Manuel de KCachegrind

auteur original de la documentation: Josef Weidendorfer
Mises a jour corrections: Federico Zenith
Traduction francaise : Yann Verley
Traduction francaise : Ludovic Grossard
Traduction frangaise : Damien Raude-Morvan

Manuel de KCachegrind

Table des matiéres

1 Introduction

1.1
1.2
1.3
1.4

Profilage
Méthodes de profilage
Outilsde profilage
Affichage

2 Utiliser KCachegrind

21

2.2

Générer les données a afficher
211 Callgrind

2.1.2 OProfile e
Bases de l'interface utilisateur

3 Concepts de base

3.1

3.2
3.3

34

3.5

Le modele de données pour les données de profilage
3.1.1 Entitésdecolt
312 Typesdévenement o
Ftatdelavueot
Parties de I'interface graphique utilisateur
3.3.1 Barreslatérales
332 VLaired’affichage
333 Airesdundonglet L oL
3.34 Vue synchronisée par une entité sélectionnée dans une vue d’onglet.
3.3.5 Synchronisationentrelesonglets
33.6 Dispositions L
Barreslatérales
341 Profilageaplati
342 Synthésedesparties
343 Piledappels.
Vues o e
351 Typedévenement
3.5.2 Listesdes fonctionsappelants
353 Cartes e
354 Graphedesappels

355 Annotations e

@ NN o o

O O O ©

10

13

Manuel de KCachegrind

Les éléments de menus / barres d’outils
4.1 Lafenétre principale de KCachegrind

411 Lemenu«Fichier» e
Questions et Réponses
Glossaire

Remerciements et licence

17
17

17

18

19

21

Résumé

KCachegrind est un outil d’affichage de données de profilage, écrit en utilisant I'environne-
ment KDE Frameworks.

Manuel de KCachegrind

Chapitre 1

Introduction

KCachegrind est un navigateur pour les données produites par des outils de profilage. Ce cha-
pitre explique a quoi sert le profilage, comment cela fonctionne et donne quelques exemples
d’outils de profilage disponibles.

1.1 Profilage

Habituellement, quand on développe un programme, une des derniéres étapes est d’optimiser
les performances. C’est une perte de temps d’optimiser les fonctions rarement utilisées. Il est
donc intéressant de savoir ol1 votre programme passe le plus de temps.

Pour du code séquentiel, la réception des données statistiques des caractéristiques de 1'exécu-
tion des programmes, comme par exemple le temps passé dans les fonctions ou dans les lignes
de code est habituellement suffisant. C’est ce que 1'on appelle Profiler. Le programme est exé-
cuté sous le controle d'un outil de profilage, qui donne les résultats de 1'exécution a la fin. Au
contraire, pour du code paralléle, les problémes de performance proviennent généralement de
'attente par un processeur de données d'un autre processeur. Comme ce temps d’attente ne peut
habituellement étre facilement attribué, il est préférable de générer ici des traces d’événements
horodatées. KCachegrind ne peut pas afficher ce type de données.

Apres analyse des données de profilage produites, il devrait étre plus facile de voir les points
chauds et les goulots d’étranglement du code. Par exemple, on peut vérifier les hypotheses par
rapport au nombre d’appels, et les régions identifiées du code peuvent étre optimisées. Apres
cela, on doit valider I'optimisation effectuée avec une autre exécution profilée.

1.2 Méthodes de profilage

La mesure exacte du temps passé par des évenements se produisant pendant I’'exécution d’une
région de code (par exemple, une fonction) nécessite que soit effectué un ajout de code de me-
sure avant et apres cette région. Ce code lit le temps ou bien un compteur global d’événement,
et calcule les différences. Le code original doit ainsi étre changé avant I'exécution. C’est ce que
I'on appelle I'instrumentation. L'instrumentation peut étre faite par le programmeur lui-méme,
le compilateur, ou bien par le systeme d’exécution. Comme les régions intéressantes sont généra-
lement imbriquées, la surcharge due a la mesure influence toujours la mesure elle-méme. Ainsi,
I'instrumentation doit étre effectuée sélectivement et les résultats doivent étre interprétés avec
précaution. Bien sfir, ceci fait que 1’analyse des performances se basant sur la mesure exacte est
un processus tres complexe.

La mesure exacte est possible grace a des compteurs matériels (ce qui inclut des compteurs s’in-
crémentant sur un tic de temps) fournis dans les processeurs modernes et qui sont incrémentés

Manuel de KCachegrind

quand un évenement se produit. Comme nous voulons attribuer des événements & des régions
de code, sans utiliser de compteurs, nous devons gérer chaque évenement en incrémentant un
compteur pour la région de code courante nous-mémes. Faire ceci au niveau logiciel n’est bien
stir pas possible. Toutefois, si on part de I'hypothése que la distribution des évenements sur
le code source est identique quand on regarde a chaque énieme éveénement, au lieu de chaque
évenement, nous avons construit une méthode de mesure réglable par rapport a la surcharge in-
duite. C’est ce que I'on appelle I’échantillonnage. L'échantillonnage a base de temps (NdT : Time
Based Sampling ou TBS) utilise un temporisateur pour regarder régulierement le compteur de
programme, afin de créer un histogramme sur le code du programme. L'échantillonnage a base
d’évenements (NAT : Event Based Sampling ou EBS) se sert des compteurs matériels des proces-
seurs modernes et utilise un mode dans lequel le gestionnaire d’interruptions est appelé sur les
valeurs basses du compteur, en générant un histogramme de la distribution d’événements cor-
respondante. Dans le gestionnaire, le compteur d’événement est toujours réinitialisé au n de la
méthode d’échantillonnage. L’avantage de 1’échantillonnage est que le code n’a pas besoin d’étre
modifié, mais ceci reste un compromis : la supposition d’au-dessus est correcte si n est petit, mais
plus n est petit, plus la surcharge du gestionnaire d’interruptions est importante.

Il existe une autre méthode de mesure qui est de simuler ce qui arrive au niveau de I’ordinateur
quand on exécute un code donné, c’est-a-dire une simulation controlée de code. La simulation est
toujours dépendante du modele de la machine qui est plus ou moins précis. Cependant, pour des
modeéles tres détaillés de machine, s’approchant de la réalité, le temps de simulation peut étre as-
sez inacceptable pour une utilisation courante. L’avantage est que I’on peut insérer dans un code
donné un code de mesure / simulation aussi complexe qu’il soit sans perturber les résultats. Faire
ceci directement avant 1’exécution (ce que 1’on appelle instrumentation dynamique), en utilisant
le binaire original, est trés confortable pour 1'utilisateur : aucune recompilation n’est nécessaire.
Cette méthode devient utilisable quand on ne simule que quelques parties de la machine avec un
modele simple. En outre, les résultats produits par des modeles simples sont souvent plus faciles
a comprendre : le probleme fréquent avec le vrai matériel est que les résultats incluent des effets
de chevauchement de différentes parties de la machine.

1.3 Outils de profilage

Le plus connu des outils de profilage est l'outil de la suite GCC, gprof : on doit compiler le
programme avec ’'option -pg; le lancement du programme génere un fichier gmon. out, que 'uti-
lisateur peut lire avec gprof. L'inconvénient principal de cette méthode est ’obligation de passer
par une recompilation pour préparer 1'exécutable, qui doit étre lié de fagon statique. La méthode
utilisée ici est I'instrumentation générée par le compilateur. Celle-ci mesure les arcs d’appels se
produisant dans les fonctions et en accord avec des compteurs d’appels, en conjonction avec un
TBS, qui donne un histogramme de distribution du temps sur le code. En utilisant les deux in-
formations, il est possible de calculer de maniere heuristique le temps d’inclusion des fonctions,
c’est-a-dire le temps passé dans une fonction ainsi que toutes les fonctions qu’elle a appelées.

Pour une mesure exacte des événements, il existe des librairies avec des fonctions capables de
lire les compteurs de performance matériels. Les plus connus sont le patch PerfCtr pour Linux®
et les librairies indépendantes de 'architecture « PAPI » et « PCL ». Comme toujours, une mesure
exacte nécessite une instrumentation du code, comme indiqué au-dessus. D’autres utilisent les li-
brairies elles-mémes ou utilisent des systemes d’instrumentation automatiques comme « ADAP-
TOR » (pour l'instrumentation de sources FORTRAN), ou encore « DynaProf » (Injection de code
par Dynlnst).

OProfile est un outil de profilage au niveau systéme pour Linux® utilisant I'échantillonnage.

Dans beaucoup d’aspects, une maniere agréable de profiler est d’utiliser Cachegrind ou Call-
grind, qui sont des simulateurs utilisant 1’environnement d’instrumentation d’exécution Val-
grind. Comme il n’y a pas besoin d’accéder aux compteurs hardware (souvent difficile avec les
installations Linux® actuelles), et comme les binaires devant étre profilés n’ont pas besoin d’étre
modifiés, ceci est une bonne alternative a d’autres outils de profilage. L'inconvénient du ralen-
tissement dt a la simulation peut étre réduit en n’effectuant la simulation que sur les parties

Manuel de KCachegrind

intéressantes du programme, et peut-étre seulement sur quelques itérations d’une boucle. Sans
instrumentation de la mesure/simulation, 'usage de Valgrind ne provoque qu’un ralentissement
d’un facteur de 3 a 5. Et si on n’est intéressé que par 1’arbre d’appels et le nombre d’appels, le
simulateur du cache peut étre désactivé.

La simulation du cache est la premiére étape dans I'approximation des temps réels. En effet, sur
les systemes modernes, 1’exécution est tres sensible a 1’exploitation de ce qu’on appelle des caches
(zones de mémoire petites et rapides, et qui permettent d’accélérer les acces répétés aux mémes
emplacements mémoire). Cachegrind fait cette simulation du cache en interceptant les acces mé-
moires. Les données produites incluent le nombre d’acces sur la mémoire des instructions / des
données, les échecs des caches de niveau L1 / L2, et elle met en relation les lignes du code source
avec les fonctions du programme exécuté. En combinant ces compteurs d’échecs et en utilisant
des temps de latence de processeurs connus, on peut faire une estimation du temps passé.

Callgrind est une extension de Cachegrind qui construit I’arbre d’appels d'un programme a la
volée, c’est-a-dire comment les fonctions s’appellent entre elles et combien d’évenements se pro-
duisent lors de I'exécution d'une fonction. De plus, les données de profilage devant étre collec-
tées peuvent étre divisées en threads ou en contextes de chaines d’appels. Il peut aussi fournir
des données de profilage au niveau instruction afin de permettre I'annotation d’un code désas-
semblé.

1.4 Affichage

Les outils de profilage produisent typiquement un nombre important de données. Le souhait de
naviguer facilement dans 1’arbre d’appels, ainsi que de passer rapidement d"un mode de tri des
fonctions et d’affichage des différents types d’évenements, a motivé la création d'une interface
graphique (GUI) pour accomplir cela.

cette application est un outil d’affichage de données de profilage permettant d’accomplir ces
souhaits. Il a été programmé en premier lieu pour naviguer dans les données de Cachegrind et
Calltree. Cependant, il existe des convertisseurs permettant d’afficher les données de profilage
produites par d’autres outils. Une description du format des fichiers Cachegrind / Callgrindest
donnée dans I’annexe.

En plus d'une liste de fonctions triées en fonction des métriques des cofits inclusifs ou exclusifs
et de maniere optionnelle groupées par fichier source, librairie partagée ou classe C++, KCache-
grind propose des affichages différents pour une fonction sélectionnée, a savoir :

— une vue de l'arbre d’appel, qui montre une section de I'arbre d’appel autour de la fonction
sélectionnée,

— une vue de la carte de I'arbre, qui permet d’afficher la relation entre appels imbriqués ainsi
que la métrique du cofit inclusif pour détecter visuellement et rapidement les fonctions a
problemes,

— les vues du code source et de ’annotation assembleur, permettant de voir les détails des cofits
associés aux lignes du code source et des instructions assembleur.

Manuel de KCachegrind

Chapitre 2

Utiliser KCachegrind

2.1 Générer les données a afficher

Tout d’abord, il faut générer les données de performance en mesurant les aspects des caractéris-
tiques de 1’exécution d'une application. Pour cela, il faut utiliser un outil de profilage. KCache-
grind n’inclut pas d’outil de profilage, mais est prévu pour fonctionner avec Callgrind. En utili-
sant un convertisseur, il peut aussi étre utilisé pour afficher les données produites par OProfile.
Meéme si I’objectif de ce manuel n’est pas de documenter le profilage avec ces outils, la prochaine
section fournit des petits tutoriels afin que vous puissiez démarrer.

211 Callgrind

Callgrind est disponible sur Valgrind. Notez qu’il était précédemment nommé Calltree, mais ce
nom était trompeur.

L’'usage le plus répandu est de démarrer votre application en préfixant la ligne de commande par
valgrind --tool=callgrind , comme dans:

valgrind --tool=callgrind mon-programme mes—arguments

A la fin de I'exécution du programme, un fichier callgrind.out.pid sera généré. il peut étre
chargé dans KCachegrind.

Un usage plus avancé est de générer des données de profilage quand une fonction donnée de
votre application est appelée. Par exemple, pour Konqueror, pour n’avoir les données de profi-
lage que pour le rendu d’une page web, vous pouvez décider de générer les données quand vous
sélectionnez I'élément du menu Affichage — Recharger . Ceci correspond a un appel a KongMain
Window: :slotReload. Utilisez :

valgrind —--tool=callgrind —--dump-before=KongMainWindow: :slotRe

load konqueror
Ceci va produire plusieurs fichiers de données de profilage avec un numéro additionnel séquen-
tiel a la fin du nom du fichier. Un fichier sans un tel nombre a la fin (se terminant seulement par le
PID du processus) sera aussi produit. En chargeant ce fichier dans KCachegrind, tous les autres
fichiers seront aussi chargés, et peuvent étre affichés dans la synthése des parties et dans la liste
des parties.

2.1.2 OProfile

OProfile est disponible sur sa page web. Suivez les instructions d’installation du site web.
Veuillez vérifier toutefois si votre distribution ne le fournit pas déja en tant que paquet (comme

dans SuSE®).

http://valgrind.org
http://oprofile.sf.net

Manuel de KCachegrind

Le profilage au niveau systéme n’est autorisé que pour I’administrateur, car toutes les actions sur
le systeme peuvent étre observées. C’est pourquoi ce qui va suivre doit étre fait en tant qu’admi-
nistrateur. Tout d’abord, configurez le processus de profilage, en utilisant l'interface graphique
avec oprof_start ou I'outil en ligne de commande opcontrol. Une configuration standard devrait
étre le mode temps (ITBS, voir introduction). Pour démarrer la mesure, lancez opcontrol -s.
Ensuite lancez 'application a profiler, et apres, lancez opcontrol -d. Ceci va écrire les résul-
tats de la mesure dans des fichiers sous le dossier /var/lib/oprofile/samples/ . Pour pouvoir
afficher les données dans KCachegrind, lancez la commande suivante dans un dossier vide :

opreport —-gdf | op2callgrind

. Ceci va produire un nombre important de fichiers, un pour chaque programme qui s’exécutait
sur le systeme. Chacun peut étre chargé indépendamment dans KCachegrind.

2.2 Bases de l'interface utilisateur

Quand vous lancez KCachegrind avec un fichier de données de profilage en tant qu’argument,
ou apres en avoir chargé un avec Fichier — Ouvrir, Vous verrez une barre sur le c6té contenant
la liste des fonctions a gauche et, a droite de la partie principale, une aire d’affichage pour la
fonction sélectionnée. L'aire d’affichage peut étre configurée pour afficher plusieurs vues dans
une seule.

Lors du premier lancement, cette zone sera divisée horizontalement en deux parties, une su-
périeure et une inférieure, toutes deux dotées de vues sélectionnables par onglets. Pour déplacer
une vue, utilisez le menu contextuel des onglets, et ajustez les séparations entre vues. Pour passer
rapidement d’une présentation de vue a une autre, utilisez Vue — Disposition des vues — Aller
a la disposition suivante (Ctrl+—) et Vue — Disposition des vues — Aller a la disposition pré-
cédente (Ctrl+<«)

Le type d’évenement actif est important pour 'affichage : pour Callgrind, c’est par exemple le
nombre d’échecs du cache ou l'estimation du cycle; pour OProfile, c’est le “temps” dans le plus
simple cas. Vous pouvez changer le type d’évenement grace a une boite de dialogue dans la
barre d’outils ou dans la vue dutype d’événement. Un premier apercu des caractéristiques de
I'exécution devrait étre donné quand vous sélectionnez la fonction main dans la liste de gauche
et regardez 'affichage de l’arbre d’appels. La vous voyez les appels se produisant dans votre
programme. Notez que la vue du graphe d’appels ne montre que les fonctions avec un nombre
d’évenements élevé. En faisant un double-clic sur une fonction dans le graphe, celui-ci change
pour afficher les fonctions appelées autour de celle sélectionnée.

Pour explorer plus profondément GUI, vous pouvez regarder, en plus de ce manuel, la section
de documentation du site Internet. De plus, chaque composant graphique de KCachegrind est
fourni avec I'aide “Qu’est-ce que c’est? ”.

10

https://kcachegrind.github.io

Manuel de KCachegrind

Chapitre 3

Concepts de base

Ce chapitre explique quelques concepts de KCachegrind, et introduit les termes utilisés dans
l'interface.

3.1 Le modele de données pour les données de profilage

3.1.1 Entités de coiit

Les compteurs de cofit des types d’évenement (comme les échecs du cache L2) sont attribués
aux entités de cofit, qui sont des éléments en relation avec le code source ou des structures de
données d’un programme donné. Les entités de colit ne sont pas seulement un code simple ou
des positions de données, mais aussi des tuples de position. Par exemple, un appel a une source
et une cible, ou bien une adresse de données peut avoir un type de données et une position dans
le code ot1 son allocation s’est effectuée.

Les entités de cotit connues de KCachegrind sont données ci-dessous. Les positions simples :
Instruction

Une instruction assembleur a 1’adresse spécifiée.
Ligne dans le source d'une fonction

. Toutes les instructions que le compilateur (par l'intermédiaire des informations de débo-
gage) associe a une ligne donnée spécifiée par le nom du fichier source et le numéro de la
ligne, et qui sont exécutées dans le contexte de quelques fonctions. Le dernier est néces-
saire parce qu'une ligne source a l'intérieur d’une fonction inline peut apparaitre dans le
contexte de fonctions multiples. Les instructions sans association avec une ligne du code
source courant sont associées a la ligne numéro 0 du fichier «??7? ».222.

Function

Fonction. Toutes les lignes d'une fonction donnée constituent la fonction elle-méme. Une
fonction est spécifiée, s'ils sont disponibles, par son nom et sa position dans quelques objets
binaires. La derniére est nécessaire parce que les objets binaires d’un seul programme peut
avoir des fonctions avec le méme nom (on peut y accéder par exemple avec dlopen ou d
1sym; I’éditeur de lien dynamique résout les fonctions dans un ordre de recherche donné
dans les objets binaires utilisés). Si un outil de profilage ne peut détecter le nom du symbole
d’une fonction, par exemple parce que 'information de débogage n’est pas disponible, soit
I'adresse de la premiere instruction exécutée est utilisée, soit 22?

Objet binaire.

Toutes les fonctions dont le code se situe a I'intérieur d’un objet binaire, ou bien I’exécutable
principal (NdT : « main »), ou encore une librairie partagée.

11

Manuel de KCachegrind

Fichier source.

Toutes les fonctions dont la premiere instruction est associée a une ligne d’un fichier source
donné.

Classe.
Les noms des symboles des fonctions sont généralement ordonnés hiérarchiquement dans
des espaces de nommage, par exemple les espaces de nommage C++, ou les classes des
langages orientés objet. Ainsi une classe peut contenir des fonctions d'une classe ou de
classes embarquées.

Partie d’un profilage.

Quelques sections de temps d'une exécution de profilage, avec un identifiant de thread
donné, un identifiant de processus, et la ligne de commande exécutée.
Comme on peut le voir depuis la liste, un ensemble d’entités de cott définit souvent une autre
entité de cofit. Ainsi il y a une hiérarchie d’imbrication des entités de cotit qui semble évidente
par rapport a la description faite au-dessus.

Tuples des positions :

— Appel d’une adresse d’instruction vers une fonction cible.

— Appel d’une ligne du source vers une fonction cible.

— Appel d’une fonction du source vers une fonction cible.

— Saut (in)conditionnel d"une source vers une instruction cible.

— Saut (in)conditionnel d"une source vers une ligne cible.

Les sauts entre les fonctions ne sont pas autorisés, car cela est absurde dans un arbre d’appels.

Ainsi, les constructions telles la gestion des exceptions et les sauts longs en C doivent étre traduits
pour se mettre dans la pile d’appels comme demandé.

3.1.2 Types d’évenement

Des types d’évenements arbitraires peuvent étre spécifiés dans les données de profilage en leur
donnant un nom. Leur coft relié a une entité de cofit est un entier sur 64 bits.

Les types d’évenement dont les cotits sont spécifiés dans le fichier de données de profilage sont
appelés évenement réels. En plus, on peut spécifier des formules pour les types d’évenement
calculés a partir d’évenement réels, que I'on appelle évenements hérités.

3.2 FEtat de la vue

L'état de la vue de la fenétre de KCachegrind inclut :

— le type d’événement primaire et secondaire choisi pour 'affichage,

— le regroupement de fonction (utilisé dans la liste Profilage des fonctions et dans la coloration
des entités),

— les parties du profilage dont les cotits doivent étre inclus dans la vue,

— une entité active de cotit (par exemple, une fonction sélectionnée de la barre latérale Profilage
de la fonction),

— une entité de cofit sélectionnée.

Cet état influence les vues.

Les vues sont toujours affichées pour une entité de cotit, celle qui est active. Quand une vue

donnée n’est pas appropriée pour une entité de cofit, elle peut étre désactivée (par exemple quand

on sélectionne un objet ELF en double-cliquant dans la liste des groupes, I’annotation du code

source pour un objet ELFne veut rien dire).

Par exemple, pour une fonction active, la liste des fonctions appelées montre toutes les fonctions
appelées par la fonction active. On peut sélectionner chacune de ces fonctions sans la rendre
active. Si le graphe d’appels est montré a coté, il va automatiquement sélectionner la méme fonc-
tion.

12

Manuel de KCachegrind

3.3 Parties de l'interface graphique utilisateur

3.3.1 Barres latérales

Les barres latérales sont des fenétres de coté qui peuvent étre placées a chaque bordure de la fe-
nétre de KCachegrind. Elles contiennent toujours une liste d’entités de cotit triées d"'une maniere
quelconque.

— Le profilage de la fonction. Le profilage d"une fonction est une liste des fonctions avec les
cotts inclusifs et exclusifs, le nombre d’appels, le nom et la position des fonctions.

— Syntheése des parties

— Pile d"appel

3.3.2 Laire d’affichage

L’aire d’affichage, se situant généralement dans la partie droite de la fenétre principale de KCa-
chegrind, est constituée d’une (par défaut) ou de plusieurs vues d’onglets, rangées horizontale-
ment ou verticalement. Chaque onglet contient plusieurs vues différentes pour une seule entité
de cofit a un instant donné. Le nom de cette entité est indiqué en haut de la vue d’onglets. Sil
y a plusieurs vues d’onglets, seulement une est active. Le nom de l’entité dans la vue d’onglets
active est affiché en gras et détermine 'entité de cotit active de la fenétre de KCachegrind.

3.3.3 Aires d'un d’onglet

Chaque vue d’onglet peut contenir jusqu’a quatre aires d’affichage, nommées Haut, Droite,
Gauche, Bas. Chaque aire peut contenir plusieurs vues empilées. La vue visible d"une aire est
sélectionnée par la barre d’onglets. Les barres d’onglets de 'aire en haut & droite sont en haut,
les barres d’onglets de I’aire en bas a gauche sont en bas. Vous pouvez spécifier quel type de vue
doit aller dans chaque aire en utilisant les menus contextuels des onglets.

3.3.4 Vue synchronisée par une entité sélectionnée dans une vue d’onglet.

En plus d"une entité active, chaque onglet a une entité sélectionnée. Comme la plupart des types
de vues montre plusieurs entités avec celle qui est active centrée, vous pouvez changer 1'élé-
ment sélectionné en naviguant dans une vue (en cliquant avec la souris ou en utilisant le clavier).
Généralement, les éléments sélectionnés sont affichés en surbrillance. En changeant l'entité sélec-
tionnée dans une des vues d’un onglet, toutes les autres vues mettent par conséquent la nouvelle
entité sélectionnée en surbrillance.

3.3.5 Synchronisation entre les onglets

Si il y a plusieurs onglets, un changement de sélection dans un des onglets méne a un change-
ment d’activation dans 1'onglet suivant (a droite/en bas). Cette sorte de lien doit permettre, par
exemple, de naviguer rapidement dans les graphes d’appels.

3.3.6 Dispositions

La disposition de toutes les vues d’onglets d'une fenétre peut étre enregistrée (Vue —
Disposition des vues). Aprés avoir dupliqué la disposition courante (Vue — Disposition des
vues — Dupliquer (Ctrl++)) et changé quelques tailles ou bougé une vue vers une autre aire

13

Manuel de KCachegrind

de la vue d’onglets, vous pouvez rapidement commuter entre la nouvelle disposition et I'an-
cienne par Ctrl++ et Ctrl+—. L'ensemble des dispositions sera enregistré entre les sessions de
KCachegrind pour une méme commande profilée. Vous pouvez faire que I'ensemble courant des
dispositions soit celui par défaut pour les nouvelles sessions de KCachegrind, ou bien revenir a
I'ensemble des dispositions par défaut.

3.4 Barres latérales

3.4.1 Profilage aplati

Le profilage aplati contient une liste de groupes et une liste de fonctions. La liste des groupes
contient tous les groupes ot1 le cofit a été enregistré, en fonction du type de groupe choisi. La liste
des groupes est cachée quand le regroupement est désactivé.

La liste des fonctions contient les fonctions d'un regroupement sélectionné (ou toutes les fonc-
tions si le regroupement est désactivé), triées par colonne, par exemple les cofits propres ou inclu-
sifs enregistrés dedans. Le nombre de fonctions affichées dans la liste est limité, mais configurable
Configuration — Configurer KCachegrind..

3.4.2 Synthése des parties

Dans une exécution de profilage, plusieurs fichiers de données de profilage peuvent étre produits
et étre chargés ensemble dans KCachegrind. La barre latérale Synthése des partiesles montre, en
les triant horizontalement par date de création, les tailles de rectangle étant proportionnelles
au cotit enregistré dans chaque partie. Vous pouvez sélectionner une ou plusieurs parties pour
obliger les cotits affichés dans les autres vues de KCachegrind a s’appliquer uniquement sur ces
parties.

Les parties sont encore divisées en un mode partitionnement et un mode partage des cofits in-
clusifs :
Mode partitionnement

Partitionnement : vous voyez le partitionnement dans des groupes pour une partie des
données de profilage, en accord avec le type de groupe sélectionné. Par exemple, si les
groupes objet ELFsont sélectionnés, vous verrez des rectangles colorés pour chaque objet
ELF utilisé (bibliotheque partagée ou exécutable), qui auront une taille proportionnelle au
cofit enregistré dedans.

Mode diagramme

Un rectangle montrant le cotit inclusif de la fonction active dans la partie est affiché. Celui-ci
est partagé pour afficher les cotits inclusifs des fonctions appelées.

3.4.3 Pile d’appels

C’est une pile d’appels purement fictive, qui est la “plus probable”. Elle est construite en mettant
au début la fonction active courante, puis en ajoutant les fonctions appelantes/appelées avec les
plus hauts cofits en haut et en bas.

Les colonnes cofit et appels montrent le cofit enregistré pour tous les appels de la fonction dans
la ligne au-dessus.

14

Manuel de KCachegrind

3.5 Vues

3.5.1 Type d’événement

La liste Types montre tous les types de cofit disponibles, ceux correspondant, et le cotit inclusif
de la fonction active courante pour ce type d’événement.

En choisissant un type d’évenement dans la liste, vous remplacez le type des cotits montré par-
tout dans KCachegrind par celui sélectionné.

3.5.2 Listes des fonctions appelants

Ces listes montrent les appels et les fonctions appelées de la fonction active courante. Toutes les
fonctions appelantes et carte des fonctions appelées désignent toutes les fonctions pouvant étre
accédées dans le sens des appelantes ou des appelées, méme si d’autres fonctions se trouvent
entre elles.

Les vues de liste des appels inclut :

— Appelantes directes

— Appelées directes

— Toutes les fonctions appelantes

— Toutes les fonctions appelées

3.5.3 Cartes

Une vue de la carte de 'arbre du type d’événement primaire, en haut ou en bas de la hiérarchie
d’appel. Chaque rectangle coloré représente une fonction, sa taille est approximativement pro-
portionnelle au cotit enregistré a l'intérieur pendant que la fonction active s’exécutait (cependant,
il y a des contraintes de dessin).

Pour la carte des fonctions appelantes, le graphique montre la hiérarchie de toutes les fonctions
appelant la fonction active courante; pour la carte des fonctions appelées, il affiche ceci pour
toutes les fonctions appelées.

Les options d’apparence sont disponibles dans le menu contextuel. Pour avoir des proportions
exactes, choisissez Cacher les bordures incorrectes. Comme ce mode peut étre trés gourmand au
niveau du temps, vous voudrez peut-étre limiter avant le niveau maximum de dessin. Meilleur
détermine la direction de partage pour les enfants a partir du ratio d’aspect de leur parent. Tou-
jours meilleur décide de I'espace restant pour chaque enfant du méme parent. Ignorer les pro-
portions prend 'espace pour dessiner le nom de la fonction avant de dessiner les enfants. Notez
que les proportions peuvent étre fortement fausses.

La navigation par le clavier est disponible avec les touches gauche et droite pour parcourir les
enfants du méme parent, et haut et bas pour aller au niveau au-dessus et en dessous le plus
proche. La touche Entrée active I'élément courant.

3.5.4 Graphe des appels

Cette vue montre le graphe d’appel autour de la fonction active. Le colit montré est seulement le
cott enregistré pendant que la fonction active s’exécutait; ¢’est-a-dire le cotit montré pour main ()
- si elle est visible - doit étre le méme que le cotit de la fonction active, comme c’est la partie du
cott inclusif de main () enregistré pendant que la fonction active s’exécutait.

Pour les cycles, les fleches d’appels bleues indiquent que c’est un appel artificiel rajouté pour un
affichage correct, méme s’il ne s’est jamais produit.

Si le graphe est plus large que l'aire de représentation, un panneau d’apercu est affiché dans un
coin. Il y a des options de vues identiques a celles de la carte de ’arbre d’appels; la fonction
sélectionnée est mise en surbrillance.

15

Manuel de KCachegrind

3.5.5 Annotations

Les listes source/assembleur annoté montre les lignes du code source/les instructions désassem-
blées de la fonction active courante, ainsi que le colit (propre) enregistré lors de 'exécution du
code de la ligne du source/l'instruction. S’il y a eu appel, les lignes avec les détails sur 1’appel
sont insérées dans le code source : le coftit (inclusif) enregistré a I'intérieur de I'appel, le nombre
d’appels effectués, et la destination de 'appel.

Sélectionnez une telle ligne d’information d’appel pour activer la destination de 1’appel.

16

Manuel de KCachegrind

Chapitre 4

Les éléments de menus / barres
d’outils

4.1 La fenétre principale de KCachegrind

411 Le menu « Fichier »

Fichier — Nouveau (Ctrl-N)

Ouvre une fenétre de haut niveau vide dans laquelle vous pouvez charger des données de
profilage. Cette action n’est pas vraiment nécessaire, car Fichier — Ouvrir vous donnera
une nouvelle fenétre de haut niveau si la fenétre courante affiche déja des données.

Fichier — Ouvrir (Ctrl-O)

Affiche la boite de dialogue de sélection de fichier de KDE afin que vous puissiez choisir le
fichier de données de profilage a charger. S’il y a déja des données affichées dans la fenétre
courante de haut niveau, ceci va ouvrir une nouvelle fenétre. Si vous voulez ouvrir des
données additionnelles de profilage dans la fenétre courante, utilisez Fichier — Ajouter.

Le nom des fichiers de données de profilage se termine habituellement par pid .partie-t
hreadID, oll partie et threadID sont facultatifs. pid et partie sont utilisés pour les mul-
tiples fichiers de données de profilage recueillis lors de 1’exécution d'une application. En
chargeant un fichier se terminant seulement parpid, les fichiers de données éventuellement
présents pour cette exécution, mais avec des terminaisons additionnelles, seront également
chargés.

S’il existe des fichiers de données de profilage cachegrind.out.123 et cachegrind.out
.123.1, en chargeant le premier, le second sera chargé automatiquement.

Fichier — Ajouter

Ajoute un fichier de données de profilage dans la fenétre courante. Vous pouvez ainsi forcer
le chargement de multiples fichiers de données dans la méme fenétre de premier niveau,
méme s’ils ne sont pas de la méme exécution, comme donné par la convention de nommage
des fichiers de données de profilage. Par exemple, ceci peut étre utilisé pour des comparai-
sons cOte-a-cote.

Fichier — Recharger (F5)

Recharge les données de profilage. Ceci est utile apres qu’un autre fichier de données de
profilage ait été généré par I'exécution d’'une application déja chargée.
Fichier — Quitter (Ctrl-Q)

Quitte KCachegrind

17

Manuel de KCachegrind

Chapitre 5

Questions et Réponses

1. A quoi sert KCachegrind ? Je n’en ai aucune idée.

KCachegrind est utile dans le stade final du développement d'un logiciel, appelé le profi-
lage. Si vous ne développez pas d’applications, vous n’avez pas besoin de KCachegrind.

2. Quelle est la différence entre Incl. et Propre?

Ce sont des attributs de cotit pour les fonctions en considérant certains types d’événements.
Comme les fonctions peuvent s’appeler entre elles, il parait logique de distinguer le cofit
de la fonction elle-méme (“Cofit propre”) et le cotit incluant toutes les fonctions appelées
(“Cott inclusif”). “ Propre ” est aussi remplacé certaines fois par “ Exclusif ”.

Ainsi, par exemple pour main (), vous aurez toujours un coft inclusif de presque 100 %,
alors que le cofit propre est négligeable, le travail réel s’effectuant dans une autre fonction.
3. Si je double-clique sur une fonction en bas Graphe des appels, il affiche le méme cofit pour la
fonction main () que pour la fonction sélectionnée. N'est-ce pas supposé rester constant a 100 % ?

Vous avez activé une fonction en dessous demain () avec un cotit de tout évidence inférieur
a celui demain () elle-méme. Pour chaque fonction, on ne montre de la partie du cofit total

de la fonction, que celle enregistrée alors que la fonction activée s’exécutait. C’est-a-dire que
le cotit affiché pour toute fonction ne peut jamais étre plus élevé que le cofit de la fonction
activée.

18

Manuel de KCachegrind

Chapitre 6

Glossaire

Entité de coiit

C’est un élément abstrait relié au code source, auquel on peut attribuer des compteurs
d’évenements. Les dimensions des entités de cofit sont la localisation dans le code (par
exemple, ligne source, fonction), la localisation dans les données (par exemple, type de la
donnée accédée, donnée), la localisation dans 'exécution (par exemple, thread, processus),
et les couples ou les triplets des positions mentionnées au-dessus (par exemple, appels,
acces a un objet a partir d’une instruction, donnée expulsée du cache).

Cofits d’événement
C’est la somme des éveénements d’'un type donné, se produisant pendant que 1’exécution

est reliée a une entité de cotit donnée. Le cofit est attribué a I'entité.
Type d’évenement

Type d’événement : c’est la sorte d’événement dont les cofits peuvent étre attribués a une
entité de cotit. Il existe des types d’évenements réels et des types d’événements hérités.

Types d’événement hérités
C’est un type d’évenement virtuel, seulement visible dans une vue, et qui est défini par une
formule utilisant des types d’éveénements réels.

Fichier de données de profilage

C’est un fichier contenant des données mesurées dans une expérience de profilage (ou une
partie), ou produite par post-traitement d"une trace. Sa taille est généralement linéairement
proportionnelle a la taille du code du programme.

Données partielles de profilage

Données extraites d"un fichier de données de profilage.
Expérience de profilage

C’est une exécution d'un programme, supervisée par un outil de profilage, qui peut pro-
duire plusieurs fichiers de données de profilage a partir de parties ou de threads de I'exé-
cution.

Projet de profilage

C’est une configuration pour les expériences de profilage utilisée pour un programme a
profiler, peut-étre dans plusieurs versions. Comparer des données de profilage n’a généra-
lement de sens qu’entre données de profilage produites dans des expériences sur un seul
projet de profilage.

Profilage

C’est le processus de collecte d'informations statistiques sur les caractéristiques d"un pro-
gramme qui s’exécute.

19

Manuel de KCachegrind

Types d’événement réel

C’est un type d’évenement qui peut étre mesuré par un outil. Cela nécessite 1’existence d'un
capteur pour le type d’éveénement donné.

Trace
C’est une séquence d’événements horodatés qui se produisent lors du tragage d’un pro-

gramme qui s’exécute. Sa taille est généralement proportionnelle linéairement au temps
d’exécution du programme.

Trace partielle

Voir "Données partielles de profilage".
Tracage

C’est le processus de supervision d’une exécution de programme, et de sauvegarde des
événements triés par date dans un fichier de sortie, la trace.

20

Manuel de KCachegrind

Chapitre 7
Remerciements et licence

Merci a Julian Seward pour son excellent outil Valgrind, et a Nicholas Nethercote pour le mo-
dule externe Cachegrind. Sans ces programmes, KCachegrind n’aurait jamais existé. Ils sont par
ailleurs a I’origine de beaucoup d’idées pour cette GUL

Merci pour tous les rapports de bogues et les suggestions des différents utilisateurs.

Traduction francaise par Yann Verleyyann.verley@free.fr, Ludovic Grossard grossard@kde.org,
Damien Raude-Morvan drazzib@drazzib.com et Joseph Richard jrchcell@gmail.com.

Cette documentation est soumise aux termes de la Licence de Documentation Libre GNU (GNU
Free Documentation License).

21

mailto:yann.verley@free.fr
mailto:grossard@kde.org
mailto:drazzib@drazzib.com
mailto:jrchcell@gmail.com
fdl-license.html
fdl-license.html

	Introduction
	Profilage
	Méthodes de profilage
	Outils de profilage
	Affichage

	Utiliser KCachegrind
	Générer les données à afficher
	Callgrind
	OProfile

	Bases de l'interface utilisateur

	Concepts de base
	Le modèle de données pour les données de profilage
	Entités de coût
	Types d'évènement

	État de la vue
	Parties de l'interface graphique utilisateur
	Barres latérales
	L'aire d'affichage
	Aires d'un d'onglet
	Vue synchronisée par une entité sélectionnée dans une vue d'onglet.
	Synchronisation entre les onglets
	Dispositions

	Barres latérales
	Profilage aplati
	Synthèse des parties
	Pile d'appels

	Vues
	Type d'évènement
	Listes des fonctions appelants
	Cartes
	Graphe des appels
	Annotations

	Les éléments de menus / barres d'outils
	La fenêtre principale de KCachegrind
	Le menu « Fichier »

	Questions et Réponses
	Glossaire
	Remerciements et licence

