargränssnittet visas bara (i ett separat
fönster) när tryckknappen klickas (valfri, förvalt värde är ˝false˝)

label
Bara meningsfull om as_button=˝true˝: Knappens beteckning (rekommenderas, för-
valt värde är ˝Options˝)

<preview>
Kryssruta för att byta förhandsgranskningsfunktionalitet. Från version 0.6.5 av RKWard
hanteras förhandsgranskningselement med <preview> speciellt i insticksprogrammens di-
alogrutor (inte guider). De placeras i knappkolumnen, oberoende av exakt var de definieras
i användargränssnittet. Det är ändå en bra idé att definiera dem på ett vettigt ställe i layou-
ten, för bakåtkompatibilitet.

88

Introduktion till att skriva insticksprogram för RKWard

label
Rutans beteckning (valfri, förvalt värde är ˝Preview˝)

mode
Typ av förhandsgranskning. Typer som stöds är ˝plot˝ (se kapitlet om förhands-
granskning av diagram), ˝output˝ (se kapitlet om förhandsgranskning av HTML-
)utmatning), ˝data˝ (se förhandsgranskning av data) och ˝custom˝ (se anpassade för-
handsgranskningar). (valfri, förvalt värde är ˝plot˝)

placement

Förhandsgranskningens placering: ˝attached˝ (ansluten till huvudarbetsplatsen),
˝detached˝ (fristående fönster), ˝docked˝ (ansluten till insticksprogrammets dialo-
gruta) och ˝default˝ (för närvarande samma som ˝docked˝, men kan komma att bli
möjligt att ställa in av användaren vid något tillfälle). I allmänhet rekommenderas att
låta den förbli default, för bästa möjliga likformighet i användargränssnittet (valfri,
förvalt värde är ˝default˝)

active
Om förhandsgranskningen normalt är aktiv. I allmänhet bör bara dockade förhands-
granskningar göras normalt aktiva, och till och med för dem finns en orsak att det
normala värdet är inaktiva förhandsgranskningar (valfritt, förvalt värde är ˝false˝)

A.3.5 Logiksektion

<logic>

Det omgivande elementet för logiksektionen. Alla element nedan tillåts bara inne i ele-
mentet <logic>. Elementet <logic> tillåts bara som ett direkt underliggande objekt till
<document>-elementet (som mest en gång per document), eller till <optionset>-element
(som mest en gång per optionset). Dokumentets logiksektion gäller för både de grafiska
användargränssnitten i <dialog> och <wizard> på samma sätt.

<external>
Skapar en ny (sträng)egenskap som är avsedd att anslutas till en egenskap utanför om
insticksprogrammet inbäddas. Se avsnittet om ofullständiga insticksprogram. Egenskaper:

id
Den nya egenskapens id (krävs)

default
Den nya egenskapens förvalda strängvärde, dvs. värdet som används om egenskapen
inte är ansluten till en egenskap utanför (valfri, förvalt värde är en tom sträng)

<i18n>
Skapar en ny (sträng)egenskap som är avsedd att tillhandahålla en beteckning som använ-
der i18n. Egenskaper:

id
Den nya egenskapens id (krävs)

label
Beteckningen. Den kommer att översättas (krävs).

<set>
Ställ in en egenskap till ett konstant värde (om egenskapen dessutom ansluts till någon
annan egenskap förblir naturligtvis inte värdet konstant). Om ett insticksprogram exem-
pelvis inbäddas, men man vill dölja vissa av dess element, kan synlighetsegenskapen för
elementen ställas in till false. Användbar i synnerhet för inbäddade och inbäddande in-
sticksprogram. Observera: Om det finns flera <set>-element för en enda id, gäller den som
definieras sist. Det kan ibland vara användbart att förlita sig på när inkluderade delar med
<include> används. Egenskaper:

89

Introduktion till att skriva insticksprogram för RKWard

id
Egenskapens id som ska tilldelas (krävs)

to
Strängvärdet att tilldela egenskapen (krävs). Observera: För Booleska egenskaper som
synlighet och aktivering, anges egenskapen antingen som to=˝true˝ eller to=˝false˝.

<convert>
Skapa en ny Boolesk egenskap som beror på tillståndet hos en eller flera egenskaper. Egen-
skaper:

id
Den nya egenskapens id (krävs)

sources
Id för egenskaperna som den här egenskapen kommer att bero på. En eller flera egen-
skaper kan anges, åtskilda med ˝;˝ (krävs)

mode
Metoden för konverteringen/operationen. Ett av ˝equals˝, ˝notequals˝, ˝range˝,
˝and˝, ˝or˝. Med metoden equals, är egenskapen bara sann om värdet på alla dess
källor är lika med egenskapen standard (se nedan). Med metoden notequals, är egen-
skapen bara sann om värdet på alla dess källor skiljer sig från egenskapen standard
(se nedan). Med metoden range, måste källorna vara numeriska (heltal eller reella tal).
Egenskapen är bara sann om alla källor är inom intervallet angivet av egenskaperna
min och max (se nedan). Med metoden and, måste källorna vara Booleska egenskaper.
Egenskapen är bara sann om alla källor samtidigt är sanna. Med metoden or, måste
källorna vara Booleska egenskaper. Egenskapen är bara sann om minst en av källorna
är sann. (krävs)

standard
Bara meningsfull för lägena equals eller notequals: Strängvärdet att jämföra med
(krävs för något av dessa lägen)

min
Bara meningsfull för läget ˝range˝: Det minimala värdet att jämföra med (valfritt,
förvalt värde är det minsta flyttalet som datorn kan representera)

max
Bara meningsfull för läget ˝range˝: Det maximala värdet att jämföra med (valfritt,
förvalt värde är det största flyttalet som datorn kan representera)

require_true

Om satt till ˝true˝, kommer egenskapen att krävas, och anses bara giltig om dess
tillstånd är ˝true˝ eller ˝on˝. Sålunda blockerar egenskapen knappen Verkställ om
den är falsk (valfri, förvalt värde ˝false˝).

OBSERVERA
Om det används, se till att användaren enkelt kan detektera vad som är fel, genom att
exempelvis visa en förklarande <text>.

<switch>
Skapa en ny egenskap som vidarebefordrar till olika målegenskaper (eller förbestämda
strängar) baserat på villkorsegenskapens värde. Det gör det möjligt att skapa logik som
liknar konstruktionerna if() eller switch(). Egenskaper:

id
Den nya egenskapens id (krävs)

villkor
Villkorsegenskapens id (krävs)

Underliggande element:

90

Introduktion till att skriva insticksprogram för RKWard

<true>
Om villkorsegenskapen är Boolesk, kan två de underliggande elementen <true> och
<false> anges (och bara dessa) (Krävs om <false> också anges).

<false>
Om villkorsegenskapen är Boolesk, kan två de underliggande elementen <true> och
<false> anges (och bara dessa) (Krävs om <true> också anges).

<case>
Om villkorsegenskapen inte är Boolesk, kan ett godtyckligt antal element av typen
<case> anges, ett för varje värde på villkorsegenskapen som ska matchas (åtminstone
ett sådant element krävs om villkorsegenskapen inte är Boolesk)

<default>
Om villkorsegenskapen inte är Boolesk, gör det valfria elementet <default> det möj-
ligt att ange beteendet om inget av elementen av typen <case> matchar villkorsegen-
skapens värde (valfri, tillåts bara en gång i kombination med ett eller flera element av
typen <case>).

Underliggande elementen <true>, <false>, <case>, och <default> har följande egenskaper:

standard
Bara för element av typen <case>. Värdet som villkorsegenskapen ska matchas mot
(krävs, sträng).

fixed_value
En bestämd sträng som ska anges som värdet på egenskapen <switch>, om om det
aktuella villkoret matchar (krävs om dynamic_value inte anges).

dynamic_value
Målegenskapens id som anges som värdet på egenskapen <switch>, om det aktuella
villkoret matchar (krävs, om fixed_value inte anges).

<connect>
Ansluter två egenskaper. Klientegenskapen ändras så fort den styrande egenskapen ändras
(men inte det omvända). Egenskaper:

client
Klientegenskapens id, dvs. egenskapen som justeras (krävs)

governor
Den styrande egenskapens id, dvs. egenskapen som justerar klientegenskapen. Det
kan inkludera en modifierare (krävs)

reconcile
Om ˝true˝, justerar klientegenskapen den styrande egenskapen i anslutningen på ett
sådant sätt att den styrande egenskapen bara accepterar värden som också är accep-
tabla av klienten (antag t.ex. att den styrande egenskapen är en numerisk egenskap
med minimalt värde ˝0˝, och klienten är en numerisk egenskap med minimalt värde
˝100˝. Minimum för båda egenskaperna justeras till 100 om reconcile=˝true˝). I all-
mänhet fungerar det bara för egenskaper med samma grundtyp (valfri, förvalt värde
˝false˝)

<dependency_check>
Skapar en Boolesk egenskap som är sann om angivna beroenden uppfylls, och annars falsk.
Elementets XML-syntax är likadan som för elementet <dependencies>, beskriven i .plugi
nmap-referensen. Från RKWard 0.6.1 tas bara hänsyn till versionerna för RKWard och R, inte
beroenden av paket eller pluginmaps.

<script>
Definiera skriptkoden för att kontrollera användargränssnittets logik. Se avsnittet om
skriptbaserad logik för det grafiskt användargränssnittet för detaljerad information. Skript-
koden att köra kan antingen anges med egenskapen ˝file˝ eller som en (kommenterad)
text i elementet. Elementet <script> tillåts inte i sektionen <logic> i ett optionset. Egenska-
per:

file
Skriptfilens filnamn (krävs).

91

Introduktion till att skriva insticksprogram för RKWard

A.4 Egenskaper för element i insticksprogram

Alla layoutelement och alla aktiva element innehåller följande egenskaper, som kan kommas åt
via˝elementnamnets_id.egenskapens_namn˝:

visible
Om elementet i det grafiska användargränssnittet är synligt eller inte (Boolean)

enabled
Om elementet i det grafiska användargränssnittet är aktiverat eller inte (Boolean)

required

Om elementet i det grafiska användargränssnittet krävs (innehålla en giltig inställning)
eller inte. Observera att alla element som är inaktiverade eller dolda också implicit inte
krävs (Boolean).

Förutom det här, har vissa element ytterligare egenskaper som man kan ansluta till. De flesta
aktiva element har också en ˝förvald˝ egenskap vars värde returneras av anrop till getBoolean,
getString, getList(˝...˝), om ingen specifik egenskap, som beskrivs nedan, namnges.

<text>
Förvald egenskap är text

text
Texten som visas (text)

<varselector>
Ingen förvald egenskap

selected
Objekten som för närvarande är markerade. Troligen vill man inte använda det. An-
vänds internt (RObject)

root
Rotobjekt eller överliggande objekt för de objekt som erbjuds för urval (RObject)

<varslot>
Förvald egenskap är ˝available˝

available
Alla objekt som finns i denna varslot (RObject)

selected
De objekt av alla i en varslot som för närvarande är markerade. Troligen vill man inte
använda det. Används internt (RObject)

source
En kopia av objekten som är markerade i motsvarande varselector. Troligen vill man
inte använda det. Används internt (RObject)

<valueselector>
Förvald egenskap är ˝selected˝

selected
Strängarna som för närvarande är markerade. Modifierare ˝labeled˝ för att hämta
motsvarande beteckningar. I en <valueselector> vill man troligtvis inte använda det
direkt (bara i en <select>) (läs och skriv, stränglista).

available
Listan med strängvärden att välja mellan (läs/skriv StringList)

92

Introduktion till att skriva insticksprogram för RKWard

labels
Beteckningar att visa för strängvärdena (läs/skriv StringList)

<valueslot>
Samma som <varslot>, men egenskaperna är stränglistor istället för RObjects.

<radio>
Förvald egenskap är ˝string˝

string
Värdet på alternativet som för närvarande är valt (sträng)

number
Nummer för alternativet som för närvarande är markerat (alternativ numreras uppi-
från och ner med början på 0) (heltal)

<dropdown>

Samma som <radio>

<select>
Samma som <valueselector>

<option>

Ingen förvald egenskap. Den enda egenskapen är ˝enabled˝, och den är för närvarande inte
tillgänglig för alternativ inne i <select> eller <valueselector>. Egenskaperna ˝visible˝ eller
˝required˝ finns inte för <option>.

enabled
Om det här enskilda alternativet ska aktiveras eller inaktiveras. I de flesta fall aktive-
rar eller inaktiverar man alla alternativknapparna, <radio<, eller kombinationsrutan,
<dropdown<, istället. Men det kan användas för att dynamiskt ställa in aktiverings-
tillståndet för ett enskilt alternativ inne i en <radio< eller <dropdown< (Boolean).

<checkbox>
Förvald egenskap är ˝state.labeled˝, vilket betyder att värdena angivna av egenskaperna
value och value_unchecked returneras, inte kryssrutans visade beteckning.

state
Kryssrutans tillstånd (på eller av). Observera att användbara modifierare av egen-
skapen (som för alla Booleska egenskaper) är ˝not˝ och ˝numeric˝ (se egenskapers
typer). Dock är det ofta mest användbart att ansluta till egenskapen utan modifierare,
dvs. ˝checkbox_id.state˝, vilket returnerar kryssrutans tillstånd på ett format använd-
bart för användning i en villkorssats (0 eller 1) (Boolean).

<frame>
Förvald egenskap är ˝checked˝, om och endast om ramen är markeringsbar. För ramar som
inte är markeringsbara finns ingen förvald egenskap.

checked
Bara tillgänglig för markeringsbara ramar: kryssrutans tillstånd (på eller av). Obser-
vera att användbara modifierare av egenskapen (som för alla Booleska egenskaper)
är ˝not˝ och ˝numeric˝ (se egenskapers typer) (Boolean).

<input>

Förvald egenskap är ˝text˝

text
Aktuell text i inmatningsfältet (sträng)

<matrix>
Förvald egenskap är ˝cbind˝.

93

Introduktion till att skriva insticksprogram för RKWard

rows
Antal rader i matrisen (heltal). Om matrisen tillåter användaren att lägga till och ta
bort rader, ska egenskapen behandlas som skrivskyddad. Annars ändras matrisens
storlek om den ändras.

columns
Antal kolumner i matrisen (heltal). Om matrisen tillåter användaren att lägga till och
ta bort kolumner, ska egenskapen behandlas som skrivskyddad. Annars ändras ma-
trisens storlek om den ändras.

tsv
Data i matrisen på tsv-format (sträng, läs-skriv). Observera att jämfört med den van-
liga tsv-layouten, är kolumner, inte rader, åtskilda med nyradstecken, och celler inom
en kolumn är åtskilda av tabulatortecken.

0,1,2...
Data från en enskild kolumn (0 för vänstra kolumnen). getValue() eller getString(
) returnerar den som en enda sträng, åtskild av ˝\n˝. Dock är det rekommenderade
sättet att hämta den att använda getList(), som returnerar kolumnen som ett sträng-
fält.

row.0,row.1,row.2...
Data från en enskild rad (0 för översta raden). getValue() eller getString() returne-
rar den som en enda sträng, åtskild av ˝\n˝. Dock är det rekommenderade sättet att
hämta den att använda getList(), som returnerar raden som ett strängfält.

cbind
Data på ett format lämpligt för att klistra in i R, omgivet av en cbind-sats (sträng,
skrivskyddad).

<optionset>

Ingen förvald egenskap.

row_count
Antal objekt i optionset (heltal). Skrivskyddad.

current_row
Objekt som för närvarande är aktivt i ett optionset (heltal). -1 för inget aktivt objekt.
Läs- och skrivbar.

optioncolumn_ids
För varje <optioncolumn> som definieras, skapas en ˝string list˝-egenskap med an-
givet id.

<browser>
Förvald egenskap är ˝selection˝

selection
Aktuell text (markerat filnamn) i bläddraren (sträng)

<saveobject>

Förvald egenskap är ˝selection˝

selection
Det markerade objektets fullständiga namn (sträng, skrivskyddad: för att tilldela det
programmatiskt, använd ˝parent˝ och ˝objectname˝).

parent
Det markerade objektets överliggande objekt. Det är alltid ett befintligt R-objekt av en
typ som kan innehålla andra objekt (t.ex. en lista eller data.frame). När det är satt till
en tom sträng eller ett ogiltigt objekt, antas ˝.GlobalEnv˝ (RObject)

objectname
Det markerade objektets grundnamn, dvs. strängen som matas in av användaren
(ändrat till ett giltigt R-namn, vid behov) (sträng)

94

Introduktion till att skriva insticksprogram för RKWard

active
Endast för markeringsbara saveobjekts: Om objektet är markerad eller aktiverat. All-
tid sant för ej markeringsbara saveobjects (Boolean)

<spinbox>

Förvald egenskap är antingen ˝int˝ eller ˝real.formatted˝ beroende på nummerrutans läge

int
Heltalsvärde som nummerrutan innehåller, eller närmaste heltal för reellt läge (heltal)

real
Reellt värde som nummerrutan innehåller (och heltal, om i heltalsläge) (reell)

<formula>
Förvald egenskap är ˝model˝

model
Den aktuella modellsträngen (sträng)

table
Den data.frame som innehåller nödvändiga variabler. Om bara variabler från en da-
ta.frame används, returneras namnet på denna data.frame. Annars konstrueras en ny
data.frame efter behov (sträng)

labels
Om variabler från flera data.frames är inblandade, kan deras namn bli omvandlade
(exempelvis om båda data.frames innehåller en variabel som heter ˝x˝). Returnerar
en lista med de omvandlade namnen som index och den beskrivande beteckningen
som värde (sträng)

fixed_factors
De förbestämda faktorerna. Troligen vill man inte använda det. Används internt
(RObject)

dependent
Den eller de beroende variablerna. Troligen vill man inte använda det. Används in-
ternt (RObject)

<embed>
Ingen förvald egenskap

code
Koden som skapas av det inbäddade insticksprogrammet (code)

<preview>

Förvald egenskap är ˝state˝

state
Om förhandsgranskningsrutan är markerad (inte nödvändigtvis om förhandsgransk-
ningen redan har visats) (Boolean)

<convert>
Elementet (som används i sektionen <logic>) är speciell på det sättet att den tekniskt sett är
en egenskap, istället för att bara innehålla en eller flera egenskaper. Den är av typen Boole-
an. Observera att användbara modifierare av egenskapen (som för alla Booleska egenska-
per) är ˝not˝ och ˝numeric˝ (se egenskapers typer).

<switch>
Elementet (som används i sektionen <logic>) är speciell på det sättet att den tekniskt sett
är en (sträng-) egenskap, istället för att bara innehålla en eller flera egenskaper. Den gör det
möjligt att byta mellan olika målegenskaper beroende på värdet av en villkorsegenskap,
eller för att ändra avbildning av villkorsegenskapens värden. Alla modifierare som anges
skickas till målegenskaperna. Sålunda kan t.ex. modifieraren ˝shortname˝ också användas

95

Introduktion till att skriva insticksprogram för RKWard

i omkopplaren, om alla målegenskaper är RObject-egenskaper. Om målegenskaperna har
olika typer kan dock användning av modifierare orsaka fel. För förbestämda värden, fixed
_value, bortses tyst från eventuella modifierare. Observera att målegenskaper, vid åtkomst
via en omkopplare, alltid är skrivskyddade.

A.5 Inbäddningsbara insticksprogram som levereras med den
officiella utgåvan av RKWard

Ett antal inbäddningsbara insticksprogram levereras med RKWard, och kan användas i dina egna
insticksprogram. Detaljerad dokumentation är för närvarande bara tillgänglig i insticksprogram-
mens källkod eller hjälpfiler. Här är dock en lista för att ge en snabb översikt av vad som är
tillgängligt:

ID Pluginmap Beskrivning Exempel på
användning

rkward::plot_optio-
ns

embedded.pluginm-
ap

Tillhandahåller ett
stort antal alternativ
för diagram. De
flesta
insticksprogram för
diagramritning
utnyttjar det.

Plots->Barplot, de
flesta andra
insticksprogram för
diagramritning

rkward::color_choo-
ser

embedded.pluginm-
ap

Mycket enkelt
insticksprogram för
att ange en färg.
Nuvarande
implementering
tillhandahåller en
lista med färgnamn.
Framtida
implementeringar
kan komma att
tillhandahålla mer
utarbetad
färghämtning.

Plots->Histogram

rkward::plot_stepf-
un_options

embedded.pluginm-
ap

Diagramalternativ
för stegfunktion Plots->ECDF plot

rkward::histogram-
_options

embedded.pluginm-
ap

Histogramalternativ
(diagram) Plots->Histogram

rkward::barplot_e-
mbed

embedded.pluginm-
ap

Alternativ för
stapeldiagram Plots->Barplot

rkward::one_var_ta-
bulation

embedded.pluginm-
ap

Tillhandahåller
tabelluppställning
för en ensam
variabel.

Plots->Barplot

rkward::limit_vecto-
r_length

embedded.pluginm-
ap

Begränsa en vektors
längd (till de n
största eller minsta
elementen).

Plots->Barplot

96

Introduktion till att skriva insticksprogram för RKWard

rkward::level_select embedded.pluginm-
ap

Tillhandahåller en
<valueselector>
ifylld med nivåerna
(eller unika
värdena) i en
vektor.

Data->Recode
Categorical data

rkward::multi_input embedded.pluginm-
ap

Kombinerar
nummerruta,
inmatningsruta och
alternativknapp för
att tillhandahålla
inmatning av
tecken, numerisk
och logisk data.

Data->Recode
Categorical data

Tabell A.1: Inbäddningsbara standardinsticksprogram

A.6 Element att använda i .pluginmap-filer

<document>
Måste finnas i varje .pluginmap-fil som rotnod (exakt en gång). Egenskaper:

base_prefix
Filnamn angivna i .pluginmap-filen antas vara relative till katalogen där .pluginmap-
filen finns plus det prefix som anges här. Särskilt användbar om alla komponenter är
placerade i en enda underkatalog.

namespace
En namnrymd för komponent-identifierare. När komponenter slås upp för inbädd-
ning, går det att hämta komponenterna via strängen ˝namnrymd::komponent_id˝.
För närvarande satt till ˝rkward˝.

id
En valfri identifierarsträng för din .pluginmap. Att ange den låter en tredjepartsut-
vecklare hänvisa till den och läsa in din .pluginmap från sin egen (se kapitlet om att
hantera beroenden).

priority
Ett av ˝hidden˝ , ˝low˝ , ˝medium˝ eller ˝high˝ . En .pluginmap med prioritet
˝medium˝ eller ˝high˝ aktiveras automatiskt när RKWard först hittar dem. Använd
priority=˝hidden˝ för en .pluginmap som inte är avsedd att aktiveras, katalog (ba-
ra avsedd för inkludering). I den nuvarande implementeringen döljer det dock inte i
själva verket en .pluginmap. (Valfri, med förvalt värde ˝medium˝).

<dependencies>
Elementet, som anger beroenden, tillåts som ett direkt underliggande objekt till elemen-
tet <document> (en gång), och som ett underliggande objekt till elementen <component>
(en gång för varje <component>). Anger de beroenden som måste uppfyllas för att kunna
använda insticksprogrammen. Se kapitlet om beroenden för en översikt. Egenskaper:

rkward_min_version, rkward_max_version
Minimal och maximal tillåten version av RKWard. Versionsspecifikationer får inne-
hålla icke-numeriska suffix, såsom ˝0.5.7z-devel1˝. Om ett angivet beroende inte upp-
fylls, kommer insticksprogrammen det gäller att ignoreras. Mer information. Valfri.
Om ej specificerad krävs ingen minimal eller maximal version av RKWard.

97

Introduktion till att skriva insticksprogram för RKWard

R_min_version, R_max_version
Minimal och maximal tillåten version av R. Versionsspecifikationer får inte innehål-
la icke-numeriska suffix, såsom ˝0.5.7z-devel1˝. Beroendet av R-version visas på in-
sticksprogrammets hjälpsidor, men har ingen direkt effekt till och med RKWard 0.6.1.
Mer information. Valfri, om ej specificerad krävs ingen minimal eller maximal version
av R.

Underliggande element:

<package>
Lägger till ett beroende på ett specifikt R-paket. Egenskaper:
name

Paketnamn (krävs).
min_version, max_version

Minimal eller maximal tillåten version (valfri)
repository

Arkiv där paketet kan hittas. Valfritt, men rekommenderas starkt. Om paketet
inte är tillgängligt på CRAN.

<pluginmap>
Lägger till ett beroende på en specifik RKWard .pluginmap. Egenskaper:
name

Id-sträng för den .pluginmap som krävs (krävs).
min_version, max_version

Minimal eller maximal tillåten version (valfri)
url

Webbadress där .pluginmap kan hittas. Krävs.

<about>
Får finnas exakt en gång som ett direkt underliggande objekt till elementet <document>.
Innehåller metainformation om .pluginmap (eller insticksprogram). Se kapitlet om ’om’-
information för en översikt. Egenskaper:

name
Synligt användarnamn. Valfritt. Måste inte vara samma som ˝id˝.

version
Versionsnummer. Valfritt. Formatet är inte begränsat, men för att vara på den säkra
sidan, följ vanlig versionsnumrering såsom ˝x.y.z˝.

releasedate
Specifikation av utgivningsdatum. Valfri på formatet ˝ÅÅÅÅ-MM-DD˝.

shortinfo
En kort beskrivning av insticksprogrammet eller .pluginmap. Valfri.

url
Webbadress där mer information kan finnas. Valfri, men rekommenderad.

copyright
Specifikation av copyright, t.ex. ˝2012-2013 av Anna Svensson˝. Valfri, men rekom-
menderad.

licence
Specifikation av licens, t.ex. ˝GPL˝ eller ˝BSD˝. Försäkra att filerna åtföljs av en full-
ständig kopia av relevant licens. Valfri, men rekommenderad.

category
Insticksprogrammens kategori, t.ex. ˝Item response theory˝. Från RKWard 0.6.1 är
inga kategorier fördefinierade. Valfri.

Underliggande element:

98

Introduktion till att skriva insticksprogram för RKWard

<author>
Lägger till information om en upphovsman. Egenskaper:
name, given, family

Ange antingen hela namnet som name, eller ange både given (förnamn) och
family (efternamn) separat.

role
Upphovsmannens rollbeskrivning (valfri).

email
E-postadress där upphovsmannen kan kontaktas. Krävs. Kan sättas till e-
postlistan rkward-devel, om du prenumererar, och ditt insticksprogram är av-
sett att inkluderas i den officiella utgåvan av RKWard.

url
Webbadress med mer information om upphovsmannen, t.ex. hemsida (valfri).

<components>
Måste finnas exakt en gång som ett direkt underliggande objekt till elementet <document>.
Innehåller de individuella elementen <component> som beskrivs nedan. Inga egenskaper.

<component>
En eller flera element av typen <component> ska anges som direkt underliggande objekt
till elementen <components> (och bara där). Registrerar en komponent eller ett insticks-
program i rkward. Egenskaper:

type
För framtida utökningar: Typ av komponent eller insticksprogram. För tillfället alltid
satt till ˝standard˝ (den enda typ som för närvarande stöds).

id
Det id som kan användas för att hämta komponenten (för att placera den i menyn, se
nedan, eller för inbäddning). Se namnrymden <document> ovan.

file
Krävs åtminstone för komponenter av type=˝standard˝: Filnamnet på XML-filen som
beskriver det grafiska användargränssnittet.

label
Komponentens rubrik när den placeras i menyhierarkin.

<attribute>
Definierar en egenskap för en komponent. Hittills bara meningsfull för importinstickspro-
gram. Bara tillåten som ett direkt underliggande objekt till <component>. Egenskaper:

id
Egenskapens id

value
Egenskapens värde

labels
Rubrik som hör ihop med egenskapen

<hierarchy>
Måste finnas exakt en gång som ett direkt underliggande objekt till elementet <document>.
Beskriver var komponenten som deklareras ovan ska placeras i menyhierarkin. Accepterar
bara <menu>-element som direkt underliggande objekt. Inga egenskaper.

<menu>
Ett eller flera menyelement, <menu>, ska anges som direkt underliggande objekt till ele-
mentet <hierarchy>. Deklarerar en ny (under-)meny. Om en meny med angivet id (se ne-
dan) redan finns, sammanfogas de två menyerna. Elementet <menu> tillåts antingen som
ett direkt underliggande objekt till elementet <hierarchy> (toppnivåmeny) eller som ett
direkt underliggande objekt till någon annan <menu> (undermeny). Omvänt, accepterar
elementet <menu> andra <menu> eller <entry> som underliggande objekt. Egenskaper:

99

Introduktion till att skriva insticksprogram för RKWard

id
En identifierarsträng för menyn. Användbar när menydefinitioner läses från flera .p
luginmap-filer, för att försäkra att insticksprogram kan placeras i samma meny eller
menyer. Vissa menyidentifierare såsom ˝file˝ refererar till fördefinierade menyer (i
detta fall, menyn ˝Arkiv˝). Var noga med att kontrollera befintliga .pluginmap-filer
för att använda överensstämmande identifierare.

label
En rubrik för menyn.

group
Gör det möjligt att bestämma menyalternativens ordning. Se gruppering av menyal-
ternativ. Valfri.

<entry>

En menypost, dvs. ett menyalternativ för att starta ett insticksprogram. Kan bara användas
som ett direkt underliggande objekt till elementet <menu>, accepterar inga underliggande
element. Egenskaper:

component
Id för komponenten som ska anropas när menyalternativet aktiveras.

group
Gör det möjligt att bestämma menyalternativens ordning. Se gruppering av menyal-
ternativ. Valfri.

<group>

Deklarerar en grupp av objekt i menyn. Se gruppering av menyalternativ. Egenskaper:

id
Namnet på den här gruppen.

separated
Valfritt. Om det sätts till ˝true˝ är objektet i gruppen visuellt avskilt från omgivande
objekt.

group
Namnet på gruppen som den här gruppen ska läggas till sist i (valfri).

<context>
Deklarerar posterna i ett context. tillåts bara som direkt underliggande objekt till noden
<document>. Accepterar bara <menu>-taggar som direkt underliggande objekt. Egenska-
per:

id
Sammanhangets id. Hittills är bara två sammanhang implementerade: ˝xll˝ och
˝import˝.

<require>

Inkludera en annan .pluginmap-fil. Denna .pluginmap-fil läses bara in en gång, även om
den krävs från flera andra filer med <require>. Det viktigaste användarfallet är att inklu-
dera en pluginmap-fil som deklarerar några komponenter, som inbäddas av komponenter
i denna .pluginmap. Elementen <require> tillåts bara som direkt underliggande objekt till
noden <document>. Egenskaper:

file
Filnamnet för den .pluginmap som ska inkluderas. Det betraktas som relativt till
katalogen för den aktuella .pluginmap-filen plus base_prefix (se ovan för elementet
<document>). Om den relativa sökvägen till den .pluginmap som ska inkluderas inte
är känd, använd istället egenskapen map för att referera till den enligt id.

100

Introduktion till att skriva insticksprogram för RKWard

map
För att inkludera en .pluginmap-fil från ett annat paket (eller en RKWard .plugin
map från din externa .pluginmap), som kan refereras till med namespacename::id,
som angivet i elementet <document> som krävs för denna .pluginmap. Inkluderingen
misslyckas om ingen .pluginmap med detta id är känd, t.ex. inte är installerad på
användarens system). Metoden bör bara användas för att inkludera en .pluginmap
utanför ditt paket. För de som är inne i ditt paket, är en relativ sökväg snabbare och
tillförlitligare (egenskapen file).

A.7 Element att använda i .rkh-filer (hjälp)

<document>
Måste finnas i varje .xml-fil som rotnod (exakt en gång). Inga egenskaper.

<title>
Hjälpsidans titel. Det tolkas inte för ett insticksprograms hjälpsidor (de tar titeln från in-
sticksprogrammet självt), bara för fristående sidor. Inga egenskaper. Texten som finns i tag-
gen <title> blir hjälpsidans rubrik. Kan bara definieras en gång, som ett direkt underliggan-
de objekt till noden <document>.

<summary>

En kort sammanfattning av hjälpsidan (eller vad insticksprogrammet används för). Den
visas alltid överst på hjälpsidan. Inga egenskaper. Texten som är innehållet i taggen <sum-
mary> visas. Rekommenderas, men krävs inte. Kan bara definieras en gång, som ett direkt
underliggande objekt till noden <document>.

<usage>

En något mer detaljerad summering av användningen. Den visas alltid direkt efter <sum-
mary>. Inga egenskaper. Texten som är innehållet i taggen <usage> visas. Rekommenderas
på hjälpsidor för insticksprogram, men krävs inte. Kan bara definieras en gång, som ett
direkt underliggande objekt till noden <document>.

<section>
En sektion för allmänna ändamål. Kan användas hur många gånger som helst som ett direkt
underliggande objekt till noden <document>. Sektionerna visas i den ordning de definieras,
men alla efter sektionen <usage> och innan sektionen <settings>. Texten som är innehållet i
taggen <section> visas.

id
En identifierare som behövs för att gå till avsnittet från navigeringsraden (eller en
länk). Måste vara unik i filen. Krävs, inga förval.

title
Avsnittets titel (rubrik). Krävs, inget förvalt värde.

short_title
En kort titel lämplig att visa i navigeringsraden. Valfri, förvalt värde är den fullstän-
diga titeln.

<settings>

Definierar sektionen som innehåller referenser till de olika inställningarna i det grafiska
användargränssnittet. Bara meningsfull och använd för hjälpsidor relaterade till insticks-
program. Använd som ett direkt underliggande objekt till <document>. Får bara innehålla
elementen <setting> och <caption> som direkt underliggande objekt. Inga egenskaper.

101

Introduktion till att skriva insticksprogram för RKWard

<setting>

Förklarar en enskild inställning i det grafiska användargränssnittet. Tillåts bara som ett
direkt underliggande objekt till elementet <settings>. Texten som elementet innehåller ele-
mentet visas.

id
Inställningens id i insticksprogrammets .xml. Krävs, saknar förvalt värde.

title
En valfri titel för inställningen. Om den utelämnas (att utelämna den rekommenderas
i de flesta fall), tas titeln från insticksprogrammets .xml.

<caption>

En rubrik för att gruppera flera inställningar visuellt. Får bara användas som ett direkt
underliggande objekt till elementet <settings>.

id
Det motsvarande elementets id (oftast en <frame>, <page> eller <tab>) i instickspro-
grammets .xml.

title
En valfri titel för rubriken. Om den utelämnas (att utelämna den rekommenderas i de
flesta fall), tas titeln från insticksprogrammets .xml.

<related>
Definierar ett avsnitt som innehåller länkar till ytterligare relaterad information. Visas alltid
efter avsnittet <settings<. Inga egenskaper. Texten som finns inom taggen <related> visas.
Ofta innehåller det en lista med HTML-stil. Rekommenderas för insticksprograms hjälpsi-
dor, men krävs inte. Kan bara definieras en gång direkt under noden <document>.

<technical>
Definierar ett avsnitt som innehåller teknisk information som inte är relevant för slutanvän-
dare (såsom insticksprogrammets interna struktur). Visas alltid sist på en hjälpsida. Inga
egenskaper. Texten som finns inom taggen <related> visas. Krävs inte, och rekommende-
ras inte för de flesta insticksprograms hjälpsidor. Kan bara definieras en gång direkt under
noden <document>.

<länk>
En länk. Kan användas i vilken som helst av sektionerna som beskrivs ovan.

href
Målwebbadressen. Observera att flera RKWard-specifika webbadresser är tillgängli-
ga. Se avsnittet om att skriva hjälpsidor för detaljerad information.

<label>
Infogar värdet av en rubrik i användargränssnittet. Kan användas i vilken som helst av
sektionerna som användas ovan.

id
Elementets id i insticksprogrammet, som egenskapen label ska kopieras från.

<olika HTML-taggar>

De flesta HTML-grundtaggar tillåts inne i sektionerna. Håll dock manuell formatering så
liten som möjlig.

A.8 Funktioner tillgängliga för att skriva skriptlogik för grafis-
ka användargränssnitt

102

Introduktion till att skriva insticksprogram för RKWard

Klass ˝Component˝

Klass som representerar en enskild komponent eller komponentegenskap. Den vikti-
gaste instansen av klassen är variabeln ˝gui˝ som är fördefinierad som den aktuella
komponentens rotegenskapen. Följande metoder är tillgängliga för instanser av klassen
˝Component˝:

absoluteId(bas_id)
Returnerar absolut id för bas_id, eller om bas_id utelämnas, komponentens identifie-
rare.

getValue(id)
Avråds från. Använd getString(), getBoolean() eller getList() istället. Retur-
nerar värdet av det givna underliggande objektets egenskap. Returnerar värdet av
egenskapen om ID utelämnas.

getString(id)
Returnerar värdet av det givna underliggande objektets egenskap som en sträng. Re-
turnerar värdet av egenskapen om ID utelämnas.

getBoolean(id)
Returnerar värdet av det givna underliggande objektets egenskap som en Boolean
(om möjligt). Returnerar värdet av egenskapen om ID utelämnas.

getList(id)
Returnerar värdet av det givna underliggande objektets egenskap som ett fält av
strängar (om möjligt). Returnerar värdet av egenskapen om ID utelämnas.

setValue(id, värde)
Tilldela värdet värdetill det givna underliggande objektet.

getChild(id)
Returnerar en instans av det underliggande egenskapen med givet id.

addChangeCommand(id, kommando)
Kör kommando så snart det underliggande objektets egenskap angiven av id ändras.

Klass ˝RObject˝

Klass som representerar ett enskilt R-objekt. En instans av klassen kan erhållas genom
att använda makeRObject(objektnamn). Följande metoder är tillgängliga för instanser av
klassen ˝RObject˝.

VARNING
Om några kommandon fortfarande väntar i bakgrundsprogrammet, kan informationen som leve-
reras av de här metoderna vara inaktuellt när insticksprogrammets kod väl körs. Lita inte på det
för kritiska operationer (och riskera dataförlust).

getName()
Returnerar objektets absoluta namn.

exists()
Returnera om objektet finns. Du bör i allmänhet kontrollera det innan någon av me-
toderna som listas nedan används.

dimensions()
Returnerar ett fält med dimensioner (liknar dim() i R).

classes()
Returnerar ett fält med klasser (liknar class() i R).

isClass(klass)
Returnerar true, om objektet är av klassen klass.

103

Introduktion till att skriva insticksprogram för RKWard

isDataFrame()
Returnerar true, om objektet är en dataram.

isMatrix()
Returnerar true, om objektet är en matris.

isList()
Returnerar true, om objektet är en lista.

isFunction()
Returnerar true, om objektet är en funktion.

isEnvironment()
Returnerar true, om objektet är en omgivning.

isDataNumeric()
Returnerar true, om objektet är en vector med numerisk data.

isDataFactor()
Returnerar true, om objektet är en vektor med faktordata.

isDataCharacter()
Returnerar true, om objektet är en vektor med teckendata.

isDataLogical()
Returnerar true, om objektet är en vektor med logisk data.

parent()
Returnerar en instans av ˝RObject˝ som representerar det överliggande objektet till
det här objektet.

child(namn)
Returnerar en instans av ˝RObject˝ som representerar det underliggande objektet
namn till det här objektet.

Klass ˝RObjectArray˝

Ett fält av RObject-instanser. En instans av klassen kan erhållas genom att använda make-
RObjectArray(objektnamn). Det är särskilt användbart när det handlar om varslots, vilka
möjliggör att flera objekt markeras.

Funktionen include()
include(filnamn) kan användas för att inkludera en separat JS-fil.

Funktionen doRCommand()
doRCommand(kommando, återanrop) kan användas för att begära information från R.
Läs avsnittet om att begära information från R inne i ett insticksprogram för detaljerad
information och förbehåll.

104

Introduktion till att skriva insticksprogram för RKWard

Bilaga B

Felsökning under utveckling av
insticksprogram

Så du har läst all dokumentation, har gjort allt rätt, och kan ändå inte få det att fungera? Var
inte orolig, vi löser det. Det första att göra är att aktivera fönstret RKWard avlusningsmeddelan-
den (tillgängligt i menyn Fönster, eller genom att klicka på en av verktygsraderna), och därefter
starta ditt insticksprogram igen. Som en allmän tumregel ska du inte se någon utmatning i med-
delandefönstret när ditt insticksprogram, eller när som helst annars. Om det visas något, har det
troligen att göra med ditt insticksprogram. Se om det hjälper dig.

Om allting verkar bra i terminalen, försök att öka avlusningsnivån (från kommandoraden genom
att använda rkward --debug-level 3 eller genom att ställa in avlusningsnivån till 3 i Inställning-
ar→Anpassa RKWard→Avlusning. Alla meddelanden som visas vid en högre avlusningsnivå
anger inte ett problem, men chansen finns att ditt problem dyker upp någonstans i meddelande-
na.
Om du ändå inte kan räkna ut vad som är fel, misströsta inte. Vi är medvetna om att det är
komplicerat, och trots allt är det möjligt att du har stött på ett fel i RKWard, och RKWard behöver
fixas. Skriv bara till utvecklarnas e-postlista och berätta för oss om problemet. Vi hjälper gärna
till.
Till sist, även om du har tagit reda på hur att göra det själv, men märkt att dokumentationen
inte är till stor hjälp, eller till och med felaktig i något avseende, tala också om det för oss på
e-postlistan så att vi kan rätta eller förbättra dokumentationen.

105

Introduktion till att skriva insticksprogram för RKWard

Bilaga C

Licens

Översättning Stefan Asserhäll stefan.asserhall@gmail.com

Den här dokumentationen licensieras under villkoren i GNU Free Documentation License.

106

mailto:stefan.asserhall@gmail.com
fdl-license.html

	Inledning
	Förberedelse: Vad är insticksprogram i RKWard? Hur fungerar de?
	Skapa menyalternativ
	Bestämma menyalternativens ordning

	Definiera det grafiska användargränssnittet
	Definiera en dialogruta
	Lägga till ett guidegränssnitt
	Några hänsynstaganden vid konstruktion av det grafiska användargränssnittet
	<radio> mot <checkbox> mot <dropdown>

	Generera R-kod från inställningar i det grafiska användargränssnittet
	Använda JavaScript i RKWard-insticksprogram
	preprocess()
	calculate()
	printout()

	Konventioner, principer och bakgrund
	Förstå omgivningen local()
	Kodformatering
	Hantera komplexa alternativ

	Tips och trick

	Skriva en hjälpsida
	Logisk interaktion mellan element i det grafiska användargränssnittet
	Logik för grafiskt användargränssnitt
	Skriptbaserad logik för det grafiskt användargränssnittet

	Inbädda insticksprogram i insticksprogram
	Användarfall för inbäddning
	Inbäddning inne i en dialogruta
	Kodgenerering vid inbäddning
	Inbäddning inne i en guide
	Mindre inbäddad inbäddning: Knappen Ytterligare alternativ
	Inbädda eller definiera ofullständiga insticksprogram

	Hantera många liknande insticksprogram
	Översikt av olika tillvägagångssätt
	Använda JS include-sats
	Inkludera .xml-filer
	Använda <snippets>
	<include> och <snippets> mot <embed>

	Koncept för användning i specialiserade insticksprogram
	Insticksprogram som skapar ett diagram
	Rita ett diagram i utmatningsfönstret
	Lägga till funktionalitet för förhandsgranskning
	Generella diagramalternativ
	Ett standardexempel

	Förhandsgranskningar av data, utmatning och andra resultat
	Förhandsgranskning av (HTML-)utmatning
	Förhandsgranskningar av (importerad) data
	Anpassade förhandsgranskningar

	Sammanhangsberoende insticksprogram
	X11-enhetssammanhang
	Importdatasammanhang

	Begära information från R
	Referera till det aktuella objektet eller aktuella filen
	Repetera (ett antal) alternativ
	˝Drivna˝ optionsets
	Alternativ: När optionsets inte ska användas

	Hantera beroenden och kompatibilitetsfrågor
	RKWard versionskompatibilitet
	Kompatibilitet med R-version
	Beroenden av R-paket
	Beroenden av andra RKWard.pluginmap
	Ett exempel

	Översättning av insticksprogram
	Allmänna hänsynstaganden
	i18n i RKWards XML-filer
	i18n i RKWards JS-filer och sektioner
	i18n och citationstecken

	Underhåll av översättningar
	Skriva översättningar för insticksprogram

	Information om upphovsman, licens och version
	Dela med dig av ditt arbete med andra
	Externa insticksprogram
	Varför externa insticksprogram?
	Strukturen hos ett insticksprogrampaket
	Filhierarki
	Grundläggande insticksprogramkomponenter
	Ytterligare information (valfri)
	Automatiserad test av insticksprogram (valfri)

	Bygga insticksprogrampaketet

	Utveckling av insticksprogram med paketet rkwarddev
	Översikt
	Praktiskt exempel
	Beskrivning av det grafiska användargränssnittet
	JavaScript-kod
	Insticksavbildning
	Hjälpsida
	Generera insticksprogrammets filer
	Hela skriptet

	Lägga till hjälpsidor
	Översätta insticksprogram

	Referens
	Typer av egenskaper och modifierare
	Element för allmänna syften att använda i vilken XML-fil som helst (.xml, .rkh, .pluginmap)
	Element att använda i insticksprogrammets XML-beskrivning
	Allmänna element
	Gränssnittsdefinitioner
	Layoutelement
	Aktiva element
	Logiksektion

	Egenskaper för element i insticksprogram
	Inbäddningsbara insticksprogram som levereras med den officiella utgåvan av RKWard
	Element att använda i .pluginmap-filer
	Element att använda i .rkh-filer (hjälp)
	Funktioner tillgängliga för att skriva skriptlogik för grafiska användargränssnitt

	Felsökning under utveckling av insticksprogram
	Licens

