
Das Handbuch zu KatePart

Thad McGinnis
Anne-Marie Mahfouf

Anders Lund
T.C. Hollingsworth

Christoph Cullmann
Lauri Watts

Übersetzer: Matthias Schulz

Das Handbuch zu KatePart

2

Inhaltsverzeichnis

1 Einleitung 8

2 Grundsätzliches 9
2.1 Ziehen und Ablegen (Drag and Drop) . 9

2.2 Kurzbefehle . 9

3 Arbeiten mit dem Editor von KatePart 12

3.1 Überblick . 12
3.2 Navigieren im Text . 13

3.3 Arbeiten mit der Auswahl . 13
3.3.1 Blockauswahl benutzen . 14
3.3.2 Benutzen von Auswahl überschreiben . 14
3.3.3 Benutzen von Durchgehende Auswahl . 14

3.4 Kopieren und Einfügen von Text . 15

3.5 Suchen und Ersetzen von Text . 15
3.5.1 Die Leisten für Suchen und Ersetzen . 15
3.5.2 Suchen von Text . 16
3.5.3 Ersetzen . 16

3.6 Lesezeichen benutzen . 17
3.7 Automatischer Zeilenumbruch . 17
3.8 Automatisches Einrücken benutzen . 18

3.9 Kennzeichnung von Änderungen in Textzeilen . 19

3.10 Die Textgrafik auf der Bildlaufleiste . 19

4 Die Menüeinträge 21

4.1 Das Menü Datei . 21
4.2 Das Menü Bearbeiten . 22
4.3 Das Menü Ansicht . 25
4.4 Das Menü Lesezeichen . 26
4.5 Das Menü Extras . 27
4.6 Die Menüs „Einstellungen” und „Hilfe” . 31

Das Handbuch zu KatePart

5 Weiterentwickelte Editierwerkzeuge 32

5.1 Kommentar/Kommentar entfernen . 32
5.2 Die integrierte Befehlszeile im Editor . 32

5.2.1 Standardbefehle der Befehlszeile . 33
5.2.1.1 Befehle zum Einrichten des Editors 33
5.2.1.2 Befehle zum Bearbeiten . 35
5.2.1.3 Befehle zur Bewegung im Dokument 40

5.2.1.4 Befehle für die grundlegenden Editor-Funktionen. Diese hängen
von der Anwendung ab, in der die Editorkomponente verwendet
wird. 41

5.3 Benutzen von Quelltextausblendung . 41

6 KatePart erweitern 43
6.1 Einführung . 43

6.2 Arbeiten mit Syntaxhervorhebungen . 43

6.2.1 Überblick . 43
6.2.2 Das KatePart Syntaxhervorhebungssystem 44

6.2.2.1 Wie es funktioniert . 44
6.2.2.2 Regeln . 45

6.2.2.3 Kontextstile und Schlüsselwörter 45
6.2.2.4 Standardstile . 45

6.2.3 Die Hervorhebungsdefinition für das XML Format 46

6.2.3.1 Überblick . 46
6.2.3.2 Die Abschnitte im Einzelnen . 49
6.2.3.3 Verfügbare Standardstile . 51

6.2.4 Hervorhebungs-Erkennungsregeln . 52

6.2.4.1 Die Regeln im Einzelnen: . 54

6.2.4.2 Tipps & Tricks . 58

6.3 Arbeiten mit Farbschemata . 59

6.3.1 Überblick . 59
6.3.2 Farbschemata für KSyntaxHighlighting . 60

6.3.3 Das JSON-Format der Farbschemata . 61

6.3.3.1 Überblick . 61
6.3.3.2 Dit JSON-Struktur . 62

6.3.3.3 Hauptabschnitte der JSON-Farbschemadateien 62

6.3.3.4 Metadaten . 64
6.3.4 Farben im Detail: . 65

6.3.4.1 Editor-Farben . 65
6.3.4.2 Standardtextstile . 71
6.3.4.3 Benutzerdefinierte Textstile für Hervorhebungen 74

6.3.5 Die GUI der Farbschemata . 75
6.3.5.1 Ein neues Schema erstellen . 76
6.3.5.2 JSON-Schemadateien importieren oder exportieren 76

4

Das Handbuch zu KatePart

6.3.5.3 Bearbeitung von Farbschemata . 76

6.3.5.3.1 Farben . 76
6.3.5.3.2 Standardtextstile . 76
6.3.5.3.3 Textstile für Hervorhebungen 77

6.3.6 Tipps & Tricks . 77

6.3.6.1 Kontrast von Textfarben . 77
6.3.6.2 Vorschläge zur Konsistenz bei der Syntaxhervorhebung 77

6.4 Scripting mit JavaScript . 78

6.4.1 Einrückungsskripte . 78

6.4.1.1 Der Vorspann des Einrückungsskripts 78

6.4.1.2 Der Quelltext des Einrückungsskripts 79

6.4.2 Befehlszeilenskripte . 80

6.4.2.1 Der Vorspann des Befehlszeilenskripts 80

6.4.2.2 Der Quelltext des Skripts . 81

6.4.2.2.1 Kurzbefehle festlegen . 82

6.4.3 Skript-API . 83

6.4.3.1 Cursor und Bereiche . 83
6.4.3.1.1 Der Cursor-Prototyp . 83

6.4.3.1.2 Der Bereich-Prototyp . 84

6.4.3.2 Globale Funktionen . 85
6.4.3.2.1 Lesen & Einfügen von Dateien 85

6.4.3.2.2 Fehlersuche . 86

6.4.3.2.3 Übersetzung . 86

6.4.3.3 Die Programmschnittstelle zur Ansicht 86

6.4.3.4 Die Programmschnittstelle zum Dokument 88

6.4.3.5 Die Programmschnittstelle zum Editor 93

7 Einrichten von KatePart 94
7.1 Einstellungen für die Editor-Komponente . 94

7.1.1 Erscheinungsbild . 94

7.1.1.1 Schriftart . 94
7.1.1.2 Allgemein . 94

7.1.1.3 Randbereiche . 95
7.1.2 Farbschemata . 96
7.1.3 Bearbeitungseinstellungen . 97

7.1.3.1 Allgemein . 97

7.1.3.2 Textnavigation . 97

7.1.3.3 Einrückung . 98

7.1.3.4 Autovervollständigung . 100

7.1.3.5 Rechtschreibprüfung . 100

5

Das Handbuch zu KatePart

7.1.3.6 VI-Eingabemodus . 100

7.1.4 Öffnen/Speichern . 101

7.1.4.1 Allgemein . 101

7.1.4.2 Erweitert . 102
7.1.4.3 Modi & Dateitypen . 102

7.2 Einstellungen mit Dokumentvariablen . 103

7.2.1 Wie KatePart Variablen benutzt . 104
7.2.2 Verfügbare Variablen . 105

7.2.3 Zusätzliche Optionen in .kateconfig-Dateien 107

8 Danksagungen und Lizenz 109

9 Der VI-Eingabemodus 111

9.1 VI-Eingabemodus . 111

9.1.1 Inkompatibilitäten mit Vim . 111

9.1.2 Wechseln der Modi . 112
9.1.3 Einbindung in Kate’s Funktionen . 113

9.1.4 Unterstützte Befehle im normalen/visuellen Modus 113
9.1.5 Unterstützte Richtungstasten . 115

9.1.6 Unterstützte Textobjekte . 116

9.1.7 Unterstützte Befehle im Eingabemodus . 117

9.1.8 Das Komma-Textobjekt . 117

9.1.9 Fehlende Funktionen . 118

A Reguläre Ausdrücke 119

A.1 Einleitung . 119

A.2 Muster . 120
A.2.1 Steuerzeichen . 120
A.2.2 Zeichenklassen und Abkürzungen . 120

A.2.2.1 Zeichen mit speziellen Bedeutungen (Steuerzeichen) innerhalb
von Zeichenklassen . 122

A.2.3 Alternativen: trifft zu wenn „eins von” . 122
A.2.4 Untermuster . 122

A.2.4.1 Angabe von Alternativen . 122

A.2.4.2 Speichern von gefundenem Text (Rückwärtsreferenzen) 122

A.2.4.3 Vorwärtsgerichtete Behauptungen 123

A.2.4.4 Rückwärtsgerichtete Behauptungen 123

A.2.5 Zeichen mit speziellen Bedeutungen (Steuerzeichen) innerhalb von Mustern 123

A.3 Quantifizierer . 124
A.3.1 Gier . 125
A.3.2 In Beispielen . 125

A.4 Behauptungen . 125

B Index 127

6

Zusammenfassung

KatePart ist eine voll ausgestattete Texteditorkomponente von KDE.

Das Handbuch zu KatePart

Kapitel 1

Einleitung

KatePart ist eine voll ausgestattete Texteditorkomponente, die in vielen Qt™- und KDE-
Programmen verwendet wird. KatePart ist mehr als nur ein Texteditor, es ist als Editor für Pro-
grammierer gedacht und könnte mindestens als teilweise Alternative zu leistungsfähigeren Edi-
toren betrachtet werden. Einer der wesentlichen Vorteile von KatePart ist die farbige Darstellung
von Quelltext, angepasst für viele verschiedene Programmiersprachen wie: C/C++, Java™, Py-
thon, Perl, Bash, Modula 2, HTML und Ada.

KWrite ist eine einfache Texteditoranwendung, die auf KatePart aufbaut. KWrite hat eine Ober-
fläche für das Bearbeiten eines einzelnen Dokumentes (SDI). KWrite ist eine sehr einfache An-
wendung, deswegen gibt es keine eigene Dokumentation. Wenn Sie KWrite benutzen können,
dann können Sie KatePart überall benutzen.

8

Das Handbuch zu KatePart

Kapitel 2

Grundsätzliches

KWrite und viele andere Anwendung, die KatePart verwenden, sind sehr einfach zu nutzen.
Keiner, der schon einen Texteditor benutzt hat, sollte Probleme damit haben.

2.1 Ziehen und Ablegen (Drag and Drop)

KatePart nutzt das Drag-and-Drop-Protokoll von KDE. Dateien können gezogen und auf Kate-
Part abgelegt werden; von der Arbeitsoberfläche, von der Dateiverwaltung Dolphin, oder einer
FTP-Seite, die in einem Dolphin-Fenster geöffnet ist.

2.2 Kurzbefehle

Viele der Tastenfunktionen (Tastenkürzel) sind einstellbar im Menü Einstellungen. In der Grund-
einstellung hat KatePart die folgenden Tastenfunktionen:

Einfg

Umschaltung zwischen Einfüge- und
Überschreibmodus. Im Einfügemodus
werden alle Zeichen an der Cursor-Position
eingefügt und alle Zeichen rechts vom
Cursor nach rechts verschoben. Im
Überschreibmodus werden die Zeichen
rechts vom Cursor sofort durch die neu
geschriebenen Zeichen ersetzt.

Pfeil links Bewegt den Cursor ein Zeichen nach links.
Pfeil rechts Bewegt den Cursor ein Zeichen nach rechts.

Pfeil hoch Bewegt den Cursor um eine Zeile nach
oben.

Pfeil runter Bewegt den Cursor um eine Zeile nach
unten.

Strg+E Zur vorherigen Bearbeitungszeile gehen.
Strg+Umschalt+E Zur nächsten Bearbeitungszeile gehen.

Alt+Umschalt+Pfeil hoch Cursor zur vorherigen passenden
Einrückung verschieben.

Alt+Umschalt+Pfeil runter Cursor zur vorherigen passenden
Einrückung verschieben.

9

Das Handbuch zu KatePart

Strg+6 Zur passenden Klammer gehen.

Bild auf Bewegt den Cursor um eine Seite nach
oben.

Bild ab Bewegt den Cursor um eine Seite nach
unten.

Pos 1 Setzt den Cursor an den Zeilenanfang.
Ende Setzt den Cursor an das Zeilenende.
Strg+Pos 1 Zum Dokumentanfang.
Strg+Ende Zum Dokumentende.
Strg+Pfeil hoch Eine Zeile nach oben.
Strg+Pfeil runter Eine Zeile nach unten.
Strg+Pfeil rechts Word nach rechts.
Strg+Pfeil links Wort nach links.
Strg+Umschalt+Pfeil hoch Zeilen nach oben verschieben.
Strg+Umschalt+Pfeil runter Zeilen nach unten verschieben.
Strg+Alt+Pfeil hoch Markierte Zeilen nach oben kopieren.
Strg+Alt+Pfeil runter Markierte Zeilen nach unten kopieren.
Strg+B Lesezeichen hinzufügen.
Alt+Bild auf Voriges Lesezeichen.
Alt+Bild ab Nächstes Lesezeichen.

Entf Löscht das Zeichen oder den markierten
Text rechts vom Cursor.

Rücktaste Löscht das Zeichen links vom Cursor.
Strg+Entf Wort rechts löschen.
Strg+Rücktaste Wort links löschen.
Strg+K Zeile löschen.

Umschalt+Eingabe

Fügt eine neue Zeile mit allen Zeichen der
aktuellen Zeile vom Zeilenanfang bis zum
ersten Buchstaben oder bis zur ersten Zahl.
Dies kann z. B. verwendet werden, um
Kommentare in einen Quelltext einzufügen.
Am Ende der aktuellen Zeile mit dem
Inhalt „// ein Text// ” drücken Sie diese
Kurzwahl und eine neue Zeile mit „// ”
wird eingefügt. Die Kommentarzeichen am
Beginn einer neuen Zeile für Kommentare
müssen dann nicht mehr zusätzlich
eingegeben werden.

Umschalt+Pfeil links Markiert Text ein Zeichen nach links.
Umschalt+Pfeil rechts Markiert Text ein Zeichen nach rechts.
Strg+F Suchen.
F3 Weitersuchen.
Umschalt+F3 Frühere suchen.
Strg+H Auswahl suchen.
Strg+Umschalt+H Auswahl rückwärts suchen.
Strg+Umschalt+Pfeil rechts Wort rechts auswählen.
Strg+Umschalt+Pfeil links Wort links auswählen.
Umschalt+Pos 1 Bis zum Zeilenanfang auswählen.
Umschalt+Ende Bis zum Zeilenende auswählen.
Umschalt+Pfeil hoch Bis zur vorherigen Zeile auswählen.
Umschalt+Pfeil runter Bis zur nächsten Zeile auswählen.
Strg+Umschalt+6 Bis zur passenden Klammer auswählen.

Strg+Umschalt+Bild auf Bis zum oberen Rand der Ansicht
auswählen.

10

Das Handbuch zu KatePart

Strg+Umschalt+Bild ab Bis zum unteren Rand der Ansicht
auswählen.

Umschalt+Bild auf Bis zum Seitenanfang auswählen.
Umschalt+Bild ab Bis zum Seitenende auswählen.
Strg+Umschalt+Pos 1 Bis zum Dokumentanfang auswählen.
Strg+Umschalt+Ende Bis zum Dokumentende auswählen.
Strg+Pos 1 Alles auswählen.
Strg+Umschalt+A Auswahl aufheben.
Strg+Umschalt+B Blockauswahlmodus.

Strg+C / Strg+Einfg Kopiert den markierten Text in die
Zwischenablage.

Strg+D Kommentar.
Strg+Umschalt+D Kommentar entfernen.
Strg+G Gehe zu Zeile ...
Strg+I Auswahl einrücken.
Strg+Umschalt+I Einrücken rückgängig.
Strg+J Zeilen zusammenführen.
Strg+P Drucken.
Strg+R Ersetzen.
Strg+S Führt den Befehl Sichern aus.
Strg+Umschalt+S Speichern unter.
Strg+U Großschreibung.
Strg+Umschalt+U Kleinschreibung.
Strg+Alt+U Großschreibung am Wortanfang.

Strg+V / Umschalt+Einfg Inhalt der Zwischenablage in die aktuelle
Zeile einfügen.

Strg+X / Umschalt+Einfg Markierten Text löschen und in die
Zwischenablage kopieren.

Strg+Z Rückgängig.
Strg+Umschalt+Z Wiederherstellen.
Strg+- Schrift verkleinern.
Strg++Strg+= Schrift vergrößern.
Strg+Umschalt+- Oberste Ebene einklappen.
Strg+Umschalt++ Oberste Ebene ausklappen.
Strg+Leertaste Quelltextvervollständigung aufrufen.
F5 Neu ladenReload.
F6 Symbolspalte anzeigen oder ausblenden.
F7 Auf Befehlszeile umschalten.

F9 Markierungen für Quelltextausblendungen
anzeigen/ausblenden.

F10 Dynamischer Zeilenumbruch.
F11 Zeilennummern anzeigen/ausblenden.
Strg+T Zeichen tauschen.
Strg+Umschalt+O Automatische Rechtschreibprüfung.
Strg+Umschalt+V Zu nächstem Eingabemodus wechseln.
Strg+8 Wort oben erneut verwenden.
Strg+9 Wort unten erneut verwenden.
Strg+Alt+# Abkürzung ausschreiben.

11

Das Handbuch zu KatePart

Kapitel 3

Arbeiten mit dem Editor von
KatePart

Anders Lund
Dominik Haumann
GUI-Übersetzung: Thomas Diehl
Deutsche Übersetzung: Matthias Schulz

3.1 Überblick

Der Editor von KatePart ist der Bearbeitungsbereich des KatePart-Fensters. Dieser Editor wird
von Kate und KWrite benutzt und kann von Konqueror für das Anzeigen von Textdateien vom
lokalen Computer oder dem Netzwerk benutzt werden.

Der Editor besteht aus den folgenden Bestandteilen:

Dem Editorbereich
Das ist der Bereich, in den der Text Ihres Dokuments geladen wird.

Die Bildlaufleisten
Die Bildlaufleisten zeigen die Position des sichtbaren Teils des Dokuments und können be-
nutzt werden, um sich im Dokument zu bewegen. Ziehen an den Bildlaufleisten verändert
nicht die Position des Cursors.
Die Bildlaufleisten werden nur bei Bedarf angezeigt.

Die Symbolspalte

Die Symbolspalte ist ein kleines Feld an der linken Seite des Editorfensters, das kleine Sym-
bole neben markierten Zeilen anzeigt.
Sie können Lesezeichen in sichtbaren Zeilen setzen oder entfernen, indem Sie mit der linken
Maustaste neben der Zeile in die Symbolspalte klicken.
Die Anzeige der Symbolspalte wird mit Ansicht→ Symbolspalte anzeigen ein- und aus-
geschaltet.

Die Zeilennummernspalte

Die Zeilennummernspalte zeigt die Zeilennummern aller sichtbaren Zeilen des Doku-
ments.
Die Anzeige der Zeilennummernspalte wird mit Ansicht→Zeilennummern anzeigen ein-
und ausgeschaltet.

12

Das Handbuch zu KatePart

Die Quelltext-Ausblendungsspalte
Die Quelltext-Ausblendungsspalte erlaubt das Ein- und Ausblenden von Blöcken im Quell-
text von Programmiersprachen. Die Festlegung von Anfang und Ende der Blöcke erledigt
KatePart nach den Regeln in der Hervorhebungsdefinition für das aktuelle Dokument.

AUSSERDEM IN DIESEM KAPITEL:

• Navigieren im Text

• Arbeiten mit der Auswahl
• Kopieren und Einfügen von Text

• Suchen und Ersetzen von Text
• Lesezeichen benutzen
• Automatischer Zeilenumbruch
• Automatisches Einrücken benutzen

3.2 Navigieren im Text

Das Bewegen im Text funktioniert in KatePart genauso wie in anderen grafischen Editoren. Sie
können den Cursor mit den Pfeiltasten bewegen und die Tasten Bild auf, Bild ab, Pos 1 und
Ende benutzen. Dies Alles funktioniert auch in Kombination mit den Tasten Strg und den Um-
schalttasten. Die Umschalttasten werden zum Auswählen benutzt, die Strg-Tasten haben ver-
schiedene Bedeutungen bei verschiedenen Tasten:

• Mit den Tasten Pfeil hoch und Pfeil runter wird das Dokument verschoben und nicht der
Cursor.

• In Verbindung mit den Tasten Pfeil links und Pfeil rechts wird mit diesen Tasten der Cursor
wortweise bewegt.

• In Verbindung mit den Tasten Bild auf und Bild ab wird mit diesen Tasten der Cursor an den
oberen oder unteren Bildrand bewegt.

• In Verbindung mit den Tasten Pos 1 und Ende wird mit diesen Tasten der Cursor an den
Anfang oder das Ende des Dokuments bewegt und nicht an den Anfang oder das Ende der
Zeile.

KatePart stellt außerdem einen schnellen Weg bereit, um den Cursor auf eine zugehörige Klam-
mer zu bewegen: Platzieren Sie den Cursor direkt neben eine Klammer und drücken Sie die
Kombination Strg+6. Der Cursor wird zur zugehörigen öffnenden oder schließenden Klammer
bewegt.

Sie können auch Lesezeichen benutzen, um den Cursor schnell auf vorher selbst definierte Posi-
tionen zu bewegen.

3.3 Arbeiten mit der Auswahl

Es gibt grundsätzlich zwei Wege, Text in KatePart zu markieren: mit der Maus oder mit der
Tastatur.
Mit der Maus wird Text markiert, indem Sie mit der linken Maustaste auf den gewünschten An-
fangspunkt klicken, die linke Maustaste gedrückt halten, den Mauszeiger an den gewünschten
Endpunkt ziehen und dort die linke Maustaste loslassen. Der Text wird beim Ziehen markiert.

Doppelklicken auf ein Wort wählt dieses Wort aus.

Dreifachklicken auf eine Zeile wählt diese Zeile aus.
Wenn während des Klickens die Umschalttaste gedrückt ist, wird Text wie folgt ausgewählt:

13

Das Handbuch zu KatePart

• Wenn noch kein Text ausgewählt ist, wird der Text von der Text-Cursor-Position bis zur Maus-
zeigerposition ausgewählt.

• Wenn bereits eine Auswahl existiert, wird von dieser Auswahl diese Auswahl einschließend,
bis zur Mauszeigerposition ausgewählt.

ANMERKUNG
Wenn Sie Text mit der Maus auswählen, wird dieser automatisch in die Zwischenablage kopiert und
kann dann durch Klicken mit der mittleren Maustaste in eine beliebige Stelle eingefügt werden, auch
außerhalb von KatePart in eine andere Anwendung.

Zum Auswählen von Text mit der Tastatur setzen Sie den Cursor auf die gewünschte Anfangspo-
sition, halten die Umschalt-Taste gedrückt und bewegen dann den Cursor mit den Cursor-Tasten
oder mit Bild auf, Bild ab, Pos 1 und Ende an die Endposition. Wenn Sie beim Bewegen des Cur-
sors die Taste Strg gedrückt halten, springt der Cursor wortweise in die gewünschte Richtung.

Sehen Sie auch unter Navigieren im Text weiter oben in diesem Kapitel nach.

Zum Kopieren der aktuellen Auswahl, wählen Sie Bearbeiten→Kopieren im Menü oder benut-
zen Sie den Tastaturkurzbefehl (standardmäßig Strg+C).

Zum Aufheben der aktuellen Auswahl wählen Sie Bearbeiten→ Auswahl aufheben im Menü,
benutzen Sie den Tastaturkurzbefehl (standardmäßig Strg+Umschalt+A) oder Klicken Sie mit
der linken Maustaste irgendwo in das Editorfenster.

3.3.1 Blockauswahl benutzen

Wenn die Blockauswahl eingeschaltet ist, können Sie „senkrechte Auswahlen” im Text machen.
Sie können also rechteckige Abschnitte mitten im Text auswählen, was sehr hilfreich z. B. für das
Arbeiten mit Tabellen ist.
Die Blockauswahl können Sie im Menü mit Bearbeiten→ Blockauswahlmodus oder mit der
Taste Strg+Umschalt+B ein- und ausschalten.

3.3.2 Benutzen von Auswahl überschreiben

Wenn die Option „Auswahl überschreiben“ eingeschaltet ist, dann wird die Auswahl bei der
Eingabe von Text oder beim Einfügen von Text durch den eingegebenen oder eingefügten Text
ersetzt. Ist sie ausgeschaltet, wird der neue Text an der Text-Cursor-Position eingefügt.

Die Option Auswahl überschreiben ist standardmäßig eingeschaltet.

Die Einstellung für diese Option wird auf der Seite Cursor & Auswahl im Einrichtungsdialog
festgelegt.

3.3.3 Benutzen von Durchgehende Auswahl

Wenn diese Option eingeschaltet ist, dann bleibt die Auswahl erhalten, wenn Text eingegeben
wird oder der Cursor bewegt wird.

Die Option Durchgehende Auswahl ist standardmäßig ausgeschaltet.

Die Einstellung für diese Option wird auf der Seite Cursor & Auswahl im Einrichtungsdialog
festgelegt.

WARNUNG
Wenn beide Optionen; Durchgehende Auswahl und Auswahl überschreiben; eingeschaltet sind, wird
die Auswahl ersetzt, wenn in der Auswahl Text eingegeben oder eingefügt wird. Außerdem wird die
Auswahl aufgehoben.

14

Das Handbuch zu KatePart

3.4 Kopieren und Einfügen von Text

Zum Kopieren von Text, wählen Sie diesen aus und benutzen Sie dann Bearbeiten→ Kopieren
aus dem Menü. Sie können auch die Markierung mit der Maus vornehmen und das Kopieren in
die Zwischenablage erfolgt automatisch.

Zum Einfügen von Text aus der Zwischenablage benutzen Sie Bearbeiten→ Einfügen aus dem
Menü.
Sie können auch Text, der mit der Maus ausgewählt wurde, durch Klicken mit der mittleren
Maustaste auf die gewünschte Stelle einfügen.

TIP
Wenn Sie die KDE-Arbeitsumgebung benutzen, dann können Sie früher kopierten Text von allen An-
wendungen in der Zwischenablage durch Klicken auf das KlipperSymbol in der Kontrollleiste; wieder-
finden.

3.5 Suchen und Ersetzen von Text

3.5.1 Die Leisten für Suchen und Ersetzen

KatePart enthält eine Suchleiste für die inkrementelle Suche sowie eine erweiterte Suchleiste, die
Suchen und Ersetzen mit einigen Extra-Optionen unterstützt.

Beide Leisten bieten die folgenden gemeinsamen Optionen:

Suchen
Hier geben Sie den zu suchenden Text ein. Die Auswertung hängt von einigen der nachfol-
gend beschriebenen Optionen ab.

Groß-/Kleinschreibung beachten

Wenn eingeschaltet, wird die Groß-/Kleinschreibung beim Suchen beachtet.

Die erweiterte Leiste für Suchen und Ersetzen bietet zusätzliche Einstellungen an:

Einfacher Text
Findet alle Vorkommen des Suchtextes.

Ganze Wörter
Wenn dies ausgewählt ist, wird die Suche nur dann als gefunden betrachtet, wenn eine
Wortgrenze an beiden Seiten des Suchtextes steht, ein nicht alphanumerisches Zeichen -
Leerzeichen, Zeilenende oder Sonderzeichen.

Escape-Sequenzen

Wenn diese ausgewählt ist, wird der Menüeintrag Hinzufügen in den Kontextmenüs der
Textfelder unten angezeigt, der es Ihnen ermöglicht, dem Suchkriterium Escape-Sequenzen
aus einer vordefinierten Liste hinzuzufügen.

Regulärer Ausdruck

Wenn dieses Feld angekreuzt ist, wird der Suchtext als regulärer Ausdruck ausgewertet. Ein
Menüeintrag Hinzufügen wird in den Kontextmenüs der Textfelder unten angezeigt und
es können reguläre Ausdrücke zum Suchtext von einer vordefinierten Liste hinzugefügt
werden.
Im Abschnitt Reguläre Ausdrücke finden Sie weitere Informationen dazu.

15

Das Handbuch zu KatePart

Suchen nur in markiertem Text
Wenn dieses Feld angekreuzt ist, wird die Suche nur im ausgewählten Text durchgeführt.

Alle suchen
Das Klicken auf diesen Knopf hebt alle Fundstellen im Dokument hervor und zeigt die
Anzahl der Fundstellen in einem kleinen Fenster an.

3.5.2 Suchen von Text

Um einen Text zu suchen, öffnen Sie die inkrementelle Suchleiste, indem Sie Strg+F drücken,
oder aus dem Menü Bearbeiten→ Suche ... auswählen.
Öffnet die Zusatzleiste für inkrementelle Suche im Editor-Fenster. An der linken Seite der Leiste
finden Sie ein Symbol zum Schließen der Suchleiste, daneben befindet sich ein kleines Eingabe-
feld, in das Sie den gewünschten Suchbegriff eingeben können.

Sobald Sie die ersten Zeichen in das Textfeld eingeben, beginnt die Suche. Fundstellen werden
im Text hervorgehoben und die Hintergrundfarbe des Textfeldes wird grün gefärbt. Falls keine
Fundstellen gefunden werden, wird der Hintergrund rot eingefärbt.

Mit den Knöpfen und können Sie zur nächsten bzw. vorherigen Fundstelle im
Dokument springen.

Die im Dokument gefundenen Textstellen bleiben auch dann noch hervorgehoben, wenn Sie die
Suchleiste schließen. Drücken Sie die Taste Esc, um die Hervorhebungen auszuschalten.

Wenn aktiviert ist, wird die Groß- und Kleinschreibung beim Suchen beachtet.

Klicken Sie auf auf der rechten Seite der Suchleiste, um zwischen der inkrementellen und
der erweiterten Suche zu wechseln.
Sie können die letzte Suche wiederholen ohne die Suchleiste erneut zu öffnen. Verwenden Sie
dazu Bearbeiten→Weitersuchen (F3) oder Bearbeiten→ Frühere suchen (Umschalt+F3).

3.5.3 Ersetzen

Um Text zu suchen und ersetzen, öffnen Sie die erweiterte Suche über Bearbeiten→ Ersetzen,
oder drücken Sie den Kurzbefehl Strg+R.

Links oben in der Leiste finden Sie ein Symbol, um die Leiste wieder zu schließen. Daneben
befindet sich ein Kombinationsfeld, in das Sie den Suchbegriff eingeben müssen. Auch zuletzt
verwendete Muster können gewählt werden.

Sie können das Verhalten der Suche mit den Optionen Einfacher Text, Ganze Wörter, Escape-
Sequenzen und Regulärer Ausdruck im Auswahlfeld beeinflussen.

In den Modi Escape-Sequenzen und Regulärer Ausdruck wird der Knopf Hinzufügen ... unten
im Kontextmenü verfügbar, über den Sie vordefinierte Zeichen/Ausdrücke für diese Modi aus
einer Liste als Such- oder Ersetzungsmuster hinzufügen können.

Mit den Knöpfen und können Sie zur nächsten bzw. vorherigen Fundstelle im
Dokument springen.

Geben Sie den Ersatztext in das Eingabefeld Ersetzen ein und drücken Sie anschließend den
Knopf Ersetzen rechts daneben um die markierte Fundstelle entsprechend zu ersetzen, oder
drücken Sie Alle ersetzen, um alle Fundstellen im ganzen Dokument zu ersetzen.

Sie können das Verhalten von Suchen und Ersetzen mit den verschiedenen Einstellungen un-

ten in der Leiste ändern. Mit werden nur Übereinstimmungen gefunden, die in Groß-

/Kleinschreibung Ihrem Suchtext entsprechen. Mit wird der Suchen/Ersetzen-Vorgang

16

Das Handbuch zu KatePart

nur innerhalb des ausgewählten Textes ausgeführt. Die Einstellung Alle hervorheben bewirkt,
dass alle Fundstellen farbig hinterlegt werden und die Anzahl der Fundstellen in einem kleinen
Fenster angezeigt wird. (Auch, wenn noch keine Ersetzung stattgefunden hat. Dies kann nütz-
lich sein, um auf einen Blick zu sehen, an welchen Stellen im Dokument Ersetzungen erfolgen
würden, wenn Sie auf Alle ersetzen klicken.)

Klicken Sie auf rechts in der Suchleiste, um von der erweiterten Suche zur einfachen
Suche zu wechseln.

TIP
Wenn Sie einen Regulären Ausdruck verwenden, um den Suchtext zu finden, können Sie Referenzen
auf den gefundenen Text verwenden, um den gefundenen Text weiterzuverwenden.
Im Abschnitt Reguläre Ausdrücke finden Sie weitere Informationen dazu.

TIP
Sie können die Befehle find, replace und ifind (Weitersuchen) der Befehlszeile benutzen.

3.6 Lesezeichen benutzen

Die Lesezeichenfunktion markiert bestimmte Zeilen, damit Sie diese einfach wiederfinden.

Sie können Lesezeichen auf zwei Arten setzen oder entfernen:

• Setzen Sie den Text-Cursor auf die Zeile und benutzen Sie Lesezeichen→ Lesezeichen setzen
im Menü oder den Tastaturkurzbefehl (Strg+B).

• Klicken auf den Symbolrand neben dieser Zeile.

Gesetzte Lesezeichen werden zum Menü Lesezeichen hinzugefügt. Die einzelnen Lesezeichen
werden zu Menüeinträgen mit der Zeilennummer und den ersten Zeichen der Zeile als Name.
Klicken Sie einfach auf den Menüeintrag und der Text-Cursor springt zur gewünschten Zeile.

Zum schnellen Bewegen des Cursors zwischen Lesezeichen oder zum nächsten/vorherigen Lese-
zeichen, benutzen Sie den Menüpunkt Lesezeichen→Nächstes (Alt+Bild ab) oder Lesezeichen
→Vorheriges (Alt+Bild auf).

3.7 Automatischer Zeilenumbruch

Diese Funktion gestattet die Formatierung von Text in einem sehr einfachen Weg. Es werden
Zeilenvorschübe eingefügt, sodass keine Zeile die vorgegebene Zeilenlänge überschreitet. Text
ohne Leerzeichen, der länger als die Zeilenlänge ist, kann hiermit nicht formatiert werden.

Zum Ein- und Ausschalten diese Funktion dient das Ankreuzfeld Statischer Zeilenumbruch auf
der Seite Editor im Einrichtungsdialog.

Die maximale Zeilenlänge wird im Feld Zeilenumbruch bei auf der Seite Bearbeitung im Ein-
richtungsdialog eingestellt.

Wenn diese Option eingeschaltet ist, funktioniert der automatische Zeilenumbruch wie folgt:

• Wenn Text eingegeben wird, fügt der Editor automatisch Zeilenvorschübe nach dem letzten
Leerzeichen, das die Zeilenlänge noch nicht erreicht, ein.

17

Das Handbuch zu KatePart

• Wenn ein Dokument geladen wird, wird genauso verfahren, sodass im Dokument danach kei-
ne Zeile mehr existiert, die länger als die maximale Zeilenlänge ist, solange in allen Zeilen
Leerzeichen existieren, die dieses erlauben.

ANMERKUNG
Es gibt keine Möglichkeit die Zeilenlänge dokumentenabhängig zu setzen oder ein- und auszuschalten.
Dies wird in einer späteren Version von KatePart möglich werden..

3.8 Automatisches Einrücken benutzen

KateParts Editorkomponente unterstützt verschiedene Varianten des automatischen Einrückens.
Diese sind für verschiedene Textformate gedacht. Sie können im Menü Extras→ Einrückung
aus den vorhandenen Varianten eine auswählen. Der Modul für das automatische Einrücken
stellt auch eine Funktion Extras→ Ausrichten bereit, die die Einrückung der markierten oder
der aktuellen Zeile neu berechnet. Damit können Sie durch Markieren des gesamten Textes und
Nutzung dieser Funktion das Dokument neu ordnen lassen.

Alle Einrückungsmodi benutzen die Einstellungen für Einrückungen für das aktuelle Doku-
ment.

TIP
Sie können alle Einstellungsvariablen, auch die für Einrückungen, setzen, indem Sie Dokumentvaria-
blen und Dateitypen benutzen.

VERFÜGBARE EINRÜCKUNGSMETHODEN

Kein
Diese Einstellung schaltet das automatische Einrücken ab.

Normal
Diese Einstellung rückt die aktuelle Zeile genau so ein, wie die vorhergehende Zeile. Die
ersten Nichtleerzeichen der beiden Zeilen stehen genau untereinander. Sie können diese
Einstellung mit den Befehlen für Einrücken und Einrücken rückgängig kombinieren, um
die Einrückung nach Ihrem persönlichen Geschmack einzustellen.

C-Stil
Eine Einrückung für C und ähnliche Programmiersprachen, wie C++, C#, Java™, JavaScript
usw. Diese Einrückung funktioniert nicht mit Skriptsprachen wie Perl oder PHP.

Haskell
Eine Einrückung speziell für die Skriptsprache Haskell.

LilyPond

Eine Einrückung speziell für die Lilypond-Schreibweise für Musik.

Lisp

Eine Einrückung speziell für die Skriptsprache Lisp und deren Dialekte.

Python

Eine Einrückung speziell für die Skriptsprache Python.

XML-Stil
Eine Einrückung speziell für XML.

18

Das Handbuch zu KatePart

3.9 Kennzeichnung von Änderungen in Textzeilen

Mit der Kennzeichnung von Änderungen in Textzeilen in KatePart können Sie leicht erkennen,
was gerade in einer Datei geändert wurde. In der Voreinstellung werden gespeicherte Änderun-
gen werden mit grünen und noch nicht gespeicherte Änderungen mit orangefarbenen Balken
links im Textfenster angezeigt.

Kennzeichnung von Änderungen in Textzeilen in Aktion

Sie können die verwendeten Farben im Einrichtungsdialog auf der Seite Schriften & Farben
ändern oder diese Funktion auf der Karteikarte Randbereiche auf der Seite Erscheinungsbild
ganz abschalten.

3.10 Die Textgrafik auf der Bildlaufleiste

Die Textgrafik auf der Bildlaufleiste von KatePart zeigt eine Vorschau des Dokuments anstatt der
normalen Bildlaufleiste. Der zurzeit sichtbare Teil des Dokuments ist hervorgehoben.

Die Textgrafik auf der Bildlaufleiste zeigt eine Vorschau von Kates Quelltext.

19

Das Handbuch zu KatePart

Sie können die Textgrafik auf der Bildlaufleiste temporär mit Ansicht→ Textgrafik auf Bild-
laufleiste anzeigen oder dauerhaft auf der Seite Erscheinungsbild im Einrichtungsdialog von
KatePart ein- oder ausschalten.

20

Das Handbuch zu KatePart

Kapitel 4

Die Menüeinträge

4.1 Das Menü Datei

Datei→Neu (Strg+N)

Öffnet ein neues Dokument in einem neuen, unabhängigen Editor-Fenster.

Datei→Öffnen ... (Strg+O)

Hier erscheint ein KDE-Standarddialog zum Datei öffnen. Benutzen Sie das Dateifenster
zum Auswählen der Datei, die Sie bearbeiten wollen und klicken Sie auf OK um die Datei
zu öffnen.

Datei→ Zuletzt geöffnete Dateien

Ist eine Abkürzung für das Öffnen der letzten bearbeiteten Dateien. Dieser Menüpunkt öff-
net eine Liste mit einigen zuletzt bearbeiteten Dateien. Klicken auf eine der Dateien öffnet
diese in KatePart - wenn diese Datei noch am selben Ort gespeichert ist.

Datei→ Speichern (Strg+S)

Speichert die aktuelle Datei. Wenn diese noch nicht gesichert war, wird der Dialog Spei-
chern unter geöffnet, ansonsten wird ohne Nachfrage überschrieben.

Datei→ Speichern unter ... (Strg+Umschalt+S)

Speichert die Datei unter einem neuen Dateinamen. Die Auswahl des Dateinamens erfolgt
durch einen Dialog wie bei Öffnen beschrieben.

Datei→Mit Kodierung speichern unter ...

Speichert ein Dokument unter einem neuen Dateinamen in einer anderen Kodierung.

Datei→Kopie speichern unter

Speichert eine Kopie des Dokument unter einem neuen Dateinamen, die Bearbeitung des
ursprünglichen Dokuments wird fortgesetzt.

Datei→ Erneut laden (F5)
Lädt die aktive Datei erneut vom Speichermedium. Dieser Befehl ist hilfreich, wenn ein
anderes Programm oder ein anderer Prozess die Datei verändert hat, während diese in
KatePart geöffnet war.

Datei→Drucken ... (Strg+P)

Öffnet ein einfaches Dialogfenster, in dem der Benutzer einstellen kann, was, wo und wie
zu drucken ist.

21

Das Handbuch zu KatePart

Datei→Als HTML exportieren ...

Speichert das aktuelle geöffnete Dokument als HTML-Datei, die derzeitige Formatierung
mit Hervorhebungen und Farbeinstellungen wird übernommen.

Datei→ Schließen (Strg+W)

Dieser Befehl schließt die aktive Datei. Wenn Sie Änderungen vorgenommen haben, die
noch nicht gesichert wurden, dann fragt KatePart vor dem Schließen nach, ob diese gesi-
chert werden sollen.

Datei→ Beenden (Strg+Q)

Schließt das Editorfenster. Wenn Sie jedoch mehrere KatePart-Ansichten geöffnet haben,
z. B. durch Neue oder Neues Fenster werden die anderen KatePart-Ansichten nicht ge-
schlossen.

4.2 Das Menü Bearbeiten

Bearbeiten→ Rückgängig (Strg+Z)

Macht den letzten Bearbeitungsbefehl rückgängig

ANMERKUNG
Dieser Befehl kann eine Gruppe von gleichartigen Bearbeitungsbefehlen rückgängig machen,
z. B. die Eingabe von Zeichen.

Bearbeiten→Wiederherstellen (Strg+Umschalt+Z)

Macht das letzte Rückgängig (wenn vorhanden) rückgängig.

Bearbeiten→Ausschneiden (Strg+X)

Schneidet den ausgewählten Text aus und kopiert diesen in die Zwischenablage. Die Zwi-
schenablage funktioniert unsichtbar und ist eine Möglichkeit, Daten zwischen Anwendun-
gen zu übertragen.

Bearbeiten→Kopieren (Strg+C)

Kopiert den ausgewählten Text in die Zwischenablage, sodass dieser an einer anderen Stelle
eingefügt werden kann. Die Zwischenablage funktioniert unsichtbar und ist eine Möglich-
keit, Daten zwischen Anwendungen zu übertragen.

Bearbeiten→ Einfügen (Strg+V)

Fügt den ersten Eintrag in der Zwischenablage an der Cursor-Position ein. Die Zwischen-
ablage funktioniert unsichtbar und ist eine Möglichkeit, Daten zwischen Anwendungen zu
übertragen.

ANMERKUNG
Wenn die Option Auswahl überschreiben eingeschaltet ist, dann überschreibt der eingefügte Text
eine vorhandene Auswahl.

Bearbeiten→Auswahl ausschneiden (Strg+Umschalt+Einfg)

Damit wird der vorher ausgewählte Inhalt der Mausauswahl eingefügt. Markieren Sie Text
mit dem Mauszeiger und fügen sie ihn mit dieser Menüaktion in die aktuell geöffnete Datei
ein.

Bearbeiten→Mit Inhalt der Zwischenablage tauschen

Damit wird der ausgewählten Text mit dem Inhalt der Zwischenablage getauscht.

22

https://en.wikipedia.org/wiki/Clipboard_(computing)#X_Window_System
https://en.wikipedia.org/wiki/Clipboard_(computing)#X_Window_System

Das Handbuch zu KatePart

Bearbeiten→Verlauf der Zwischenablage

In diesem Untermenü wird der Anfang von Texten angezeigt, die zuletzt in die Zwischen-
ablage kopiert wurden. Wählen Sie einen dieser Einträge, um ihn in die aktuell geöffnete
Datei einzufügen.

Bearbeiten→Als HTML kopieren

Kopiert die Auswahl als HTML, formatiert mit den derzeitigen Hervorhebungen und Farb-
schemaeinstellungen.

Bearbeiten→Alle auswählen (Strg+A)

Die gesamte Datei wird ausgewählt. Dies ist besonders zum Kopieren der gesamten Datei
in eine andere Anwendung nützlich.

Bearbeiten→Auswahl aufheben (Strg+Umschalt+A)

Hebt eine vorhandene Auswahl auf.

Bearbeiten→ Blockauswahlmodus (Strg+Umschalt+B)

Schaltet zwischen den beiden Arten des Auswahlmodus um. Wenn der Auswahlmodus
BLOCK eingeschaltet ist, dann wird [BLOCK] in der Statusleiste angezeigt und Sie kön-
nen Sie rechteckige Bereiche wie zum Beispiel die Spalten 5 bis 10 in den Zeilen 9 bis 15
auswählen.

Bearbeiten→Als HTML kopieren

Wechselt zwischen einem normalen und einem VI-ähnlichen modalen Bearbeitungsmo-
dus Im Vi-Modus können viele Vi-Befehle für den Normalen und Visual-Modus benutzt
werden. Außerdem kann für diesen Modus eine zusätzliche Statusleiste angezeigt wer-
den, sie zeigt Befehle an, während sie eingegeben werden, sowie die Ausgabe von VI-
Befehlen und den aktuellen Modus. Das Verhalten dieses Modus kann auf der Karteikarte
VI-Eingabemodusder Seite Bearbeitung des Einrichtungsdialogs von KatePart eingestellt
werden.

Bearbeiten→Überschreibmodus (Einfg)

Schaltet zwischen den beiden Arten des Eingabemodus um. Wenn der Modus Einfügen ist,
dann setzen Sie die eingegebenen Zeichen an der Stelle des Cursors ein. Wenn der Modus
Überschreiben ist, dann ersetzt jedes eingegebene Zeichen ein Zeichen rechts vom Cursor.
Die Statusleiste zeigt den aktuellen Status des Auswahlmodus an, entweder Einfügen oder
Überschreiben

Bearbeiten→ Suchen ... (Strg+F)

Öffnet die Zusatzleiste für inkrementelle Suche im Editor-Fenster. An der linken Seite der
Leiste finden Sie ein Symbol zum Schließen der Suchleiste, daneben befindet sich ein kleines
Eingabefeld, in das Sie den gewünschten Suchbegriff eingeben können.
Sobald Sie Buchstaben in das Suchfeld eingeben, beginnt die Suche. Wenn eine entspre-
chende Textstelle gefunden wird, so wird die Fundstelle hervorgehoben und das Suchfeld
wird hellgrün hinterlegt. Wenn der gesuchte Text nicht gefunden werden kann, wird das
Suchfeld rot hinterlegt.

Mit den Knöpfen und können Sie zur nächsten bzw. vorherigen Fundstelle
im Dokument springen.
Die im Dokument gefundenen Textstellen bleiben auch dann noch hervorgehoben, wenn
Sie die Suchleiste schließen. Drücken Sie die Taste Esc, um die Hervorhebungen auszu-
schalten.

Wenn aktiviert ist, wird die Groß- und Kleinschreibung beim Suchen beachtet.

Klicken Sie auf auf der rechten Seite der Suchleiste, um zwischen der inkrementel-
len und der erweiterten Suche zu wechseln.

23

Das Handbuch zu KatePart

Bearbeiten→ Suchaktionen→Weitersuchen (F3)
Wiederholt die zuletzt ausgeführte Suche, ohne dass die inkrementelle Suchleiste geöffnet
wird und sucht dabei vorwärts von der aktuellen Cursorposition aus.

Bearbeiten→ Suchaktionen→ Frühere suchen (Umschalt+F3)
Wiederholt die zuletzt ausgeführte Suche, ohne dass die inkrementelle Suchleiste geöffnet
wird und sucht dabei rückwärts.

Bearbeiten→ Suchaktionen→Auswahl suchen (Strg+H)

Sucht das nächste Vorkommen des markierten Textes.

Bearbeiten→ Suchaktionen→Auswahl suchen (rückwärts) (Strg+Umschalt+H)

Sucht nach dem vorherigen Vorkommen des markierten Textes.

Bearbeiten→ Ersetzen ... (Strg+R)

Dieser Befehl öffnet den Dialog zum erweiterten Suchen und Ersetzen. Der Knopf oben
links schließt die Leiste, daneben finden Sie das Eingabefeld für den Suchbegriff.
Sie können das Verhalten der Suche mit den Optionen Einfacher Text, Ganze Wörter,
Escape-Sequenzen und Regulärer Ausdruck beeinflussen.
In den Modi Escape-Sequenzen und Regulärer Ausdruck wird der Knopf Hinzufügen ...
unten im Kontextmenü verfügbar, über den Sie vordefinierte Zeichen/Ausdrücke für diese
Modi aus einer Liste als Such- oder Ersetzungsmuster hinzufügen können.

Mit den Knöpfen und können Sie zur nächsten bzw. vorherigen Fundstelle
im Dokument springen.
Geben Sie den Ersatztext in das Eingabefeld Ersetzen ein und drücken Sie anschließend
den Knopf Ersetzen rechts daneben um die markierte Fundstelle entsprechend zu ersetzen,
oder drücken Sie Alle ersetzen, um alle Fundstellen im ganzen Dokument zu ersetzen.
Sie können das Verhalten von Suchen und Ersetzen mit den verschiedenen Einstellun-

gen unten in der Leiste ändern. Mit werden nur Übereinstimmungen gefun-

den, die in Groß-/Kleinschreibung Ihrem Suchtext entsprechen. Mit wird der
Suchen/Ersetzen-Vorgang nur innerhalb des ausgewählten Textes ausgeführt. Die Einstel-
lung Alle hervorheben bewirkt, dass alle Fundstellen farbig hinterlegt werden und die
Anzahl der Fundstellen in einem kleinen Fenster angezeigt wird. (Auch, wenn noch kei-
ne Ersetzung stattgefunden hat. Dies kann nützlich sein, um auf einen Blick zu sehen, an
welchen Stellen im Dokument Ersetzungen erfolgen würden, wenn Sie auf Alle ersetzen
klicken.)

Klicken Sie auf rechts in der Suchleiste, um von der erweiterten Suche zur einfachen
Suche zu wechseln.

Bearbeiten→Gehe zu→ Zur passenden Klammer (Strg+6)

Verschiebt den Cursor zur zugehörigen öffnenden oder schließenden Klammer.

Bearbeiten→Gehe zu→ Bis zur passenden Klammer markieren (Strg+Umschalt+6)

Wählt den Text zwischen der öffnenden oder schließenden Klammer aus.

Bearbeiten→Gehe zu→ Zur vorherigen geänderten Zeile

Zeilen, die seit dem Öffnen der Datei bearbeitet wurden, werden als geänderte Zeilen be-
trachtet. Diese Aktion geht zur vorherigen geänderten Zeile.

Bearbeiten→Gehe zu→ Zur nächsten geänderten Zeile

Zeilen, die seit dem Öffnen der Datei bearbeitet wurden, werden als geänderte Zeilen be-
trachtet. Diese Aktion geht zur nächsten geänderten Zeile.

24

Das Handbuch zu KatePart

Bearbeiten→Gehe zu→Gehe zu Zeile ... (Strg+G)

Öffnet die Leiste „Gehe zu“, die zur Eingabe der Zeilennummer dient, an die der Cursor
springen soll. Die Zeilennummer kann direkt eingegeben oder durch die Pfeile rechts im
Eingabefeld erhöht oder verringert werden. Schließen Sie die Leiste wieder, indem Sie auf
das Symbol auf der linken Seite klicken.

4.3 Das Menü Ansicht

Ansicht→Neues Fenster
Öffnet ein neues Fenster mit dem aktuellen Dokument. Alle Änderungen in einem der bei-
den Fenster werden auch in dem jeweils anderen Fenster erscheinen.

Ansicht→Auf Befehlszeile umschalten (F7)
Zeigt die Befehlszeile von KatePart am unteren Rand des Fensters an. Geben Sie hier help
für die Hilfe und help list für eine Liste der verfügbaren Befehle ein. Weitere Informa-
tionen finden Sie im Kapitel Integrierte Befehlszeile im Editor.

Ansicht→ Schrift vergrößern (Strg++)

Hiermit wird die Schriftgröße der Anzeige vergrößert.

Ansicht→ Schrift verkleinern (Strg+-)

Hiermit wird die Schriftgröße der Anzeige verkleinert.

Ansicht→ Schema
Dieses Menü enthält die verfügbaren Farbschemata. Sie können hier das Schema für die
aktuelle Ansicht umschalten. Um das Standardschema zu verändern, benutzen Sie die Seite
Schriften & Farben des Einrichtungsdialogs.

Ansicht→ Zeilenumbruch→Dynamischer Zeilenumbruch (F10)

Dieser Befehl schaltet den dynamischen Zeilenumbruch ein und aus. Durch den dynami-
schen Zeilenumbruch wird der gesamte Text sichtbar, ohne dass horizontal gerollt werden
muss, da der Inhalt einer Zeile wenn nötig in mehreren Zeilen angezeigt wird.

Ansicht→ Zeilenumbruch→Anzeigen für dynamischen Zeilenumbruch

Wählen Sie hier, ob und wie die Markierungen für den dynamischen Zeilenumbruch ange-
zeigt werden sollen. Dieser Menüpunkt steht nur zur Verfügung, wenn die Option Zeile-
numbruch eingeschaltet ist.

Ansicht→ Zeilenumbruch→Markierung für statischen Zeilenumbruch anzeigen

Wenn eingeschaltet, dann wird eine senkrechte Linie in der Spalte, an der der Zeilenum-
bruch erfolgt, angezeigt. Die Position wird in Einstellungen→ Editor einrichten ... auf
der Karte Bearbeitung festgelegt. Die Markierung wird nur dann angezeigt, wenn Sie eine
Schrift mit fester Buchstabenbreite verwenden.

Ansicht→ Randbereiche→ Symbolspalte anzeigen (F6)

Mit diesem Eintrag wird ein zusätzlicher Rand an der linken Seite des aktiven Rahmens
ein- oder ausgeschaltet, der Symbole anzeigen kann. Auf dem Symbolrand werden die Po-
sitionen von markierten Bereichen im Editor angezeigt.

Ansicht→ Randbereiche→ Zeilennummern anzeigen (F11)

Dieser Punkt schaltet die Anzeige einer Spalte mit den Zeilennummern am linken Rand
des Editorfensters ein und aus.

25

help:/katepart/config-dialog-editor.html#prefcolors

Das Handbuch zu KatePart

Ansicht→ Randbereiche→Markierung für Bildlaufleiste anzeigen
Wenn dieses Feld angekreuzt ist, dann werden im Dokument Markierungen in der senk-
rechten Bildlaufleiste angezeigt. Diese zeigen zum Beispiel Lesezeichen und entsprechen
den Markierungen auf dem Symbolrand.

Ansicht→ Randbereiche→ Textgrafik auf Bildlaufleiste anzeigen
Dies ersetzt die Bildlaufleiste mit einer Grafik des Texts im aktuellen Dokument. Weitere
Informationen über die Textgrafik auf der Bildlaufleiste finden Sie im Abschnitt Abschnitt
3.10.

Ansicht→Quelltextausblendung
Diese Einstellungen sind für die Quelltextausblendung vorhanden:

Markierungen für Quelltextausblendungen anzeigen (F9)
Schaltet die Anzeige der Quelltext-Ausblendungsleiste am linken Rand des Editor-
fensters ein und aus.

Aktuelle Ebene einklappen
Blendet die Ebene aus, die den Cursor enthält.

Aktuelle Ebene ausklappen
Blendet die Ebene ein, die den Cursor enthält.

Oberste Ebene einklappen (Strg+Umschalt+-)
Blendet alle Abschnitte der obersten Ebene im Dokument aus. Klicken Sie auf den
nach rechts zeigenden Pfeil, um all Abschnitte in der obersten Ebene wieder einzu-
blenden.

Oberste Ebene ausklappen (Strg+Umschalt++)
Blendet alle Abschnitte der obersten Ebene im Dokument ein.

Nicht druckbare Leerzeichen anzeigen
Umgebende Rahmen um nicht druckbare Leerzeichen anzeigen/ausblenden.

4.4 Das Menü Lesezeichen

Unterhalb der hier beschriebenen Einträge bekommt das Menü einen zusätzlichen Eintrag für je-
des im aktuellen Dokument existierende Lesezeichen. Der Text des Lesezeicheneintrags besteht
aus den ersten Wörter der durch das Lesezeichen markierten Zeile. Klicken Sie auf einen Lese-
zeicheneintrag, um den Cursor zu der markierten Zeile zu setzen. Der Editor rollt das Fenster,
wenn notwendig.

Lesezeichen→ Lesezeichen setzen (Strg+B)
Setzt oder entfernt ein Lesezeichen in der aktuellen Zeile des aktiven Dokuments. Wenn
das Lesezeichen bereits existiert, wird es entfernt, wenn nicht, wird es gesetzt.

Lesezeichen→Alle Lesezeichen löschen
Dieser Befehl löscht alle Lesezeichen aus der Datei sowie die Lesezeichen-Liste am unteren
Ende dieses Menüs.

Lesezeichen→Vorheriges (Alt+Bild auf)
Dieser Befehl bewegt den Cursor zur ersten Zeile mit Lesezeichen oberhalb der aktuellen
Cursor-Postion. Der Menüeintrag enthält die Zeilennummer und den ersten Teil des Textes
in der Zeile mit dem Lesezeichen. Der Menüeintrag ist nur verfügbar, wenn es oberhalb des
Cursors eine Zeile mit Lesezeichen gibt.

Lesezeichen→Nächstes (Alt+Bild ab)
Dieser Befehl bewegt den Cursor zur ersten Zeile mit Lesezeichen unterhalb der aktuellen
Cursor-Postion. Der Menüeintrag enthält die Zeilennummer und den ersten Teil des Textes
in der Zeile mit dem Lesezeichen. Der Menüeintrag ist nur verfügbar, wenn es unterhalb
des Cursors eine Zeile mit Lesezeichen gibt.

26

help:/katepart/advanced-editing-tools-code-folding.html

Das Handbuch zu KatePart

4.5 Das Menü Extras

Extras→Nur-Lesen-Modus
Setzt das aktuelle Dokument in dem Modus Nur-Lesen. Dies verhindert jegliche Änderun-
gen am Dokument.

Extras→Modus
Wählen Sie hier den Dateityp, den Sie für das aktuelle Dokument verwenden wollen. Die-
se Einstellung überschreibt den unter Einstellungen→ Editor einrichten ... auf der Karte
Datentypen festgelegten Standardtyp für das aktuelle Dokument.

Extras→Hervorhebung

Wählen Sie hier das Hervorhebungsschema, das Sie für das aktuelle Dokument verwenden
wollen. Diese Einstellung überschreibt die unter Einstellungen→ Editor einrichten ... auf
der Karte Hervorhebungen festgelegte Hervorhebungsregel für das aktuelle Dokument.

Extras→ Einrückung

Wählen Sie hier den Einrückungsmodus, den Sie für das aktuelle Dokument verwenden
wollen. Diese Einstellung überschreibt die unter Einstellungen→ Editor einrichten ... auf
der Karte Einrückung festgelegte Einrückungsregel für das aktuelle Dokument.

Extras→Kodierung

Wählen Sie hier die Kodierung, die Sie für das aktuelle Dokument verwenden wollen. Die-
se Einstellung überschreibt die unter Einstellungen→ Editor einrichten ... auf der Seite
Öffnen/Speichern festgelegte Standardkodierung nur für das aktuelle Dokument.

Extras→ Zeilenende
Wählen Sie hier den Zeilenendemodus, den Sie für das aktuelle Dokument verwenden wol-
len. Diese Einstellung überschreibt den unter Einstellungen→ Editor einrichten ... auf der
Karte Öffnen/Speichern festgelegten Zeilenendemodus für das aktuelle Dokument.

Extras→ Byte-Reihenfolge-Markierung (BOM) hinzufügen

Mit dieser Aktion kann ausdrücklich eine Byte-Reihenfolge-Markierung für Dokumen-
te in Unicode-Kodierung hinzugefügt werden. Die Byte-Reihenfolge-Markierung ist ein
Unicode-Zeichen, das die Bytereihenfolge (Big- oder Little-Endian) eines Textes anzeigt.
Weitere Informationen finden Sie im Artikel Byte-Reihenfolge-Markierung.

Extras→ Skripte

Dieses Untermenü enthält eine Liste von allen Aktionen, für die es Skripte gibt. Die Lis-
te kann leicht durch das Schreiben eigener Skripte verändert werden. KatePart kann auf
diesem Weg mit eigenen Werkzeugen erweitert werden.

Extras→ Skripte→Navigation

Extras→ Skripte→ Navigation→ Cursor zur vorherigen passenden Einrückung verschieben
(Alt+Umschalt+Pfeil hoch)

Verschiebt den Cursor zur ersten Zeile oberhalb der aktuellen Cursor-Position,
die die gleiche Einrückungstiefe wie die aktuelle Zeile hat.

Extras→ Skripte→ Navigation→ Cursor zur nächsten passenden Einrückung verschieben
(Alt+Umschalt+Pfeil runter)

Verschiebt den Cursor zur nächsten Zeile unterhalb der aktuellen Cursor-
Position, die die gleiche Einrückungstiefe wie die aktuelle Zeile hat.

Extras→ Skripte→ Bearbeitung

Extras→ Skripte→ Bearbeitung→Markierten Text sortieren
Sortiert den ausgewählten Text oder das gesamte Dokument in aufsteigender
Reihenfolge.

27

http://de.wikipedia.org/wiki/Byte_Order_Mark

Das Handbuch zu KatePart

Extras→ Skripte→ Bearbeitung→ Zeilen nach unten verschieben (Strg+Umschalt+Pfeil run-
ter)

Verschiebt die markierten Zeilen nach unten.
Extras→ Skripte→Bearbeitung→Zeilen nach oben verschieben (Strg+Umschalt+Pfeil hoch)

Verschiebt die markierten Zeilen nach oben.
Extras→Skripte→Bearbeitung→Markierte Zeilen nach unten kopieren (Strg+Alt+Pfeil run-
ter)

Kopiert die markierten Zeilen nach unten.
Extras→ Skripte→ Bearbeitung→ Markierte Zeilen nach oben kopieren (Strg+Alt+Pfeil
hoch)

Kopiert die markierten Zeilen nach oben.
Extras→ Skripte→ Bearbeitung→Markierten Text als URI kodieren

Kodiert den ausgewählten Text, so dass dieser als Teil einer Abfrage in einer
URL benutzt werden kann. Der Text ersetzt dabei die Auswahl in der URL.

Extras→ Skripte→ Bearbeitung→Markierten Text als URI dekodieren
Wenn ein Teil einer Abfrage in einer URL ausgewählt wird, dann wird diese
Funktion die Auswahl durch den originalen Text ersetzen.

Extras→ Skripte→ Emmet
Extras→ Skripte→ Emmet→Abkürzung ausschreiben

Wandelt den ausgewählten Text in ein Paar von öffnenden und schließenden
HTML- oder XML-Tags um. Ist zum Beispiel div ausgewählt, wird es durch
<div></div> ersetzt.

Extras→ Skripte→ Emmet→Umbruch mit Tag
Bricht den ausgewählten Text mit dem auf der Befehlszeile angegebenen Tag
um.

Extras→ Skripte→ Emmet→ Cursor zum passenden Tag verschieben
Befindet sich der Cursor innerhalb eines öffnenden HTML- / XML-Tags, ver-
schiebt diese Aktion ihn zum schließenden Tag. Befindet sich der Cursor in-
nerhalb eines schließenden HTML- / XML-Tags, verschiebt diese Aktion ihn
stattdessen zum öffnenden Tag.

Extras→ Skripte→ Emmet→ Inhalte von HTML/XML-Tag innerhalb wählen
Befindet sich der Cursor innerhalb eines Paares von HTML- / XML-Tags, ändert
diese Aktion die Auswahl zum Inhalt der HTML- / XML-Tags ohne die Tags
selbst.

Extras→ Skripte→ Emmet→ Inhalte von HTML/XML-Tag außerhalb wählen
Befindet sich der Cursor innerhalb eines Paares von HTML- / XML-Tags, ändert
diese Aktion die Auswahl zum Inhalt der HTML- / XML-Tags einschließlich der
Tags selbst.

Extras→ Skripte→ Emmet→Kommentar ein-/ausschalten
Ist die Auswahl kein Kommentar, wird diese Aktion die Auswahl in HTML- /
XML-Kommentaren einschließen, z. B. <!-- markierter Text -->). Handelt es
sich bei der Auswahl um einen Kommentar, werden die Tags stattdessen ent-
fernt.

Extras→ Skripte→ Emmet→ Tag unter Cursor löschen
Befindet sich der Cursor gerade innerhalb eines HTML- / XML-Tags, löscht die-
se Aktion das gesamte Tag.

Extras→ Skripte→ Emmet→ Zahl um 1 verringern
Diese Aktion subtrahiert 1 vom aktuell ausgewählten Text, sofern es sich da-
bei um eine Zahl handelt. Wenn zum Beispiel 5 ausgewählt ist, wird dies zu 4
geändert.

Extras→ Skripte→ Emmet→ Zahl um 10 verringern
Diese Aktion subtrahiert 10 vom aktuell ausgewählten Text, sofern es sich dabei
um eine Zahl handelt. Wenn zum Beispiel 15 ausgewählt ist, wird dies zu 5
geändert.

Extras→ Skripte→ Emmet→ Zahl um 0.1 verringern
Diese Aktion subtrahiert 0.1 vom aktuell ausgewählten Text, sofern es sich dabei
um eine Zahl handelt. Wenn zum Beispiel 4.5 ausgewählt ist, wird dies zu 4.4
geändert.

28

Das Handbuch zu KatePart

Extras→ Skripte→ Emmet→ Zahl um 1 vergrößern
Diese Aktion addiert 1 zum aktuell ausgewählten Text, sofern es sich dabei um
eine Zahl handelt. Wenn zum Beispiel 5 ausgewählt ist, wird dies zu 6 geändert.

Extras→ Skripte→ Emmet→ Zahl um 10 vergrößern
Diese Aktion addiert 10 zum aktuell ausgewählten Text, sofern es sich dabei
um eine Zahl handelt. Wenn zum Beispiel 5 ausgewählt ist, wird dies zu 15
geändert.

Extras→ Skripte→ Emmet→ Zahl um 0.1 vergrößern
Diese Aktion addiert 0.1 zum aktuell ausgewählten Text, sofern es sich dabei
um eine Zahl handelt. Wenn zum Beispiel 4.5 ausgewählt ist, wird dies zu 4.6
geändert.

Extras→Quelltextvervollständigung aufrufen (Strg+Leertaste)

Manueller Aufruf der Quelltextvervollständigung, üblicherweise durch einen mit dieser
Aktion belegten Kurzbefehl.

Extras→Wortvervollständigung

Mit Wort unten erneut verwenden (Strg+9) und Wort oben erneut verwenden
(Strg+8) wird bei der Texteingabe vorwärts und rückwärts von der aktuellen Cursor-
Position nach ähnlichen Wörtern gesucht und der Text vervollständigt. Mit Shell-
Eingabevervollständigung wird ein Feld mit passenden Wörtern angezeigt.

Extras→ Rechtschreibung→Automatische Rechtschreibprüfung (Strg+Umschalt+O)

Ist die Automatische Rechtschreibprüfung aktiviert, werden falsch geschriebene Wörter
bei der Eingabe unterstrichen.

Extras→ Rechtschreibung→ Rechtschreibung ...

Ruft die Rechtschreibprüfung auf - ein Programm zum Finden und Korrigieren von Recht-
schreibfehlern. Klicken auf diesen Menüeintrag startet das Programm zur Rechtschreibprü-
fung und öffnet dessen Dialogfenster, in dem Sie die Ausführung der Rechtschreibprüfung
steuern können. Es gibt vier Textfelder in der Mitte des Dialogfensters mit den zugehörigen
Namen links daneben. Diese sind von oben nach unten:

Unbekanntes Wort:
Hier zeigt das Programm zur Rechtschreibprüfung das aktuell als falsch erkannte
Wort an. Dieses Wort hat das Programm zur Rechtschreibprüfung nicht in seinem
Wörterbuch gefunden. Das Wörterbuch ist eine Datei, die eine Liste der korrekt ge-
schriebenen Wörter enthält, mit denen das Programm zur Rechtschreibprüfung jedes
einzelne Wort des zu prüfenden Textes vergleicht.

Ersetzen durch:
Wenn das Programm zur Rechtschreibprüfung ähnliche Wörter im Wörterbuch fin-
det, wird das erste hier angezeigt. Der Benutzer kann den Vorschlag akzeptieren, eine
eigene Korrektur eingeben oder einen anderen Vorschlag aus dem nächsten Feld aus-
wählen.

Sprache:
Wenn Sie mehrere Wörterbücher installiert haben, können Sie hier das Wörterbuch
oder die Sprache auswählen.

Auf der rechten Seite des Dialogfensters befinden sich sechs Knöpfe, mit denen Sie den
Prüfungsvorgang steuern können. Diese sind im einzelnen:

Zum Wörterbuch hinzufügen
Drücken dieses Knopfes fügt das Wort im Feld Unbekanntes Wort: zum benutzten
Wörterbuch des Rechtschreibprüfungsprogramms hinzu. Das bedeutet, dass dieses
Wort in Zukunft immer als richtig geschrieben erkannt wird.

29

Das Handbuch zu KatePart

Vorschläge
Das Prüfungsprogramm zeigt hier eine Liste mit möglichen Vorschlägen an, die das
gefundene Wort ersetzen können. Klicken auf einen dieser Vorschläge trägt diesen
Vorschlag in das Feld Ersetzen durch: gleich darüber ein.

Ersetzen
Ersetzt das gefundene Wort im Dokument mit dem Wort im Feld Ersetzen durch:.

Alle ersetzen
Dieser Knopf ersetzt nicht nur das aktuell Unbekanntes Wort mit dem Inhalt des Fel-
des Ersetzen durch:, sondern ersetzt automatisch alle Vorkommen des unbekannten
Wortes im Dokument.

Ignorieren
Die Rechtschreibprüfung wird ohne Änderungen am aktuellen Wort fortgesetzt.

Alle ignorieren
Klicken auf diesen Knopf setzt die Rechtschreibprüfung ohne Änderungen unbe-
kannten Wortes fort und ignoriert alle weiteren Vorkommen dieses Wortes im ge-
samten Dokument.

ANMERKUNG
Dies gilt nur für den aktuellen Lauf der Rechtschreibprüfung, wenn später noch einmal die
Rechtschreibung geprüft wird, wird dasselbe Wort wieder als falsch erkannt.

Drei weitere Knöpfe befinden sich im unteren Bereich des Dialogs:

Hilfe
Dies startet das KDE-Hilfesystem mit den Hilfeseiten zu diesem Dialog.

Abgeschlossen
Dieser Knopf beendet die Rechtschreibprüfung und kehrt zum Dokument zurück.

Abbrechen
Dieser Knopf bricht die Rechtschreibprüfung ab. Alle Änderungen werden vor der
Rückkehr zum Dokument zurückgenommen.

Extras→ Rechtschreibung→ Rechtschreibung (ab Cursor) ...
Ruft das Rechtschreibprüfungsprogramm auf - mit dem Unterschied, dass die Prüfung an
der aktuellen Cursor-Position beginnt und nicht am Anfang des Dokuments.

Extras→ Rechtschreibung→ Rechtschreibprüfung für Auswahl ...
Ruft das Rechtschreibprüfungsprogramm auf und prüft den aktuell ausgewählten Text.

Extras→ Rechtschreibung→Wörterbuch auswählen ...
Zeigt ein Auswahlfeld mit allen verfügbaren Wörterbüchern zur Rechtschreibprüfung un-
ten im Editorfenster an. Dadurch kann das Wörterbuch schnell gewechselt werden, z. B.
für die automatische Rechtschreibprüfung von Text in mehreren Sprachen.

Extras→ Einrückungen löschen
Löscht die Einrückung für die aktuelle Auswahl oder für die Zeile, in der sich der Cursor
befindet. Löschen der Einrückungen stellt sicher, dass der gesamte ausgewählte Text nach
dem ausgewählten Einrückungsmodus behandelt wird.

Extras→Ausrichten
Bewirkt, dass die aktuelle Zeile oder aktuelle Auswahl nach den Einstellungen für den
aktuellen Einrückungsmodus und den Einrückungseinstellungen im Dokument neu aus-
gerichtet wird.

Extras→Kommentar (Strg+D)
Dieser Befehl fügt ein Leerzeichen am Zeilenanfang der aktuellen Zeile oder an den Zeilen-
anfängen aller markierten Zeilen ein.

30

Das Handbuch zu KatePart

Extras→Kommentar entfernen (Strg+Umschalt+D)

Dieser Befehl entfernt (wenn vorhanden) ein Leerzeichen vom Zeilenanfang der aktuellen
Zeile oder von den Zeilenanfängen der markierten Zeilen.

Extras→Großschreibung (Strg+U)

Setzt den ausgewählten Text oder den Buchstaben nach dem Cursor in Großbuchstaben.

Extras→Kleinschreibung (Strg+Umschalt+U)

Setzt den ausgewählten Text oder den Buchstaben nach dem Cursor in Kleinbuchstaben.

Extras→Großschreibung am Wortanfang (Strg+Alt+U)

Setzt den ausgewählten Text oder das aktuelle Wort in Großbuchstaben.

Extras→ Zeilen zusammenführen (Strg+J)

Setzt die ausgewählten Zeilen oder die aktuelle und die nächste Zeile zusammen. Ein Leer-
zeichen wird zwischen die Zeileninhalte gesetzt. Noch vorhandene weitere Leerzeichen
werden an den betroffenen Zeilenanfängen oder -enden entfernt.

Extras→ Zeilenumbruch hinzufügen

Das gesamte Dokument wird automatisch mit Zeilenumbrüchen versehen. Das heißt, dass
automatisch eine neue Zeile begonnen wird, wenn die aktuelle Zeile die Länge, die un-
ter Zeilenumbruch bei auf der Karte Bearbeitung in Einstellungen→ Editor einrichten ...
eingestellt wurde, überschritten wird.

4.6 Die Menüs „Einstellungen” und „Hilfe”

KatePart benutzt die bekannten KDE-Menüeinträge Einstellungen und Hilfe. Mehr dazu erfah-
ren Sie in den Abschnitten zu den Menüs Einstellungen und Hilfe in den KDE-Grundlagen.

31

help:/fundamentals/menus.html#menus-settings
help:/fundamentals/menus.html#menus-help

Das Handbuch zu KatePart

Kapitel 5

Weiterentwickelte Editierwerkzeuge

Anders Lund
Dominik Haumann
GUI-Übersetzung: Thomas Diehl
Deutsche Übersetzung: Matthias Schulz

5.1 Kommentar/Kommentar entfernen

Die Befehle Kommentar und Kommentar entfernen im Menü Bearbeiten erlauben das Hinzu-
fügen oder Entfernen von Kommentarzeichen zur Auswahl, oder der aktuellen Textzeile, wenn
kein Text markiert wurde. Diese Funktionen stehen nur zur Verfügung, wenn das benutzte Text-
format Kommentare unterstützt.
Die Regeln für Kommentare werden in den Definitionen für die Syntax festgelegt, wenn Hervor-
hebungen für Syntax nicht benutzt werden, ist die Nutzung der Befehle also nicht möglich.

Einige Formate nutzen Kommentarzeichen für einzelne Zeilen, manche nutzen Kommentarzei-
chen für mehrere Zeilen, manche beides. Wenn Kommentarzeichen für mehrere Zeilen nicht ver-
fügbar sind, kann eine Auswahl nicht auskommentiert werden, deren letzte Zeile nicht vollstän-
dig in die Auswahl einbezogen ist.

Wenn Kommentarzeichen für einzelne Zeilen definiert sind, werden diese bevorzugt eingesetzt,
dies hilft, Probleme mit eingebetteten Kommentaren zu vermeiden.

Wenn Sie Kommentarzeichen entfernen, sollte nur kommentierter Text ausgewählt sein. Wenn
mehrzeilige Kommentare entfernt werden, werden Leerzeichen und Tabulatoren (whitespaces)
außerhalb der Kommentarzeichen ignoriert.

Um Kommentarzeichen einzufügen, wählen Sie im Menü Extras→Kommentar oder das Tasten-
kürzel, hier standardmäßig Strg+D.

Zum Entfernen von Kommentarzeichen wählen Sie im Menü Bearbeiten→Kommentar entfer-
nen oder das Tastenkürzel, hier standardmäßig Strg+Umschalt+D.

5.2 Die integrierte Befehlszeile im Editor

KatePart;s Editorkomponente hat eine interne Befehlszeile, von der aus Sie verschiedene Aktio-
nen von einer minimalen GUI ausführen können. Die Befehlszeile ist ein Texteingabefeld am un-
teren Rand des Editorbereichs. Sie können diese einblenden, indem Sie im Menü Ansicht→Auf
Befehlszeile umschalten wählen oder das Tastenkürzel verwenden (standardmäßig ist F7 ein-
gestellt). Der Editor stellt einige Befehle bereit, die nachfolgend beschrieben werden. Außerdem
können Module weitere Befehle bereitstellen.

32

Das Handbuch zu KatePart

Um einen Befehl auszuführen, geben Sie diesen in die Befehlszeile ein und drücken Sie Eingabe-
taste. Der Befehl gibt aus, ob die Ausführung erfolgreich war, eventuell wird noch eine Mitteilung
ausgegeben. Wenn Sie den Befehl durch Drücken des Tastenkürzels F7 eingegeben haben, wird
die Befehlszeile nach einigen Sekunden ausgeblendet. Um die Mitteilung zu löschen und einen
neuen Befehl einzugeben, drücken Sie das Tastenkürzel F7 noch einmal.

Die Befehlszeile hat ein eingebautes Hilfesystem, das durch den Befehl help aufgerufen wird.
Der Befehl help list zeigt eine Liste aller verfügbaren Befehle an, Hilfe zu einem speziellen Befehl
erhalten Sie durch Eingabe von help befehl.

Die Befehlszeile hat eine eingebauten Verlaufsspeicher, sodass Sie bereits eingegebene Befehle
wiederverwenden können. Um aus den bisherigen Befehlen auszuwählen, benutzen Sie die Tas-
ten Pfeil hoch und Pfeil runter. Wenn bisherige Befehle angezeigt werden, dann ist automatisch
der Teil des Befehls, der die Argumente enthält, markiert, sodass Sie die Argumente sofort über-
schreiben können.

5.2.1 Standardbefehle der Befehlszeile

TYPEN DER ARGUMENTE

BOOLEAN
Dieser Typ wird mit Befehlen benutzt, die Dinge ein- und ausschalten. Zulässige Werte sind
on, off, true, false, 1 oder 0.

INTEGER
Eine ganze Zahl.

STRING
Ein Text, umschlossen von einfachen Anführungszeichen (’) oder von doppelten Anfüh-
rungszeichen (˝), wenn der Text Leerzeichen enthält.

5.2.1.1 Befehle zum Einrichten des Editors

Diese Befehle werden von der Editorkomponente bereitgestellt und gestatten das Einrichten des
Editors für die aktuelle Ansicht des aktuellen Dokuments. Dies ist hilfreich, wenn Sie von den
Standardeinstellungen abweichende Einstellungen, z. B. für Einrückungen benutzen wollen.

set-tab-width INTEGER Weite
Setzt die Tabulatorweite auf Weite.

set-indent-width INTEGER Weite
Setzt die Einrückungsweite auf Weite. Dieser Wert wird nur benutzt, wenn Sie Leerzeichen
zum Einrücken verwenden.

set-word-wrap-column INTEGER Weite
Setzt die Zeilenlänge für den harten Zeilenumbruch auf Weite. Dieser Wert wird nur be-
nutzt, wenn Sie den automatischen Zeilenumbruch benutzen.

set-icon-border BOOLEAN enable
Schaltet die Anzeige des Symbolrandes ein und aus.

set-folding-markers BOOLEAN enable
Schaltet die Markierungen für die Quelltextausblendung ein und aus.

set-line-numbers BOOLEAN enable
Schaltet die Zeilennummerierung ein und aus.

33

Das Handbuch zu KatePart

set-replace-tabs BOOLEAN enable
Wenn eingeschaltet, werden Tabulatorzeichen durch Leerzeichen ersetzt.

set-remove-trailing-space BOOLEAN enable
Wenn eingeschaltet, werden Leerzeichen und andere Zwischenräume am Zeilenanfang ent-
fernt, wenn der Cursor eine Zeile verlässt.

set-show-tabs BOOLEAN enable
Wenn eingeschaltet, werden Tabulatorzeichen und vorangestellte Leerzeichen durch kleine
Punkte dargestellt.

set-show-indent BOOLEAN enable
Wenn eingeschaltet, wird die Einrückung durch eine punktierte Linie dargestellt.

set-indent-spaces BOOLEAN enable
Wenn eingeschaltet, werden Leerzeichen in der mit indent-width eingestellten Anzahl für
jedes Einrückungsniveau benutzt und nicht Tabulatorzeichen.

set-mixed-indent BOOLEAN enable
KatePart benutzt eine Mischung aus Tabulatoren und Leerzeichen zum Einrücken wenn
diese Option eingeschaltet ist. Jedes Einrückungsniveau ist indent-width breit, es werden
möglichst viele Leerzeichen durch Tabulatoren ersetzt.
Wenn dieser Befehl ausgeführt wird, wird außerdem das Einrücken mit Leerzeichen einge-
schaltet und wenn die Einrückungsbreite noch nicht festgelegt ist, dann wird diese auf die
Hälfte von tab-width für dieses Dokument zum Ausführungszeitpunkt gesetzt.

set-word-wrap BOOLEAN enable
Schaltet dynamischen Zeilenumbruch ein oder aus.

set-replace-tabs-save BOOLEAN enable
Wenn eingeschaltet, werden Tabulatorzeichen durch Leerzeichen ersetzt, wenn das Doku-
ment gespeichert wird.

set-remove-trailing-space-save BOOLEAN enable
Wenn eingeschaltet, werden am Anfang der Zeile stehende Leerzeichen oder Tabulatorzei-
chen entfernt, wenn das Dokument gespeichert wird.

set-indent-mode STRING name
Setzt den Einrückungsmodus auf name. Wenn name nicht angegeben ist oder ein ungültiger
Name verwendet wurde, wird der Modus ‚Kein(none)‘ gesetzt. Verfügbare Modi
sind: ’none’, ’normal’, ’cstyle’, ’haskell’, ’lilypond’, ’lisp’, ’python’, ’ruby’ und ’xml’.

set-auto-ident BOOLEAN script
Aktiviert oder deaktiviert die automatische Einrückung.

set-highlight STRING highlight
Setzt den Hervorhebungsmodus für das aktuelle Dokument. Das Argument muss ein gülti-
ger Name für einen Hervorhebungsmodus sein. Die gültigen Modi findet man unter Extras
→Hervorhebungen. Dieser Befehl zeigt eine Liste der möglichen Argumente an, wenn die
ersten Zeichen des Argumentes eingegeben wurden.

reload-scripts

Lädt alle von Kate benutzten JavaScript-Skripte neu, einschließlich der Skripte für die Be-
fehlszeile und Einrückung.

set-mode STRING mode
Setzt das Dateityp-Schema für das aktuelle Dokument.

nn[oremap] STRING original STRING mapped
Weist den Kurzbefehl original dem Kurzbefehl mapped zu.

34

Das Handbuch zu KatePart

5.2.1.2 Befehle zum Bearbeiten

Diese Befehle bearbeiten und verändern das aktuelle Dokument.

indent
Rückt markierten Text oder die aktuelle Zeile ein.

unindent
Hebt die Einrückung für die markierten Zeilen oder die aktuelle Zeile auf.

cleanindent
Setzt die Einrückungen in den markierten Zeilen oder in der aktuellen Zeile in den Grund-
zustand zurück. Hierzu werden die Einstellungen für das aktuelle Dokument verwendet.

comment
Setzt Kommentarzeichen um die markierten Zeilen oder die aktuelle Zeile zu Kommenta-
ren zu machen. Es wird das Kommentarzeichen aus der Hervorhebungsdefinition für das
aktuelle Textformat benutzt.

uncomment
Entfernt Kommentarzeichen von den markierten Zeilen oder der aktuellen Zeile. Es wird
das Kommentarzeichen aus der Hervorhebungsdefinition für das aktuelle Textformat be-
nutzt.

kill-line
Löscht die aktuelle Zeile

replace STRING suchtext STRING replacement

Ersetzt den mit suchtext übereinstimmenden Text durch replacement. Wenn Sie Leer-
zeichen oder Tabulatoren im suchtext verwenden wollen, dann müssen Sie sowohl such
text als auch replacement in einfache oder doppelte Anführungszeichen einschließen.
Wenn Worte nicht in Anführungszeichen eingeschlossen sind, wird das erste Wort als suc
htext und der Rest als replacement benutzt. Wenn replacement nicht angegeben ist,
dann wird jedes Auftreten von suchtext gelöscht.
Sie können bestimmte Einstellungen für die Suche vornehmen, indem Sie einen Doppel-
punkt, gefolgt von einem oder mehreren Buchstaben - die die Einstellungen enthalten -
anfügen. Die Form der Eingabe ist dann: replace:options suchtext replacement.
Folgende Einstellungen sind verfügbar:

b
Rückwärts suchen.

c
Suchen ab Cursor-Position.

e
Suchen nur in markiertem Text.

r
Suche nach einem regulären Ausdruck. Wenn diese Einstellung verwendet wird, kön-
nen Sie \N im Ersetzungstext verwenden, die Anzahl, wie oft der Suchtext gefunden
wurde, wird dann in den Ersetzungstext eingefügt.

s
Suche unter Berücksichtigung von Groß- und Kleinschreibung.

p
Nachfragen vor Ersetzen des nächsten Auftretens.

w
Nur ganze Wörter erfüllen die Suchbedingung.

date STRING format
Setzt das aktuelle Datum und die aktuelle Uhrzeit im durch format eingestellten For-
mat ein. Wenn kein Format eingestellt wurde, wird das Format „yyyy-MM-dd hh:mm:ss”
als Standard benutzt. Die folgenden Übersetzungen werden vorgenommen, wenn format
ausgewertet wird:

35

Das Handbuch zu KatePart

d Tag als Ziffer ohne führende Null (1-31).
dd Tag als Ziffer mit führender Null (01-31).

ddd
Tag als abgekürzter Name in
Landessprache (z. B.
‚Mon‘..‚Son‘).

dddd
Tag als langer Name in Landessprache
(z. B. ‚Montag‘..‚Sonntag‘).

M
Monat als Ziffer ohne führende Null
(1-12).

MM
Monat als Ziffer mit führender Null
(01-12).

MMMM
Der lange, lokale Monatsname (z. B.
„Januar“..„Dezember“).

MMM
Monat als abgekürzter Name in
Landessprache
(z. B.‚Jan‘..‚Dez‘).

yy Das Jahr als zweistellige Ziffer (00-99).

yyyy
Das Jahr als vierstellige Ziffer
(1752-8000).

h
Stunde ohne führende Null (0..23 oder
1..12 wenn AM/PM verwendet wird).

hh
Stunde mit führender Null (00..23 oder
00..12 wenn AM/PM verwendet wird).

m Minute ohne führende Null (0.59).
mm Minute mit führender Null (00..59).
s Sekunde ohne führende Null (0.59).
ss Sekunde mit führender Null (00.59).

z
Millisekunden ohne führende Null
(0..999).

zzz
Millisekunden mit führender Null
(000..999).

AP
Benutzt die Anzeige mit AM/PM. AP
wird entweder von „AM” oder „PM”
ersetzt.

ap
Benutzt die Anzeige mit am/pm. ap
wird durch „am” oder „pm” ersetzt.

char STRING identifier
Dieser Befehl erlaubt das Einsetzen von Zeichen in Text durch die Eingabe Ihrer Kodierung
in dezimaler, oktaler oder hexadezimaler Form. Rufen Sie die Befehlszeile auf, schreiben
Sie in das Eingabefeld das Wort char:[nummer] und klicken Sie auf OK.

Beispiel 5.1 Beispiele zu char
Eingabe: char:234
Ausgabe: ê
Eingabe: char:0x1234
Ausgabe: jué

s///[ig] %s///[ig]

Dieser Befehl führt Suchen/Ersetzen auf der aktuellen Zeile oder in der gesamten Datei aus
(%s///).

36

Das Handbuch zu KatePart

Kurz gesagt, der Text wird nach dem Suchtext, dem regulären Ausdruck zwischen dem ers-
ten und dem zweiten Schrägstrich, durchsucht und wenn der Suchtext gefunden wurde,
wird der übereinstimmende Teil des Textes durch den Ausdruck zwischen dem zweiten
und dem hinterem Schrägstrich ersetzt. Runde Klammern im Suchtext erzeugen Referenzen,
die dann später dazu benutzt werden, die Zeichenfolgen wiederzuverwenden. Diese Re-
ferenzen werden wie folgt aufgerufen: \1 für die erste Referenz, \2 für die zweite und so
weiter.
Um nach einem Sonderzeichen, (oder), zu suchen, müssen Sie dieses durch einen Rück-
wärtsschrägstrich kenntlich machen. \(\)
Wenn Sie ein i an das Ende des Ausdruckes anhängen, wird beim Suchen nicht nach Groß-
und Kleinbuchstaben unterschieden. Das Anhängen eines g legt fest, dass alle Vorkommen
des Suchtextes ersetzt werden, normalerweise wird nur das erste Vorkommen ersetzt.

Beispiel 5.2 Ersetzen von Text in der aktuellen Zeile
Ihr lieber Computer verweigerte gerade die Ausführung eines Programms, mit der Bemerkung,
dass die Klasse myClass, die in der Zeile 3902 im Quelltext verwendet wird, nicht definiert ist.
˝Natürlich!˝, denken Sie, das muss MyClass heißen. Sie gehen zur Zeile 3092, rufen den Bearbei-
tungsbefehl auf, geben s/myclass/MyClass/i ein und klicken auf OK, Speichern die Datei
und kompilieren – ohne Fehlermeldungen.

Beispiel 5.3 Ersetzen von Text in der gesamten Datei
Stellen Sie sich vor, Sie hätten eine Datei, in der eine „Miss Jensen” einige Male erwähnt wird.
Jemand kommt zur Tür herein und erzählt Ihnen, dass sie gerade „Mr Jones” geheiratet hat. Sie
stehen nun vor der Aufgabe, jedes „Miss Jensen” durch „Ms Jones” zu ersetzen.
Rufen Sie die Befehlszeile auf, geben Sie %s/Miss Jensen/Ms Jones/ ein drücken Sie die
Eingabetaste - fertig.

37

Das Handbuch zu KatePart

Beispiel 5.4 Ein etwas komplizierteres Beispiel
Dieses Beispiel benutzt Referenzen und auch eine Wortklasse (wenn Sie nicht wissen, was das be-
deutet, sehen Sie bitte in der unten angegebenen Dokumentation nach).
Stellen Sie sich vor, Sie hätten folgende Zeile:

void MyClass::DoStringOps(String &foo, String &bar, String *p, int & ←↩
a, int &b)

Sie erkennen, dass dies nicht gut lesbar ist und entscheiden, das Schlüsselwort const für al-
le „address of”-Argumente zu verwenden (diese sind durch den vorangestellten Operator &
gekennzeichnet). Außerdem wollen Sie die Zwischenräume vereinfachen, sodass nur noch ein
Leerzeichen zwischen den Wörtern steht.
Rufen Sie den Bearbeitungsbefehl auf, geben Sie s/\s+(\w+)\s+(&)/ const \1 \2/g und
klicken Sie auf OK. Das g am Ende des regulären Ausdrucks bewirkt, dass der reguläre Ausdruck
jedesmal neu kompiliert wird, um die Referenz zu sichern.
Ausgabe: void MyClass::DoStringOps(const String &foo, const String &bar, String *p
, const int &a, const int &b)
Erledigt! Was passierte hier? Es wurde nach Leerzeichen (\s+) gefolgt von einem oder mehre-
ren alphanumerischen Zeichen (\w+) gefolgt von einem oder mehreren Leerzeichen (\s+) gefolgt
von einem Ampersand (&) gesucht und dabei der alphanumerische Abschnitt und das Amper-
sand (&) gesichert, um diese beim Ersetzen wiederzuverwenden. Dann haben wir den überein-
stimmenden Teil der Zeile ersetzt durch ein Leerzeichen gefolgt von „const” gefolgt von einem
Leerzeichen gefolgt vom gesicherten Abschnitt (\1) gefolgt von einem Leerzeichen gefolgt vom
gesicherten Ampersand (&) (\2).
In einigen Fällen war der gesicherte Abschnitt „String”, in einigen „int”, sodass das Benutzen
der Wortklasse \w und des +-Zeichens zum Angeben von „ein oder mehrere” sich als wertvoll
erwies.

sort
Sortiert den markierten Text oder das ganze Dokument.

natsort
Sortiert den markierten Text oder das ganze Dokument in natürlicher Reihenfolge.

Beispiel 5.5 sort vs. natsort
sort(a10, a1, a2) ergibt a1, a10, a2
natsort(a10, a1, a2) ergibt a1, a2, a10

moveLinesDown
Verschiebt die markierten Zeilen nach unten.

moveLinesUp

Verschiebt die markierten Zeilen nach oben.

uniq

Entfernt doppelte Zeilen aus dem markierten Text oder dem gesamten Dokument.

rtrim
Entfernt Leerzeichen am Zeilenende aus dem markierten Text oder dem gesamten Doku-
ment.

ltrim
Entfernt Leerzeichen am Zeilenanfang aus dem markierten Text oder dem gesamten Doku-
ment.

38

Das Handbuch zu KatePart

join [STRING separator]

Verbindet die ausgewählten Zeilen oder das gesamte Dokument. Wahlweise kann ein Pa-
rameter mit der Definition des Trennzeichens angegeben werden, zum Beispiel join ’,
’

rmblank
Entfernt alle Leerzeichen aus dem markierten Text oder dem gesamten Dokument.

alignon

Dieser Befehl richtet Zeilen in der Textauswahl oder dem gesamten Dokument an einer
Spalte aus, welche durch einen regulären Ausdruck als Argument angegeben wird.
Wenn Sie ein leeres Muster angeben, wird standardmäßig am ersten nicht-leeren Zeichen
ausgerichtet.

Wenn das Muster einen Treffer hat, wird an dessen Übereinstimmung ausgerichtet.
Beispiele:
alignon - fügt Leerzeichen vor dem ersten „-“ in jeder Zeile ein, um diese an derselben
Spalte auszurichten.
alignon :\\s+(.) fügt Leerzeichen vor dem ersten nicht leeren Zeichen ein, das auf
einen Doppelpunkt folgt, um die Zeilen an dessen Spalte auszurichten.

unwrap

Entfernt den Zeilenumbruch aus dem markierten Text oder dem gesamten Dokument.

each STRING script

Mit einer JavaScript-Funktion als Argument wird diese Funktion für die Liste der ausge-
wählten Zeilen aufgerufen und die Zeilen mit dem Rückgabewert der Funktion ersetzt

Beispiel 5.6 Verbindet die ausgewählten Zeilen
each ’function(lines){return lines.join(˝, ˝)}’
Oder noch kürzer:
each ’lines.join(˝, ˝)’

filter STRING script

Mit einer JavaScript-Funktion als Argument wird diese Funktion für die ausgewählten Zei-
len aufgerufen und die Zeilen werden entfernt, bei denen die Funktion den Wert Falsch
zurück gibt

Beispiel 5.7 Entfernt leere Zeilen.
filter ’function(1){return 1.length > 0;}’
Oder noch kürzer:
filter ’line.length > 0’

map STRING script

Mit einer JavaScript-Funktion als Argument wird diese Funktion für die Liste der ausge-
wählten Zeilen aufgerufen und die Zeile mit dem Rückgabewert der Funktion ersetzt

Beispiel 5.8 Entfernt leere Zeilen.
map ’function(line){return line.replace(/ˆs+/,˝˝);}’
Oder noch kürzer:
map ’line.replace(/ˆs+/,˝˝)’

duplicateLinesUp

Verdoppelt die ausgewählten Zeilen oberhalb der aktuellen Auswahl.

39

Das Handbuch zu KatePart

duplicateLinesDown

Verdoppelt die ausgewählten Zeilen unterhalb der aktuellen Auswahl.

5.2.1.3 Befehle zur Bewegung im Dokument

goto INT line
Dieser Befehl setzt den Cursor auf die angegebene Zeile.

grep STRING pattern

Sucht im Dokument nach dem regulären Ausdruck muster. Weitere Informationen finden
Sie unter Anhang A.

find STRING pattern

Dieser Befehl setzt den Cursor auf das erste Auftreten des Suchtext entsprechend der Ein-
stellungen. Weitere Fundstellen werden durch Bearbeiten→Weitersuchen oder Drücken
des Tastenkürzels (Standard ist F3) gefunden.
Der Befehl find kann durch das Anhängen eines Doppelpunktes und eines oder mehrerer
Buchstaben in der Form find:options pattern ergänzt werden. Die folgenden Einstel-
lungen sind verfügbar:

b
Rückwärts suchen.

c
Suchen ab Cursor-Position.

e
Suchen nur in markiertem Text.

r
Suche nach einem regulären Ausdruck. Wenn diese Einstellung verwendet wird, kön-
nen Sie \N im Ersetzungstext verwenden, die Anzahl, wie oft der Suchtext gefunden
wurde, wird dann in den Ersetzungstext eingefügt.

s
Suche unter Berücksichtigung von Groß- und Kleinschreibung.

w
Nur ganze Wörter erfüllen die Suchbedingung.

ifind STRING pattern

Dieser Befehl sucht „schon beim Eingeben” nach dem Suchtext. Sie können auch hier die
Suche durch Anhängen eines Doppelpunktes und eines oder mehrerer Buchstaben in ihrem
Verhalten anpassen. Die Eingabe muss dann in der Form: ifind:options suchtext
erfolgen. Die folgenden Einstellungen stehen zur Verfügung:

b
Rückwärts suchen.

r
Suche nach einem regulären Ausdruck.

s
Suche unter Berücksichtigung von Groß- und Kleinschreibung.

c
Suchen ab Cursor-Position.

40

Das Handbuch zu KatePart

5.2.1.4 Befehle für die grundlegenden Editor-Funktionen. Diese hängen von der Anwen-
dung ab, in der die Editorkomponente verwendet wird.

w
Speichert das aktuelle Dokument.

wa
Speichert alle gerade geöffneten Dateien.

q

Schließt das aktuelle Dokument.
qa

Schließt alle geöffneten Dokumente.

wq

Speichert und schließt das aktuelle Dokument.

wqa

Speichert und schließt alle geöffneten Dokumente.

x
Speichert und schließt das aktuelle Dokument nur, wenn es geändert wurde.

x
Speichert und schließt alle geöffneten Dokument nur, wenn sie geändert wurden.

bp

Geht zum vorherigen Dokument in der Dokumentliste.

bn
Geht zum nächsten Dokument in der Dokumentliste.

new

Öffnet ein neues Dokument in waagerecht geteilter Ansicht.

vnew

Öffnet ein neues Dokument in senkrecht geteilter Ansicht.

e
Lädt das aktuelle Dokument erneut, wenn es auf dem Datenträger geändert wurde.

enew
Bearbeitet ein neues Dokument.

print

Öffnet den Druckdialog, um das aktuelle Dokument zu drucken.

5.3 Benutzen von Quelltextausblendung

Quelltextausblendung dient zum Verstecken von Teilen des Dokuments im Editor, sodass große
Dokumente einfacher zu lesen sind. In KatePart werden die ausblendbaren Abschnitte unter Zu-
grundelegung der Hervorhebungsregeln ermittelt und demzufolge sind Quelltextausblendun-
gen nur in manchen Formaten verfügbar. Dies sind besonders Quelltexte in Programmierspra-
chen, XML und Ähnliches. Die meisten Hervorhebungsregeln, die Quelltextausblendungen be-
reitstellen, lassen auch die manuelle Festlegung von ausblendbaren Abschnitten zu, üblicherwei-
se werden dazu die Schlüsselwörter BEGIN und END benutzt.

41

Das Handbuch zu KatePart

Um die Funktion Quelltextausblendung zu benutzen, wählen Sie im Menü Ansicht→
Markierungen für Quelltextausblendungen anzeigen. Es wird dann am linken Rand des Edi-
torfensters ein grauer Rand eingeblendet, der eine grafische Darstellung der ausblendbaren Ab-
schnitte enthält. In diesen Markierungen sind Symbole enthalten, die die möglichen Operationen
anzeigen. Wenn zum Beispiel ein Dreieck mit der Spitze nach unten angezeigt wird, kann die-
ser Abschnitt ausgeblendet werden, ein nach rechts zeigendes Dreieck dagegen zeigt, dass hier
ein Abschnitt ausgeblendet wurde. Dieser kann durch Klicken auf das Dreiecksymbol wieder
eingeblendet werden.

Drei Befehle sind im Menü enthalten, die die Quelltextausblendung beeinflussen, sehen Sie in
der Menü-Dokumentation für weitere Einzelheiten nach.

Der Status der Quelltextausblendung wird gespeichert, wenn eine Datei geschlossen wird. Öff-
nen Sie diese Datei erneut, wird sie mit den ausgeblendeten Ebenen wie beim Schließen ange-
zeigt. Auch beim erneuten Laden einer Datei bleibt die eingestellte Quelltextausblendung erhal-
ten.
Wenn Sie keine Quelltextausblendung benutzen wollen, dann können Sie die Funktion Markie-
rung für Quelltextausblendungen anzeigen auf der Seite Erscheinungsbild in den Einstellungen
komplett ausschalten.

42

Das Handbuch zu KatePart

Kapitel 6

KatePart erweitern

T.C. Hollingsworth
GUI-Übersetzung: Thomas Diehl
Deutsche Übersetzung: Matthias Schulz

6.1 Einführung

Wie jeder gute Texteditor bietet auch KatePart verschiedene Möglichkeiten für Erweiterungen.
Sie können Skripte in JavaScript schreiben, um Funktionen zu erweitern. Wenn Sie dann KatePart
erweitert haben, laden wir Sie ein, Ihre Verbesserungen mit der ganzen Welt zu teilen.

6.2 Arbeiten mit Syntaxhervorhebungen

6.2.1 Überblick

Syntaxhervorhebungen bewirken, dass der Editor den Text automatisch in verschiedenen Far-
ben und Schriftstilen anzeigt, abhängig von der Funktion der Zeichenfolge in Beziehung zum
Zweck des Dokuments. Zum Beispiel können in Quelltext Kontrollbefehle fett dargestellt wer-
den, während Daten und Kommentare andere Farben als der Rest des Textes bekommen. Dies
verbessert die Lesbarkeit des Textes erheblich und verhilft damit dem Autor zu mehr Effizienz
und Produktivität.

Eine C++-Funktion, mit Hervorhebungen angezeigt.

43

https://kate-editor.org/join-us/

Das Handbuch zu KatePart

Dieselbe C++-Funktion, ohne Hervorhebungen.

Welche der beiden ist einfacher zu lesen?
KatePart enthält ein flexibles, konfigurierbares und leistungsfähiges System für Syntaxhervorhe-
bungen, und die Standarddistribution enthält bereits Definitionen für eine Anzahl von Program-
miersprachen, Markup- und Skriptsprachen sowie andere Textformaten. Außerdem können Sie
eigene Definitionen in einfachen XML-Dateien erstellen.

KatePart erkennt auf Basis des MIME-Typs, der Dateiendung oder des Inhalts des Dokuments
bereits beim Öffnen des Dokuments automatisch die richtigen Regeln für die Syntaxhervorhe-
bungen. Wenn die automatische Auswahl nicht die richtigen Regeln ausgewählt hat, können Sie
dies manuell korrigieren (Extras→Hervorhebung).

Die Schriftstile und Farben, die von jeder Syntaxhervorhebungsdefinition benutzt werden, kön-
nen auf der Seite Hervorhebungs-Schriftarten des Einrichtungsdialogs festgelegt werden, die
Einrichtung der MIME-Typen und Dateierweiterung, auf die diese angewendet werden, ist auf
der Seite Dateitypen möglich.

ANMERKUNG
Syntaxhervorhebungen sind dazu gedacht die Lesbarkeit von Text zu verbessern, aber nicht dazu ge-
eignet die Richtigkeit des Quelltextes zu überprüfen. Die Erstellung der Regeln für die Hervorhebungen
ist kompliziert, abhängig davon, welches Format Sie benutzen. In manchen Fällen sind die Autoren der
Regeln stolz, wenn 98 % des Textes korrekt hervorgehoben werden, meistens jedoch sehen Sie die
nicht korrekten 2 % nur bei seltenen Konstruktionen.

6.2.2 Das KatePart Syntaxhervorhebungssystem

Dieser Abschnitt behandelt die Mechanismen des KatePart Syntax-Hervorhebungssystems ge-
nauer. Wenn Sie selbst Definitionen erstellen oder verändern möchten, sollten Sie diesen genau
lesen.

6.2.2.1 Wie es funktioniert

Immer, wenn Sie ein Dokument öffnen, ist eines der ersten Dinge, die KatePart macht, festzu-
stellen, welche Syntaxdefinition für dieses Dokument benutzt werden soll. Während Sie den Text
lesen und neuen Text eingeben, analysiert das Syntaxhervorhebungssystem den Text anhand der
Regeln in der Syntaxdefinition und markiert ihn dementsprechend.

Wenn Sie Text eingeben, wird der neue Text sofort analysiert und markiert.

Die Syntaxdefinitionen, die in XML benutzt werden, sind XML-Dateien, die Folgendes enthalten

• Regeln für das Erkennen von Text, organisiert in Kontextblöcken

• Listen mit Schlüsselworten

• Stildefinitionen

44

Das Handbuch zu KatePart

Beim Analysieren von Text werden die Erkennungsregeln in der Reihenfolge, in der sie defi-
niert wurden, überprüft und wenn der Anfang des aktuellen Textes mit einer Definition über-
einstimmt, wird der zugehörige Kontext benutzt. Der nächste Startpunkt wird nach dem Ende
des erkannten Bereichs gesetzt und von dort aus wird eine neue Schleife für die Regeln mit dem
Kontext der gerade gefundenen Regel gestartet.

6.2.2.2 Regeln

Die Erkennungsregeln sind das Herzstück des Syntaxhervorhebungssystems. Eine Regel besteht
aus einer Zeichenfolge, einem Zeichen oder einem regulären Ausdruck. Mit diesen wird der zu
analysierende Text verglichen. Sie enthalten Informationen, welche Darstellung für das erkannte
Stück Text verwendet werden soll und ob entweder zu einem explizit angegebenem Kontext oder
zum vorher vom Text benutzten Kontext gewechselt werden soll.

Die Regeln sind in Kontextgruppen organisiert. Eine Kontextgruppe wird für die grundlegen-
den Textkonzepte innerhalb des Formates benutzt, z. B. für Textteile in Anführungszeichen oder
Kommentarblöcke in Programmquelltext. Dadurch wird sichergestellt, dass sich das Syntaxher-
vorhebungssystem nicht unnötig durch alle Regeln hindurch arbeiten muss und dass einige Zei-
chenfolgen im Text abhängig vom aktuellen Kontext unterschiedlich behandelt werden können.

Kontexte können dynamisch generiert werden, um das Benutzen von Daten in Regeln zu erlau-
ben, die nur auf diese Instanz zutreffen.

6.2.2.3 Kontextstile und Schlüsselwörter

In einigen Programmiersprachen werden Ganze Zahlen durch den Compiler (das Programm, das
den Quelltext in ein ausführbares Programm übersetzt) anders behandelt als Gleitkommazahlen,
und es gibt Zeichen, die eine spezielle Bedeutung innerhalb einer in Anführungszeichen einge-
schlossenen Zeichenfolge haben. In solchen Fällen ist es sinnvoll, diese unterschiedlich darzu-
stellen, sodass sie beim Lesen einfach vom umgebenden Text zu unterscheiden sind. Auch wenn
diese keine speziellen Kontexte repräsentieren, können sie durch das Syntaxhervorhebungssys-
tem erkannt und anders dargestellt werden.

Eine Syntaxdefinition kann so viele verschiedene Stile beinhalten, wie für das Format notwendig
sind.
In vielen Formaten gibt es Listen mit Wörtern, die einem speziellen Konzept zugehörig sind. In
Programmiersprachen sind z. B. die Kontrollanweisungen ein Konzept, die Datentypen ein ande-
res und die eingebauten Funktionen ein drittes. Das Syntaxhervorhebungssystem von KatePart
kann benutzt werden, um solche Wörter anhand der Listen zu finden und zur Hervorhebung der
Konzepte im Text zu markieren.

6.2.2.4 Standardstile

Wenn Sie eine C++-Quelltextdatei, eine Java™-Quelltextdatei und eine HTML-Datei in KatePart
öffnen, sehen Sie dass auch in unterschiedlichen Formaten und damit unterschiedlichen Worten,
die spezielle Behandlung bekommen, die benutzten Farben dieselben sind. Der Grund dafür ist,
dass KatePart vordefinierte Standardstile benutzt, die von den individuellen Syntaxdefinitionen
verwendet werden.
Dadurch wird die Erkennung von ähnlichen Konzepten in verschiedenen Textformaten einfach.
Kommentare z. B. gibt es in fast allen Programmiersprachen, Skripten und Markup-Sprachen;
diese werden in allen Sprachen gleich dargestellt, sodass Sie sich auf die Arbeit konzentrieren
können und nicht über den Zweck einzelner Einträge nachdenken müssen.

45

Das Handbuch zu KatePart

TIP
Alle Stile in einer Syntaxdefinition nutzen einen der Standardstile. Einige wenige Syntaxdefinitionen
nutzen mehr Stile als Standardstile vorhanden sind. Wenn Sie ein Format sehr oft benutzen, kann
es die Arbeit wert sein, den Einrichtungsdialog zu starten und nachzusehen, ob mehrere Konzepte
dieselben Stile benutzen. In der Programmiersprache Perl z. B. gibt es zwei Typen von Zeichenfol-
gen, sodass Sie die Hervorhebung durch eine etwas andere Darstellung des zweiten Typs verbessern
können. Alle verfügbaren Standardstile, werden weiter unten erklärt.

6.2.3 Die Hervorhebungsdefinition für das XML Format

6.2.3.1 Überblick

KatePart verwendet die Syntaxhervorhebungs-Bibliothek von KDE Frameworks. Die in Kate-
Part enthaltenen Standard-XML-Hervorhebungsdateien werden in die Syntaxhervorhebungs-
Bibliothek einkompiliert.

Dieser Abschnitt ist ein Überblick über die Hervorhebungsdefinition für das XML-Format.. Es
beschreibt die Hauptbestandteile, deren Bedeutung und Verwendung. Im nächsten Kapitel wer-
den die Erkennungsregeln detailliert beschrieben.

Die formale Definition XSD finden Sie im Syntax-Highlighting-Repository in der Datei language
.xsd.
Eigene .xml-Dateien mit Definitionen zur Syntaxhervorhebung sind im Ordner org.kde.syntax
-highlighting/syntax/ in Ihrem persönlichen Ordner. Den Pfad zu diesem Ordner finden Sie
mit qtpaths--paths GenericDataLocation. Normalerweise sind dies $HOME /.local/sh
are/ und /usr/share/ .
Bei Flatpak- und Snap-Paketen funktioniert der obige Ordner nicht, da der Speicherort der
Daten für jede Anwendung unterschiedlich ist. In einer Flatpak-Anwendung ist der Speicher-
ort der benutzerdefinierten XML-Dateien normalerweise $HOME /.var/app/ flatpak-package
-name /data/org.kde.syntax-highlighting/syntax/ und in einer Snap-Anwendung ist die-
ser Ort $HOME /snap/ snap-package-name /current/.local/share/org.kde.syntax-highlight
ing/syntax/ .

Auf Windows®-Systemen finden Sie diese Dateien unter %USERPROFILE%\AppData\Local\org.kd
e.syntax-highlighting\syntax. Dabei ist %USERPROFILE% normalerweise C:\Users\user.
Zusammenfassend lässt sich sagen, dass bei den meisten Einrichtungen der Ordner der benut-
zerdefinierten XML-Dateien wie folgt aussieht

Für lokale Benutzer $HOME /.local/share/org.kde.syntax-hig
hlighting/syntax/

Für alle Benutzer /usr/share/org.kde.syntax-highlightin
g/syntax/

Für Flatpak-Pakete
$HOME /.var/app/ flatpak-package-name
/data/org.kde.syntax-highlighting/synt
ax/

Für Snap-Pakete
$HOME /snap/ snap-package-name
/current/.local/share/org.kde.syntax-h
ighlighting/syntax/

Unter Windows® %USERPROFILE%\AppData\Local\org.kde.sy
ntax-highlighting\syntax

Wenn mehrere Dateien für dieselbe Sprache existieren, wird die Datei mit der höchsten versio
n-Attribut im language-Element geladen.

HAUPTBESTANDTEILE DER KATEPART-HERVORHEBUNGSDEFINITIONEN

46

https://commits.kde.org/syntax-highlighting?path=data/schema

Das Handbuch zu KatePart

Eine Hervorhebungsdefinitionsdatei enthält einen Kopf mit der XML-Version:

<?xml version ="1.0" encoding="UTF -8"?>

Die Wurzel der Definitionsdatei ist das Element language. Verfügbare Eigenschaften sind:

Notwendige Eigenschaften:
name setzt den Namen der Sprache. Dieser erscheint nachher in Menüs und in Dialogen.
Die Eigenschaft section definiert die Kategorie.
extensions definiert die Erweiterungen für Dateinamen wie z. B. ˝*.cpp;*.h˝.

version gibt die aktuelle Revision der Definitionsdatei als ganze Zahl an. Bei jeder Ände-
rung einer Hervorhebungs-Datei sollte diese Zahl vergrößert werden.
kateversion definiert die letzte unterstützte Version von KatePart.
Optionale Eigenschaften:
mimetype ordnet Dateien basierend auf deren MIME-Type zu.
casesensitive definiert, ob bei den Schlüsselwörtern Groß-/Kleinschreibung unter-
schieden wird oder nicht.
priority ist notwendig, wenn eine andere Hervorhebungsdefinitionsdatei die gleichen
Dateinamenerweiterung benutzt. Die Definitionsdatei mit der höheren Priorität wird dann
benutzt.
author enthält den Namen des Autors und dessen E-Mail-Adresse.
license enthält die Lizenz der Datei, normalerweise wird hier die MIT-Lizenz für neue
Dateien benutzt.
style enthält die Programmiersprache, die mit der Definition zur Verfügung gestellt wird
und wird durch das Einrückungsskript für die Eigenschaft required-syntax-style be-
nutzt.
indenter definiert die als Standard verwendetet Einrückung. Verfügbare Einrückungen
sind: ada, normal, cstyle, cmake, haskell, latex, lilypond, lisp, lua, pascal, python, replicode, ruby
und xml.
hidden definiert, ob der Name in Menüs von KatePart erscheinen soll.
Die nächste Zeile könnte wie folgt aussehen:

<language name="C++" version="1" kateversion ="2.4" section="Sources" ←↩
extensions ="*.cpp;*.h" />

Als nächstes kommt das Element highlighting, das das optionale Element list und die
notwendigen Elemente contexts und itemDatas enthält.

list-Elemente enthalten eine Liste von Schlüsselwörtern. In diesem Fall sind die Schlüs-
selwörter class und const. Sie können so viele hinzufügen, wie Sie brauchen.
Seit KDE Frameworks 5.53 kann eine Liste Schlüsselwörter aus anderen Listen oder Spra-
chen bzw. Dateien enthalten. Dazu benutzen Sie das Element include. ## wird auf die
gleiche Art wie die Regel IncludeRules verwendet, um den Namen der Liste und der
Sprachdefinition zu trennen. Dies ist nützlich, um doppelte Listen von Schlüsselwörtern
zu vermeiden, wenn Sie Schlüsselwörter aus anderen Sprachen oder Dateien einschließen
müssen. Die Liste othername zum Beispiel enthält das Schlüsselwort str und alle Schlüssel-
wörter der Liste types aus der Sprache ISO C++.
Das Element contexts enthält alle Kontexte. Der erste Kontext ist Standard bei Start der
Hervorhebungen. Es gibt zwei Regeln im Kontext Normal Text, die auf die Liste mit Schlüs-
selwörtern mit dem Namen somename und eine Regel, die Anführungszeichen entdeckt und
zum Kontext string umschaltet. Weitere Informationen zu Regeln finden Sie im nächsten
Kapitel.
Der dritte Teil ist das Element itemDatas. Es enthält alle Farb- und Schriftartstile, die
durch die Kontexte und Regeln benötigt werden. In diesem Beispiel werden itemData,
Normal Text, String und Keyword benutzt.

47

Das Handbuch zu KatePart

<highlighting >
<list name="somename">

<item >class </item >
<item >const </item >

</list >
<list name="othername">

<item >str </item >
<include >types##ISO C++</include >

</list >
<contexts >

<context attribute="Normal Text" lineEndContext="#pop" name=" ←↩
Normal Text" >

<keyword attribute="Keyword" context="#stay" String="somename" ←↩
/>

<keyword attribute="Keyword" context="#stay" String="othername" ←↩
/>

<DetectChar attribute="String" context="string" char=""" ←↩
/>

</context >
<context attribute="String" lineEndContext="#stay" name="string" ←↩

>
<DetectChar attribute="String" context="#pop" char=""" />

</context >
</contexts >
<itemDatas >

<itemData name="Normal Text" defStyleNum="dsNormal" />
<itemData name="Keyword" defStyleNum="dsKeyword" />
<itemData name="String" defStyleNum="dsString" />

</itemDatas >
</highlighting >

Der letzte Teil der Hervorhebungsdefinition ist der optionale Abschnitt general. Dieser kann
Informationen über Schlüsselwörter, Quelltextausblendungen, Leerzeilen und Rechtschreib-
prüfung enthalten.

Der Abschnitt comment definiert, mit welcher Zeichenfolge eine einzelne Kommentarzei-
le beginnt. Sie können außerdem mehrzeilige Kommentare definieren, indem Sie multiLine
mit der zusätzlichen Eigenschaft end benutzen. Diese werden benutzt, wenn Sie das Tasta-
turkürzel für Kommentar / Kommentar entfernen drücken.
Der Abschnitt keywords definiert, ob in den Schlüsselwortlisten nach Groß- und Klein-
schreibung unterschieden wird oder nicht. Andere Eigenschaften werden später erläutert.
Die anderen Abschnitte Quelltextausblendung, Leerzeilen und Rechtschreibpr
üfung sind normalerweise nicht nötig und werden später erklärt.

<general >
<comments >

<comment name="singleLine" start="#"/>
<comment name="multiLine" start="###" end="###" region=" ←↩

CommentFolding"/>
</comments >
<keywords casesensitive="1"/>
<folding indentationsensitive ="0"/>
<emptyLines >

<emptyLine regexpr="\s+"/>
<emptyLine regexpr="\s*#.*"/>

</emptyLines >
<spellchecking >

<encoding char="á" string="\’a"/>

48

Das Handbuch zu KatePart

<encoding char="à" string="\‘a"/>
</spellchecking >

</general >
</language >

6.2.3.2 Die Abschnitte im Einzelnen

Dieser Teil beschreibt alle verfügbaren Eigenschaften für Kontexte, itemDatas, Schlüsselwörter,
Kommentare, Quelltextausblendungen und Einrückungen.

Das Element context gehört in die Gruppe contexts. Ein Kontext selbst definiert spezielle
Regeln, wie zum Beispiel, was geschehen soll, wenn das Hervorhebungssystem ein Zeilenen-
de erreicht. Die verfügbaren Eigenschaften sind:

Der Kontextname name. Regeln benutzen diesen Namen, um festzulegen, zu welchem Kon-
text umgeschaltet wird, wenn die Regel zutrifft.
Der Kontext lineEndContext definiert den Kontext, zu dem das Hervorhebungssystem
umschaltet, wenn es ein Zeilenende erreicht. Das kann entweder der Name eines anderen
Kontextes sein, #stay um den Kontext nicht umzuschalten, (z. B. tue nichts) oder #pop
das bewirkt, dass der Kontext verlassen wird. Es ist möglich, zum Beispiel #pop#pop#pop
zu verwenden, um drei Kontextebenen zu verlassen oder mit #pop#pop!OtherContex
t zwei Kontextebenen zu verlassen und in einen neuen Kontext zu springen. Es ist auch
möglich zu einem Kontext zu wechseln, der zu einer anderen Sprachdefinition gehört, ge-
nauso wie in den IncludeRules-Regeln, z. B. SomeContext##JavaScript. Beachten
Sie, dass es nicht möglich ist, diesen Kontextwechsel in Kombination mit #pop zu verwen-
den, zum Beispiel ist #pop!SomeContext##JavaScript nicht gültig. Kontextwechsel
werden auch in Abschnitt 6.2.4 beschrieben.
lineEmptyContext definiert den Kontext, der in einer leeren Zeile verwendet wird. Die
Bezeichnung der Kontextwechsel ist die gleiche wie zuvor in lineEndContext beschrieben.
Standard hierfür ist: #stay.
fallthroughContext legt den nächsten Kontext fest, zu dem gewechselt wird, wenn
keine Regel passt. Die Bezeichnung der Kontextwechsel ist die gleiche wie zuvor in line-
EndContext beschrieben. Voreinstellung: #stay.
fallthrough definiert, ob das Hervorhebungssystem zu dem in fallthroughContext
angegebenen Kontext wechselt, wenn keine Regel passt. Beachten Sie, dass seit KDE Frame-
works 5.62 dieses Attribut zugunsten von fallthroughContext veraltet ist. Denn wenn
das Attribut fallthroughContext vorhanden ist, wird stillschweigend angenommen,
dass der Wert von fallthrough true ist. Voreinstellung: false.
noIndentationBasedFolding deaktiviert das auf der Einrückung basierte Ausblenden
von Text im Kontext. Wenn das Ausblenden nicht aktiviert ist, ist dieses Attribut nutzlos.
Es wird im Element folding der Gruppe general definiert. Voreinstellung: false.

Das Element itemData ist in der Gruppe itemDatas. Es definiert die Schriftarten und
Schriftfarben. So ist es möglich, Ihre eigenen Schriftarten und -farben festzulegen. Wir emp-
fehlen jedoch, bei den vordefinierten Einstellungen zu bleiben, sodass in unterschiedlichen
Sprachen trotzdem die gleichen Farben angezeigt werden. Manchmal ist es doch nötig, die
Farben und Schriftarten zu ändern. Der Name der Eigenschaft und defStyleNum müssen an-
geben werden, alle anderen können verwendet werden, sind aber nicht unbedingt nötig. Die
verfügbaren Eigenschaften sind:

name setzt den Namen von itemData. Kontexte und Regel benutzen diesen Namen in ihrer
Eigenschaft attribute, um den Bezug zum itemData herzustellen.
defStyleNum definiert, welcher Stil standardmäßig benutzt wird. Die verfügbaren Stile
werden später näher erläutert.

49

Das Handbuch zu KatePart

color definiert eine Farbe. Erlaubte Formate hierfür sind: ‚#rrggbb‘ oder
‚#rgb‘.
selColor definiert die Farbe für die Hervorhebung.
italic Wenn true, dann wird der Text in Kursivschrift dargestellt.
bold Wenn true, dann wird der Text in Fettschrift dargestellt.
underline Wenn true, dann wird der Text unterstrichen dargestellt.
strikeout Wenn true, dann wird der Text durchgestrichen dargestellt.
spellChecking Wenn true, dann wird die Rechtschreibprüfung für den Text aktiviert.

Das Element keywords in der Gruppe general definiert Eigenschaften von Schlüsselwör-
tern. Verfügbare Eigenschaften sind:

casesensitive kann true oder false sein. Wenn es true ist, dann wird bei allen Schlüssel-
wörtern die Groß- und Kleinschreibung beachtet.
weakDeliminator ist eine Liste von Zeichen, die nicht als Wortbegrenzung wirken. Der
Punkt ’.’ ist zum Beispiel eine Wortbegrenzung. Nehmen Sie an, ein Schlüsselwort in
einer list enthält einen Punkt, diese Schlüsselwort kann nur dann erkannt werden, wenn
Sie den Punkt als weakDeliminator festlegen.
additionalDeliminator definiert zusätzliche Wortbegrenzungen.
wordWrapDeliminator definiert Zeichen, nach denen ein Zeilenumbruch erfolgen kann.
Standard für Wortbegrenzer und Zeilenumbruchbegrenzer sind die Zeichen .():!+,-<=
>%&*/;?[]ˆ{|}~\, Leerzeichen (’ ’) und der Tabulator (’\t’).

Das Element comment in der Gruppe comments definiert Eigenschaften für Kommentare,
die für Extras→ Kommentar, Extras→ Kommentar entfernen und Tools→ Kommentar ein-
/ausschalten benutzt werden. Verfügbare Eigenschaften hierfür sind:

name ist entweder singleLine oder multiLine. Wenn Sie multiLine auswählen, müssen auch
die Eigenschaften end und region benutzt werden. Bei singleLine können Sie das optionale
Attribut position hinzufügen.
start definiert die Zeichenfolge, die einen Kommentar beginnt. In C++ ist dies zum Bei-
spiel ˝/*˝ in mehrzeiligen Kommentaren. Dieses Attribut ist für multiLine und singleLine
nötig.
end definiert die Zeichenfolge, die einen Kommentar beendet. In C++ ist dies zum Beispiel
˝*/˝. Diese Attribut ist nur für den Typ multiLine verfügbar und erforderlich.
region sollte der Name von ausblendbaren Mehrzeilenkommentaren sein. Nehmen Sie
an, Sie haben beginRegion=Comment ... endRegion=Comment in Ihren Regeln, dann sollten Sie
region=Comment benutzen. Auf diesem Wege funktioniert das automatische Entfernen von
Kommentaren auch dann, wenn Sie nicht den gesamten Text des mehrzeiligen Kommentars
auswählen. Es muss nur der Cursor innerhalb des mehrzeiligen Kommentars stehen. diese
Attribut ist nur für den Typ multiLine verfügbar.
position definiert, wo der einzeilige Kommentar eingefügt wird. Standardmäßig wird
der einzeilige Kommentar am Anfang der der Zeile bei Spalte 0 platziert, aber wenn Sie
position=˝afterwhitespace˝ verwenden, wird der Kommentar nach führenden Leerraumzei-
chen rechts eingefügt, vor dem ersten Nicht-Leerraumzeichen. Dies ist nützlich für das
korrekte Einfügen von Kommentaren in Sprachen, in denen die Einrückung wichtig ist,
wie z. B. in Python oder YAML. Dieses Attribut ist optional und der einzig mögliche Wert
ist afterwhitespace. Dies ist nur verfügbar für den Typ singleLine.

Das Element folding in der Gruppe general definiert Eigenschaften für ausblendbaren
Quelltext. Verfügbare Eigenschaften sind:

indentationsensitiveWenn true, werden die Markierungen für Quelltextausblendun-
gen basiert auf Einrückungen gesetzt, wie zum Beispiel in der Skriptsprache Python. Nor-
malerweise brauchen Sie dies nicht zu setzen, Standard ist false.

50

Das Handbuch zu KatePart

Das Element emptyLine in der Gruppe emptyLines definiert, welche Zeilen als Leerzeilen
behandelt werden sollen. Damit lässt sich das Verhalten des Attributs lineEmptyContext in
den Elementen Kontext ändern. Verfügbare Attribute sind:

regexpr definiert einen regulären Ausdruck, der als eine leere Zeile behandelt wird. Stan-
dardmäßig enthalten leere Zeilen keine Zeichen, daher werden hier zusätzliche Leerzeilen
hinzugefügt, z. B. wenn Zeilen mit Leerzeichen als Leerzeilen betrachtet werden sollen. In
den meisten Syntaxdefinitionen brauchen Sie dieses Attribut jedoch nicht zu setzen.

Das Element encoding in der Gruppe spellchecking definiert eine Zeichenkodierung für
die Rechtschreibprüfung. Verfügbare Eigenschaften sind:

char ist ein kodiertes Zeichen.
string ist eine Folge von Zeichen, die in der Rechtschreibprüfung als das Zeichen char
kodiert wird. In der Sprache LaTeX repräsentiert beispielsweise die Zeichenfolge \˝{A}
das Zeichen Ä.

6.2.3.3 Verfügbare Standardstile

Standardstile wurden als kurze Zusammenfassung bereits erklärt. Standardstile sind vordefinier-
te Schriftarten und -farben.

Allgemeine Standardstile:

dsNormal, wenn keine spezielle Hervorhebung benötigt wird
dsKeyword, benutzt für eingebaute Sprach-Schlüsselwörter.
dsFunction, benutzt für Funktionsaufrufe und -definitionen.
dsVariable, falls zutreffend Variablennamen z. B. $someVar in PHP/Perl.
dsControlFlow, Kontrollfluss-Schlüsselwörter wie if, else, switch, break, return, yield, ...
dsOperator, Operatoren wie + - * / :: < >
dsBuiltIn, eingebaute Funktionen, Klassen und Objekte.
dsExtension, allgemeine Erweiterungen wie zum Beispiel Qt™-Klassen und Funktio-
nen/Makros in C++ und Python.
dsPreprocessor, Präprozessor-Anweisungen oder Makro-Definitionen.
dsAttribute, Anmerkungen wie @override und __declspec(...).

Standardstile für Zeichenfolgen:

dsChar, benutzt für einzelne Buchstaben wie „X“.
dsSpecialChar, Zeichen mit besonderer Bedeutung in Zeichenfolgen wie Escape-
Sequenzen, Ersetzungen oder Operatoren für reguläre Ausdrücke.
dsString, benutzt für Zeichenfolgen wie „Hallo Welt“.
dsVerbatimString, wörtliche oder unveränderte Zeichenfolgen wie „raw \backlash“ in
Perl, CoffeeScript und Shells wie auch r’\raw’ in Python.

dsSpecialString, SQL, Reguläre Ausdrücke, HERE-Dokumente, LATEX-
Mathematikmodus, ...
dsImport, import, include, erforderliche Module.

Standardstile für Zahlen:
dsDataType, benutzt für eingebaute Datentypen wie int, void, u64.
dsDecVal, benutzt für Dezimalwerte.
dsBaseN, benutzt für Werte mit einer anderen Zahlenbasis als 10.
dsFloat, benutzt für Gleitkommawerte.
dsConstant, eingebaute und benutzerdefinierte Konsonanten wie Pi.PI.

51

Das Handbuch zu KatePart

Standardstile für Kommentare und Dokumentation:
dsComment, benutzt für Kommentare.
dsDocumentation, /** Dokumentation-Kommentare */ oder ˝˝˝docstrings˝˝˝.
dsAnnotation, Dokumentations--Befehle wie @param, @brief.
dsCommentVar, die in den vorher genannten Befehlen verwendeten Variablennamen wie
„foobar“ in @param foobar.
dsRegionMarker, benutzt für Markierungen von Bereichen wie //BEGIN, //END in
Kommentaren.

Andere Standardstile:
dsInformation, Notizen und Hinweise wie @note in doxygen.
dsWarning, Warnungen wie @warning in doxygen.
dsAlert, besondere Wörter wie TODO, FIXME, XXXX.
dsError, benutzt für Hervorhebungen von Fehlern und für fehlerhafter Syntax.
dsOthers, wenn nichts anderes passt.

6.2.4 Hervorhebungs-Erkennungsregeln

Dieser Abschnitt beschreibt die Hervorhebungs-Erkennungsregeln

Jede Regel kann auf Null oder mehrere Zeichen am Anfang der untersuchten Zeichenfolge zu-
treffen. Wenn eine Übereinstimmung gefunden wird, wird den erkannten Zeichen der Stil oder
die Eigenschaft, die durch die Regel festgelegt wurde, zugeordnet, Außerdem kann die Regel ein
Umschalten des aktuellen Kontexts anfordern.
Eine Regel sieht wie folgt aus:

<RuleName attribute="(identifier)" context="(identifier)" [rule specific ←↩
attributes] />

Die attribute (Eigenschaft) legt den Namen des Stils fest, der für die erkannten Zeichen benutzt
werden soll und der context (Kontext) legt den Kontext fest, der ab hier benutzt werden soll.

Der context (Kontext) kann durch Folgendes identifiziert werden:

• Einen identifier, der der Name eines anderen Kontextes ist.

• Eine Anweisung, die vorgibt, im aktuellen Kontext zu bleiben (#stay), oder zu einem vorher
in der Zeichenfolge benutzten Kontext zurückzuspringen (#pop).
Zum Zurückgehen über mehrere Schritte kann das Schlüsselwort #pop wiederholt werden:
#pop#pop#pop

• Eine Anweisung order, die von einem Ausrufezeichen (!) und einem identifier gefolgt wird,
veranlasst Kate erst die Anweisung order auszuführen und dann in den anderen Kontext um-
zuschalten, z. B. #pop#pop!OtherContext.

• Ein identifier ist ein Kontextname gefolgt von zwei Doppelkreuzen (##) und einem weiteren
identifier für den Name einer Sprachdefinition. Diese Namensgebung ist ähnlich wie bei den
Regeln IncludeRules und ermöglicht den Wechsel zu einem Kontext, der zu einer ande-
ren Syntaxhervorhebungsdefinition gehört, z. B. SomeContext##JavaScript. Beachten Sie,
dass es nicht möglich ist, diesen Kontextwechsel in Kombination mit #pop zu verwenden, z.
B. #pop!SomeContext##JavaScript ist nicht gültig.

Regelspezifische Eigenschaften sind unterschiedlich und werden im Folgenden beschrieben.

GEMEINSAME EIGENSCHAFTEN

52

Das Handbuch zu KatePart

• attribute: Eine Eigenschaft zeigt auf ein bestimmtes itemData-Element.

• context: Legt den Kontext fest, zu dem das Hervorhebungssystem umschaltet, wenn die Regel
als zutreffend erkannt wird.

• beginRegion: Beginnt einen Quelltextausblendungsblock. Standard ist: unset.

• endRegion: Beendet eine Quelltextausblendungsblock. Standard ist: unset.

• lookAhead: Wenn true, dann wird das Hervorhebungssystem die Länge der Übereinstimmung
nicht verarbeiten. Standard ist: false.

• firstNonSpace: Trifft nur dann zu, wenn die Zeichenfolge als erstes nach Zwischenräumen in
der Zeile erkannt wird. Standard ist: false.

• column: Trifft nur dann zu, wenn die Spalte zutrifft. Standard ist: unset.

DYNAMISCHE REGELN

• dynamic: kann (true oder false) sein.

Wie es funktioniert:
In den regulären Ausdrücken der der RegExpr-Regeln wird der gesamte Text innerhalb ein-
facher runder Klammern (PATTERN) erfasst und behalten. Diese Erfassungen können in dem
Kontext verwendet werden, in den gewechselt wird, in den Regeln mit dem Attribut dynamic
true, durch %N (in String) oder N (in char).

Ein Text, der in einer RegExpr-Regel erfasst wird, nur für den gewechselten Kontext behalten
wird, der in seinem Attribut Kontext angegeben ist.

TIP

• Wenn die Erfassung nicht verwendet werden sollen, sowohl durch dynamische Regeln als auch
im gleichen regulären Ausdruck, sollte nicht-erfassende Gruppen verwendet werden ver-
wendet werden: (?:PATTERN)

Die Gruppen Vorwärtsreferenz oder Rückwärtsreferenz wie (?=PATTERN), (?!PATTERN) oder
(?<=PATTERN) werden nicht erfasst. Weitere Informationen fingen Sie im Abschnitt Reguläre
Ausdrücke.

• Die Erfassungs-Gruppen können innerhalb desselben regulären Ausdrucks verwendet werden, in-
dem \N anstelle von %N verwendet wird. Für weitere Informationen siehe Erfassen von passendem
Text (Rückwärtsreferenz) in AbschnittReguläre Ausdrücke.

Beispiel 1:

In diesem einfachen Beispiel wird der Text, der mit dem regulären Ausdruck =* übereinstimmt,
erfasst und für %1 in die dynamische Regel eingefügt. Dadurch kann der Kommentar mit der
gleiche Zahl von Gleichheitszeichen = wie am Anfang beendet werden. Dies passt auf Text wie:
[[Kommentar]], [=[Kommentar]=] oder [=====[Kommentar]=====].
Außerdem sind die Erfassungen nur im gewechselten Kontext mehrzeiligen Kommentaren verfüg-
bar.

<context name="Normal" attribute="Normal Text" lineEndContext="#stay">
<RegExpr context="Multi -line Comment" attribute="Comment" String ="\[(=*) ←↩

\[" beginRegion="RegionComment"/>
</context >
<context name="Multi -line Comment" attribute="Comment" lineEndContext="# ←↩

stay">
<StringDetect context="#pop" attribute="Comment" String ="]%1]" dynamic=" ←↩

true" endRegion="RegionComment"/>
</context >

53

Das Handbuch zu KatePart

Beispiel 2:

In der dynamischen Regel entspricht %1 der Erfassung, die auf #+ passt und %2 auf "+.
Dies trifft auf Text wie #label˝˝˝˝inside the context˝˝˝˝# zu.
Diese Erfassungen sind in anderen Kontexten wie z. B. OtherContext, FindEscapes oder SomeCon-
text nicht verfügbar.

<context name="SomeContext" attribute="Normal Text" lineEndContext="#stay">
<RegExpr context="#pop!NamedString" attribute="String" String ="(#+)(?:[\w ←↩

-]|[^[:ascii:]])("+)"/>
</context >
<context name="NamedString" attribute="String" lineEndContext="#stay">

<RegExpr context="#pop!OtherContext" attribute="String" String ="%2(?:%1) ←↩
?" dynamic="true"/>

<DetectChar context="FindEscapes" attribute="Escape" char="\"/>
</context >

Beispiel 3:

Die passt auf Text wie: Class::function<T>(...).

<context name="Normal" attribute="Normal Text" lineEndContext="#stay">
<RegExpr context="FunctionName" lookAhead="true"

String="\b([a-zA-Z_][\w-]*)(::)([a-zA-Z_][\w-]*)(?:<[\w\-\ ←↩
s]*>)?(\()"/>

</context >
<context name="FunctionName" attribute="Normal Text" lineEndContext="#pop">

<StringDetect context="#stay" attribute="Class" String="%1" dynamic="true ←↩
"/>

<StringDetect context="#stay" attribute="Operator" String="%2" dynamic=" ←↩
true"/>

<StringDetect context="#stay" attribute="Function" String="%3" dynamic=" ←↩
true"/>

<DetectChar context="#pop" attribute="Normal Text" char="4" dynamic="true ←↩
"/>

</context >

LOKALE BEGRENZUNGSZEICHEN

• weakDeliminator: Liste der Zeichen, die nicht als Wortbegrenzungen fungieren.

• additionalDeliminator definiert zusätzliche Wortbegrenzungen.

6.2.4.1 Die Regeln im Einzelnen:

DetectChar
Findet ein einzelnes bestimmtes Zeichen. Häufig zum Finden des Endes von Zeichenfolgen
in Anführungszeichen benutzt.

<DetectChar char="(character)" (common attributes) (dynamic) />

Die Eigenschaft char definiert das zu erkennende Zeichen.

Detect2Chars
Findet zwei bestimmte Zeichen in einer bestimmten Reihenfolge.

<Detect2Chars char="(character)" char1="(character)" (common attributes ←↩
) />

54

Das Handbuch zu KatePart

Die Eigenschaft char definiert das erste zu erkennende Zeichen, char1 das zweite.

AnyChar

Findet ein Zeichen aus einem bestimmten Satz von Zeichen.

<AnyChar String="(string)" (common attributes) />

Die Eigenschaft String definiert den Satz der Zeichen.

StringDetect

Findet eine bestimmte Zeichenfolge.

<StringDetect String="(string)" [insensitive="true|false"] (common ←↩
attributes) (dynamic) />

Die Eigenschaft String definiert die zu erkennende Zeichenfolge. Die Eigenschaft
insensitive ist standardmäßig auf false gesetzt und wird an die Zeichenfolgen-
Vergleichsfunktion übergeben. Wenn der Wert auf true gesetzt wird, wird Groß- und Klein-
schreibung ignoriert.

WordDetect
Findet eine Zeichenfolge, aber zusätzlich werden die Wortgrenzen wie ein Punkt ’.’ oder
ein Leerzeichen am Anfang und Ende des Wortes beachtet. Dies funktioniert wie der regu-
läre Ausdruck \b<string>\b, ist aber schneller als die Regel RegExpr.

<WordDetect String="(string)" [insensitive="true|false"] (common ←↩
attributes) (local deliminators) />

Die Eigenschaft String definiert die zu erkennende Zeichenfolge. Die Eigenschaft
insensitive ist standardmäßig auf false gesetzt und wird an die Zeichenfolgen-
Vergleichsfunktion übergeben. Wenn der Wert auf true gesetzt wird, wird Groß- und Klein-
schreibung ignoriert.
Ab Version: Kate 3.5 (KDE 4.5)

RegExpr

Prüft die Übereinstimmung mit einem regulären Ausdruck.

<RegExpr String="(string)" [insensitive="true|false"] [minimal="true| ←↩
false"] (common attributes) (dynamic) />

Die Eigenschaft String definiert den regulären Ausdruck.
Die Eigenschaft insensitive ist standardmäßig auf false gesetzt und wird an die Funkti-
on zur Auswertung des regulären Ausdrucks übergeben.
Die Eigenschaft minimal ist standardmäßig auf false gesetzt und wird an die Funktion zur
Auswertung des regulären Ausdrucks übergeben.
Weil die Regeleinhaltung immer am Anfang der aktuellen Zeichenfolge geprüft wird, kann
mit dem Hochzeichen (ˆ) angegeben werden, dass die Regeleinhaltung nur am Anfang der
Zeile untersucht werden soll.
Sehen Sie unter Reguläre Ausdrücke für weitere Informationen zu diesen nach.

keyword

Erkennt ein Schlüsselwort aus einer angegebenen Liste.

<keyword String="(list name)" (common attributes) (local deliminators) ←↩
/>

55

Das Handbuch zu KatePart

Die Eigenschaft String definiert die Schlüsselwortliste durch deren Name. Eine Liste mit
diesem Namen muss vorhanden sein.
Das Hervorhebungssystem verarbeitet die Regeln mit sehr stark optimierten Methoden.
Deswegen ist es absolut notwendig, dass alle Schlüsselworte, die gefunden werden sollen,
durch definierte Begrenzer eingeschlossen werden. Das können entweder die Standardbe-
grenzer sein oder Begrenzer, die mit der Eigenschaft additionalDeliminator des Tags keywords
festgelegt wurden.
Wenn ein Schlüsselwort ein Begrenzerzeichen enthalten soll, dann muss dieses Zeichen zur
Eigenschaft weakDeliminator des Tags keywords hinzugefügt werden. Dieses Zeichen ver-
liert damit seine Funktion als Begrenzer in allen keyword-Regeln. Es ist auch möglich, das
weakDeliminator Attribut vom keyword zu verwenden, so dass diese Änderung nur für diese
Regel gilt.

Int
Erkennt eine ganze Zahl wie im regulären Ausdruck \b[0-9]+).

<Int (common attributes) (local deliminators) />

Diese Regel hat keine speziellen Eigenschaften.

Float
Erkennt eine Dezimalzahl wie im regulären Ausdruck \b[0-9]+)\.[0-9]*|\.][-+]?
[0-9]+)?).

<Float (common attributes) (local deliminators) />

Diese Regel hat keine speziellen Eigenschaften.

HlCOct
Erkennt eine Oktalzahl wie im regulären Ausdruck \b0[0-7]+.

<HlCOct (common attributes) (local deliminators) />

Diese Regel hat keine speziellen Eigenschaften.

HlCHex
Erkennt eine hexadezimale Zahl wie im regulären Ausdruck \b0[xX][0-9a-fA-F]+.

<HlCHex (common attributes) (local deliminators) />

Diese Regel hat keine speziellen Eigenschaften.

HlCStringChar

Findet ein Steuerzeichen.

<HlCStringChar (common attributes) />

Diese Regel hat keine speziellen Eigenschaften.
Solche Zeichen sind durch druckbare Zeichen dargestellte nicht druckbare Zeichen, die in
Programmquelltexten häufig benutzt werden. z. B.: \n (Zeilenvorschub) oder \t (TAB)
Die folgenden Zeichen werden erkannt, wenn sie einem Linksschrägstrich \ folgen: abef
nrtv˝’?. Zusätzlich werden auch hexadezimale (\xff) oder oktale (\033) Zahlen nach
einem \ erkannt.

HlCChar
Findet ein C Zeichen.

<HlCChar (common attributes) />

56

Das Handbuch zu KatePart

Diese Regel hat keine speziellen Eigenschaften.
Trifft zu, wenn C Zeichen in einfachen Anführungszeichen (Beispiel: ’c’) vorkommen.
In den Anführungszeichen kann ein einfaches Zeichen oder Sonderzeichen (Beispiel: ’ ’)
stehen. Für Zeichenfolgen von Sonderzeichen sehen Sie unter HlCStringChar nach.

RangeDetect

Findet eine Zeichenfolge mit definierten Anfangs- und Endzeichen.

<RangeDetect char="(character)" char1="(character)" (common attributes ←↩
) />

char definiert das Zeichen am Anfang des Bereichs, char1 das Zeichen am Ende des Be-
reichs.
Diese Regel ist für das Finden von kleinen Zeichenfolgen in Anführungszeichen nützlich,
kann aber wegen der verwendeten Funktion keine über mehrere Zeilen gehenden Zeichen-
folgen finden.

LineContinue
Trifft auf ein angegebenes Zeichen an einem Zeilenende zu.

<LineContinue (common attributes) [char="\"] />

Die Eigenschaft char definiert das optionale zu erkennende Zeichen, Standard ist der
Rückstrich ’\’. Neu seit KDE 4.13.
Diese Regel wird zum Umschalten des Kontextes am Ende einer Zeile benutzt. Dies wird
in C/C++ zum Fortsetzen von Makros oder Zeichenfolgen gebraucht.

IncludeRules
Schließt Regeln aus einem anderen Kontext, einer anderen Sprache oder einer anderen Da-
tei ein.

<IncludeRules context="contextlink" [includeAttrib="true|false"] />

Die Eigenschaft context definiert, welcher Kontext eingeschlossen werden soll.
Wenn dies eine einfache Zeichenfolge ist, dann werden alle definierten Regeln in den ge-
genwärtigen Kontext eingeschlossen. Beispiel:

<IncludeRules context="anotherContext" />

Wenn die Zeichenfolge eine ##-Nutzereingabe enthät, dann wird das Hervorhebungssys-
tem einen Kontext aus einer anderen Sprachdefinition mit dem angegebenen Namen su-
chen, zum Beispiel:

<IncludeRules context="String##C++" />

schliesst den Kontext String aus der Sprachdefinition für C++ ein.
Wenn die Eigenschaft includeAttrib true ist, dann wird die Zieleigenschaft zu der aus
der Quelle geändert. Dies wird zum Beispiel für Kommentare gebraucht, wenn der Text,
der durch den eingeschlossenen Kontext anders hervorgehoben wird, als im gegenwärtigen
Kontext.

DetectSpaces

Finde Zwischenräume.

<DetectSpaces (common attributes) />

57

Das Handbuch zu KatePart

Diese Regel hat keine speziellen Eigenschaften.
Benutzen Sie diese Regel, wenn Sie wissen, dass jetzt mehrere Zwischenräume folgen, zum
Beispiel am Anfang von eingerückten Zeilen. Diese Regel überspringt mehrere Zwischen-
räume mit einem Mal, ohne diese einzeln auf die Einhaltung von anderen Regeln zu testen
und dann nach Nichtzutreffen einzeln zu überspringen.

DetectIdentifier
Finde Zeichenfolgen als Bezeichner (als regulärer Ausdruck: [a-zA-Z_][a-zA-Z0-9_]
*).

<DetectIdentifier (common attributes) />

Diese Regel hat keine speziellen Eigenschaften.

Benutzen Sie diese Regel zum Überspringen von Wörtern mit einem Mal, ohne die Zeichen
im Wort einzeln auf die Einhaltung von anderen Regeln zu testen und dann nach Nichtzu-
treffen zu überspringen.

6.2.4.2 Tipps & Tricks

• Wenn Sie nur zwei Zeichen vergleichen, dann benutzen Sie Detect2Chars an Stelle von Str
ingDetect. Das Gleiche gilt für DetectChar.

• Reguläre Ausdrücke sind einfach zu benutzen, aber oft gibt es einen anderen viel schnelleren
Weg, um das gleiche Ergebnis zu erreichen. Nehmen Sie an, Sie wollen feststellen, ob das
Zeichen ’#’ das erste Zeichen einer Zeile ist. Ein regulärer Ausdruck dafür wäre:

<RegExpr attribute="Macro" context="macro" String="^\s*#" />

Sie können aber auch die wesentlich schnellere Lösung:

<DetectChar attribute="Macro" context="macro" char="#" firstNonSpace=" ←↩
true" />

benutzen. An Stelle des regulären Ausdrucks ’ˆ#’ können Sie DetectChar mit der Eigen-
schaft column=˝0˝ benutzen. Die Eigenschaft column zählt Zeichenbasiert, sodass auch ein
Tabulator nur ein Zeichen ist.

• Verwenden Sie in RegExpr-Regeln das Attribut column=˝0˝, wenn mit dem Muster ˆPATTE
RN Text am Anfang einer Zeile gefunden werden soll. Dies ist schneller, da nicht mehr in den
restlichen Spalten der Zeile nach Übereinstimmungen gesucht wird.

• Verwenden Sie in regulären Ausdrücken nicht-erfassende Gruppen (?:PATTERN) anstelle
von erfassenden Gruppen (PATTERN), wenn die Erfassungen nicht in demselben regulären
Ausdruck oder in dynamischen Regeln verwendet werden. Dadurch wird das unnötige Spei-
chern von Erfassungen vermieden.

• Sie können zwischen Kontexten umschalten, ohne Zeichen zu verarbeiten. Angenommen, Sie
wollen den Kontext umschalten, wenn Sie die Zeichenfolge */ finden, aber Sie müssen diese
Zeichenfolge im nächsten Kontext verarbeiten. Die folgende Regel trifft zu und die Eigenschaft
lookAhead sorgt dafür, dass die zutreffende Zeichenfolge für den folgenden Kontext bereit-
gehalten wird.

<Detect2Chars attribute="Comment" context="#pop" char="*" char1="/" ←↩
lookAhead="true" />

• Benutzen Sie DetectSpaces, wenn Sie wissen, dass mehrere Zwischenräume vorkommen.

• Benutzen Sie DetectIdentifier an Stelle des regulären Ausdrucks ’[a-zA-Z_]\w*’.

58

Das Handbuch zu KatePart

• Benutzen Sie Standardstile wann immer das möglich ist. Die Benutzer finden dadurch eine
vertraute Umgebung vor.

• Sehen Sie in anderen XML-Dateien nach, wie andere Benutzer komplizierte Regeln geschrie-
ben haben.

• Sie können die Gültigkeit jeder XML-Datei mit dem Befehl validatehl.sh language.xsd my-
Syntax.xml überprüfen. Die Dateien validatehl.sh und language.xsd finden Sie im Syntax-
Highlighting-Repository.

• Wenn Sie komplexe reguläre Ausdrücke oft wiederholen, können Sie ENTITIES benutzen. Bei-
spiel:

<?xml version ="1.0" encoding="UTF -8"?>
<!DOCTYPE language SYSTEM "language.dtd"
[

<!ENTITY myref "[A-Za-z_:][\w.:_-]*">
]>

Nun können Sie &myref; an Stelle des regulären Ausdrucks benutzen.

6.3 Arbeiten mit Farbschemata

6.3.1 Überblick

Farbschemata definieren die Farben des Text-Editierbereichs und der Syntaxhervorhebung. Ein
Farbschema umfasst die folgenden Punkte:

• Der Textstil für die Syntaxhervorhebung durch die Standard-Stilattribute. Zum Beispiel die
Textfarbe und die ausgewählte Textfarbe.

• Der Hintergrund des Textbearbeitungsbereichs, einschließlich der Textauswahl und der aktu-
ellen Zeile.

• Die Symbolumrandung des Textbereichs, deren Hintergrund, die Trennlinie, die Zeilennum-
mern, die Zeilenumbruchmarkierungen, die geänderten Zeilenmarkierungen und die Quell-
textausblendung.

• Textmarkierungen wie die Suchmarkierungen, die Einrückung und die Zeilenmarkierungen
für Tabulator-/Leerzeichen, zusammengehörende Klammern und die Rechtschreibprüfung.

• Lesezeichen und Textbausteine.

Um Verwechslungen zu vermeiden, liegt das Folgende außerhalb des Anwendungsbereichs:

• Die Schriftart und Schriftgröße.

• Die Farben der Textbearbeitung, wie z. B. die Textgrafik auf der Bildlaufleiste, die Menüs,
die Unterfensterleiste, die Fensterfarbe usw. In KDE Anwendungen, wie Kate oder KDeve-
lop, werden diese Farben durch das globale KDE Plasma,Farbschema definiert, die im
Modul Farben in den Systemeinstellungen oder von der Anwendung selbst im Menü Einstel-
lungen→ Farbschema festgelegt werden.

59

https://commits.kde.org/syntax-highlighting?path=data/schema
https://commits.kde.org/syntax-highlighting?path=data/schema
help:/kcontrol/colors/

Das Handbuch zu KatePart

Die Farbschemata „Breeze-Hell” und „Breeze-Dunkel” mit der Syntaxhervorhebung für „C++”.

6.3.2 Farbschemata für KSyntaxHighlighting

Das Framework KSyntaxHighlighting enthält die Syntax-Highlighting-Engine und ist eine Bi-
bliothek, die die Farbschemata bereitstellt und verwaltet. Die Bibliothek ist Teil
von von KDE-Frameworks und wird in KDE-Texteditoren wie Kate, KWrite, Kile und KDeve-
lop verwendet. Diese Abhängigkeit sieht wie folgt aus:

Abhängigkeit von KDE-Frameworks-Bibliotheken von Texteditoren.

KSyntaxHighlighting enthält eine Vielzahl von eingebauten Schemata, die auf der Seite Farb-
schemata der Webseite des Kate-Editors zu finden sind.
Das Framework KTextEditor enthält eine Benutzeroberfläche zum Erstellen und Bearbeiten von
Farbschemata und ermöglicht das Importieren und Exportieren von Schemata. Sie können die-
sen Dialog in den „Einstellungen” des Texteditors öffnen. Weitere Informationen finden Sie im
Abschnitt Abschnitt 6.3.5.

60

https://api.kde.org/frameworks/syntax-highlighting/html/
https://apps.kde.org/en/kate
https://apps.kde.org/de/kwrite
https://apps.kde.org/en/.kile
https://apps.kde.org/en/kdevelop
https://apps.kde.org/en/kdevelop
https://kate-editor.org/themes/
https://kate-editor.org/themes/
https://api.kde.org/frameworks/ktexteditor/html/

Das Handbuch zu KatePart

Die GUI zur Bearbeitung von Farbschemata in den Einstellungen von Kate.

In den KDE-Texteditoren wie Kate oder KDevelop werden die Farbschemata von KSyntaxHigh-
lighting seit KDE Frameworks 5.75 vom 10. Oktober 2020 verwendet. Zuvor wurden die Farb-
schemata von Kate (KConfig-basierte Schema-Einstellungen) verwendet und die sind nun ver-
altet. Es ist jedoch möglich, die alten Kate-Schemata in die KSyntaxHighlighting-Farbschemata
umzuwandeln. Das KSyntaxHighlighting-Quelltextarchiv enthält das Skript utils/katesche
ma_to_theme_converter.py und den Ordner utils/schema-converter/ mit weiteren
Hilfsprogrammen für diesen Zweck.

6.3.3 Das JSON-Format der Farbschemata

6.3.3.1 Überblick

Farbschemata werden in Dateien im JSON-Format mit der Dateierweiterung .theme gespei-
chert.
Im KSyntaxHighlighting-Quelltext befinden sich die JSON-Dateien der eingebauten Schemata
im Ordner data/themes/ . Die eingebauten Schemata werden in die Bibliothek KSyntaxHigh-
lighting kompiliert, daher ist der Zugriff auf sie über den Quelltext oder durch Exportieren aus
der GUI zur Verwaltung der Schemata von KTextEditor möglich.

Sie können auch auf einfache Weise zusätzliche oder benutzerdefinierte Schemata hinzuzufügen,
die aus dem Dateisystem geladen werden. Benutzerdefinierte Schemadateien befinden sich im
Ordner org.kde.syntax-highlighting/themes/ in Ihrem persönlichen Ordner, den Sie mit dem
Befehl qtpaths --paths GenericDataLocation finden können, üblicherweise $HOME /.l
ocal/share/ und /usr/share/ .
Bei Flatpak- und Snap-Paketen funktioniert der obige Ordner nicht, da der Speicherort der
Daten für jede Anwendung unterschiedlich ist. In einer Flatpak-Anwendung ist der Speicher-
ort der benutzerdefinierten Schemadateien normalerweise $HOME /.var/app/ flatpak-packag
e-name /data/org.kde.syntax-highlighting/themes/ und in einer Snap-Anwendung ist die-
ser Ort $HOME /snap/ snap-package-name /current/.local/share/org.kde.syntax-highlight
ing/themes/ .

61

https://kate-editor.org/post/2020/2020-09-13-kate-color-themes-5.75/
https://invent.kde.org/frameworks/syntax-highlighting
https://invent.kde.org/frameworks/syntax-highlighting

Das Handbuch zu KatePart

Auf Windows®-Systemen finden Sie diese Dateien unter %USERPROFILE%\AppData\Local\org.kd
e.syntax-highlighting\themes. %USERPROFILE%. Dabei ist %USERPROFILE% normalerweise C:\U
sers\user-name.
Zusammenfassend lässt sich sagen, dass der Ordner für benutzerdefinierte Schemata bei den
meisten Einrichtungen wie folgt aussieht:

Für lokale Benutzer $HOME /.local/share/org.kde.syntax-hig
hlighting/themes/

Für alle Benutzer /usr/share/org.kde.syntax-highlightin
g/themes/

Für Flatpak-Pakete
$HOME /.var/app/ flatpak-package-name
/data/org.kde.syntax-highlighting/them
es/

Für Snap-Pakete
$HOME /snap/ snap-package-name
/current/.local/share/org.kde.syntax-h
ighlighting/themes/

Unter Windows® %USERPROFILE%\AppData\Local\org.kde.sy
ntax-highlighting\themes

Wenn mehrere Schemadateien mit demselben Namen existieren, wird die Datei mit der höchsten
Revision geladen.

6.3.3.2 Dit JSON-Struktur

Der Aufbau einer JSON-Datei wird auf dieser Webseite erläutert. Grundsätzlich besteht eine Da-
tei im JSON-Format aus:

• Sammlungen von Schlüssel/Wert-Paaren, getrennt durch Kommas und gruppiert in { }, auch
„Objekte” genannt.

• Sortierte Listen von Werten, getrennt durch Kommas und gruppiert in [], auch „Feld” ge-
nannt.

Die Bezeichnungen „Schlüssel”, „Wert”, „Objekt” und „Feld” werden hier verwendet. Falls Sie
zum ersten Mal mit JSON-Dateien arbeiten, helfen die folgenden Beispiele beim Verständnis.

6.3.3.3 Hauptabschnitte der JSON-Farbschemadateien

Das Basisobjekt der Farbschemadateien im JSON-Format enthält die folgenden Schema-
Schlüssel:

• metadata: Dies ist obligatorisch. Der Wert ist ein Objekt mit den Metadaten des Schemas wie
Name, Revision und Lizenz.
Ausführliche Informationen dazu unter Abschnitt 6.3.3.4.

• Editor-Farben: Dies ist obligatorisch. Der Wert ist ein Objekt mit den Farben des Textbear-
beitungsbereichs wie dem Hintergrund, dem Symbolrand und der Textdekoration.
Ausführliche Informationen dazu unter Abschnitt 6.3.4.1.

• Textstile: Dies ist obligatorisch. Der Wert ist ein Objekt mit dem AttributStandard-Textstil
der Syntaxhervorhebung. Jedes Attribut definiert seine Textfarbe, seine gewählte Textfarbe, oder
ob es zum Beispiel fett oder kursiv sein soll. Die Textstile können aus den Attributen der Syn-
taxdefinitionsdateien referenziert werden.
Ausführliche Informationen dazu unter Abschnitt 6.3.4.2.

62

https://www.json.org

Das Handbuch zu KatePart

• custom-styles: Ist optional. Definiert Textstile für die Attribute bestimmter Definitionen
von Syntaxhervorhebungen. In einer Hervorhebungsdefinition wie Python oder Markdown
können Sie einen anderen Textstil angeben, der den in text-styles definierten Standard
überschreibt.
Ausführliche Informationen dazu unter Abschnitt 6.3.4.3.

Die Sprache JSON unterstützt keine Kommentare. Sie können jedoch mit dem optionalen Schlüs-
sel _comments im Basisobjekt Kommentare schreiben. Wenn sie zum Beispiel ein bestehendes
Schema anpassen, können Sie die URL des ursprünglichen Archivs angeben. Der praktischste
Weg ist die Verwendung eines Felds mit Zeichenfolgen.

Nachfolgend finden Sie eine Beispieldatei für das Schema „Breeze-Hell”-. Um das Beispiel nicht
zu lang werden zu lassen, enthalten die Objekte editor-colors und text-styles nicht alle
alle erforderlichen Schlüssel. Sie können die vollständige Datei des Schemas Breeze-Hell aus dem
KSyntaxHighlighting-Quelltextarchiv herunterladen.

{
"_comments": [

"This is a comment.",
"If this theme is an adaptation of another , put the link to the ←↩

original repository."
],
"metadata": {

"name" : "Breeze Light",
"revision" : 5,
"copyright": [

"SPDX -FileCopyrightText: 2016 Volker Krause <vkrause@kde.org >",
"SPDX -FileCopyrightText: 2016 Dominik Haumann <dhaumann@kde.org ←↩

>"
],
"license": "SPDX -License -Identifier: MIT"

},
"editor -colors": {

"BackgroundColor" : "#ffffff",
"CodeFolding" : "#94caef",
"BracketMatching" : "#ffff00",
"CurrentLine" : "#f8f7f6",
"IconBorder" : "#f0f0f0",
"IndentationLine" : "#d2d2d2",
"LineNumbers" : "#a0a0a0",
"CurrentLineNumber" : "#1e1e1e",
The other editor color keys...

},
"text -styles": {

"Normal" : {
"text -color" : "#1f1c1b",
"selected -text -color" : "#ffffff",
"bold" : false ,
"italic" : false ,
"underline" : false ,
"strike -through" : false

},
"Keyword" : {

"text -color" : "#1f1c1b",
"selected -text -color" : "#ffffff",
"bold" : true

},
"Function" : {

63

https://invent.kde.org/frameworks/syntax-highlighting/-/blob/master/data/themes/breeze-light.theme
https://invent.kde.org/frameworks/syntax-highlighting/-/blob/master/data/themes/breeze-light.theme

Das Handbuch zu KatePart

"text -color" : "#644a9b",
"selected -text -color" : "#452886"

},
"Variable" : {

"text -color" : "#0057ae",
"selected -text -color" : "#00316e"

},
The other text style keys...

},
"custom -styles": {

"ISO C++": {
"Data Type": {

"bold": true ,
"selected -text -color": "#009183",
"text -color": "#00b5cf"

},
"Keyword": {

"text -color": "#6431b3"
}

},
"YAML": {

"Attribute": {
"selected -text -color": "#00b5cf",
"text -color": "#00b5cf"

}
}

}
}

6.3.3.4 Metadaten

Das JSON Objekt des Schlüssels metadata enthält die wichtigsten Informationen über das Sche-
ma. Dieses Objekt hat die folgenden Schlüssel:

• Name: Dies ist eine Zeichenfolge mit dem Name der Sprache. Dies wird in den Menüs und
Dialogen angezeigt und ist verpflichtend.

• revision: Es ist eine ganze Zahl. die die aktuelle Revision der Schemadatei angibt. Wann
immer Sie eine Farbschemadatei aktualisieren, müssen Sie diese Zahl vergrößern. Diese Wert
ist erforderlich.

• Lizenz: Eine Zeichenfolge, die die Lizenz des Schemas definiert, unter Verwen-
dung des Lizenzbezeichner SPDX-License-Identifier aus dem Standard SPDX-
Lizenzkommunikationsformat. Dies ist optional.
Die vollständige Liste der SPDX-Lizenzbezeichner können Sie hier einsehen.

• copyright: Ein Feld mit Zeichenfolgen, das die Autoren des Schemas angibt, mit SPDX-File
CopyrightText aus dem Standard SPDX-Lizenzkommunikationsformat. Dies ist optional.

"metadata": {
"name" : "Breeze Light",
"revision" : 5,
"copyright": [

"SPDX -FileCopyrightText: 2016 Volker Krause <vkrause@kde.org >",
"SPDX -FileCopyrightText: 2016 Dominik Haumann <dhaumann@kde.org >"

],

64

https://spdx.dev/
https://spdx.dev/
https://spdx.org/licenses/
https://spdx.dev/

Das Handbuch zu KatePart

"license": "SPDX -License -Identifier: MIT"
}

6.3.4 Farben im Detail:

In diesem Abschnitt werden all verfügbaren Attribute und Einstellungen für Farben aufgeführt:

6.3.4.1 Editor-Farben

Entspricht den Farben im Editorbereichs.

In der JSON-Schemadatei ist der Wert des entsprechenden Schlüssels editor-colors ein object
wobei jeder Schlüssel auf eine Attribut-Farbe des des Texteditors verweist. Hier sind alle v
erfügbaren Schlüssel notwendig, ihre Werte sind Zeichenfolgen mit hexadezimalen
Farbcodes wie „#00B5CF”.

In der GUI zum Verwalten von Schemata für KTextEditor können diese Attribute auf der Kartei-
karte Farben ändern.
Folgende Schlüssel sind verfügbar: Die Schlüssel aus der JSON-Datei sind fett, die Namen in der
GUI sind in Klammern angegeben.

Hintergrundfarben des Editors

BackgroundColor (Textbereich)
Dies ist die Standardhintergrundfarbe für den Editorbereich, die vorherrschende Far-
be im Editorbereich.

TextSelection (Ausgewählter Text)
Dies ist die Hintergrundfarbe für ausgewählten Text.

CurrentLine (Aktuelle Zeile)
Setzt die Farbe für die aktuelle Zeile. Die Farbe ist ein klein wenig anders als die
normale Hintergrundfarbe, sodass Sie die aktuelle Zeile schnell wiederfinden.

65

Das Handbuch zu KatePart

SearchHighlight (Suchen-Hervorhebung)
Die Farbe für den Text, der bei der letzten Suche gefunden wurde.

ReplaceHighlight (Ersetzen-Hervorhebung)
Die Farbe für den Text, der bei der letzten Suche gefunden wurde.

Symbolrand

IconBorder (Hintergrundbereich)
Diese Farbe wird für den Hintergrund des Symbolrandes und des Zeilennummerran-
des an der linken Seite des Editorfensters verwendet.

66

Das Handbuch zu KatePart

LineNumbers (Zeilennummern)
Diese Farbe wird für die Zeilennummern am linken Rand des Editorbereiches ver-
wendet.

CurrentLineNumber (Aktuelle Zeilennummer)
Diese Farbe wird verwendet, um die Zeilennummer der aktuellen Zeile darzustellen
und wird auf der linken Seite der Ansicht eingeblendet. Wenn Sie dies etwas anders
als für„LineNumbers” einstellen, erleichtert das die aktuellen Zeile im Blick zu behal-
ten.

Separator (Trennlinie)
Diese Farbe wird verwendet, um die senkrechte Linie zu zeichnen, die den Symbol-
rand vom Hintergrund des Textbereichs trennt.

WordWrapMarker (Markierungen für Zeilenumbrüche)
Diese Farbe wird benutzt, wenn am linken Rand angezeigt wird, dass Zeilen dyna-
misch umgebrochen und eingerückt sind, sowie auch für die Markierung von festen
Zeilenumbrüchen.

CodeFolding (Quelltextausblendung)
Mit dieser Farbe wird der Abschnitt des Quelltextes hervorgehoben, der beim Klicken
auf den Pfeil zur Quelltextausblendung am linken Rand des Dokuments ausgeblen-
det wird Weitere Informationen finden Sie im Abschnitt Quelltextausblendung.

67

Das Handbuch zu KatePart

ModifiedLines (Geänderte Zeilen)
Mit dieser Farbe werden links neben dem Dokument Zeilen hervorgehoben, die in
dieser Sitzung geändert wurden aber noch nicht gespeichert sind. Weitere Informa-
tionen finden Sie unter Abschnitt 3.9.

SavedLines (Gespeicherte Zeilen)
Mit dieser Farbe werden links neben dem Dokument Zeilen hervorgehoben, die in
dieser Sitzung geändert wurden und bereits gespeichert sind. Weitere Informationen
finden Sie unter Abschnitt 3.9.

Textdekorationen

SpellChecking (Linie für Rechtschreibfehler)
Dies legt die Farbe der Linie fest, die zum Markieren von Rechtschreibfehlern ver-
wendet wird.

TabMarker (Markierungen für Tabulatoren und Leerzeichen)
Diese Farbe wird für dir Markierung von Tabulatoren und Leerzeichen verwendet,
wenn Symbole für Wortzwischenräume angezeigt werden.

68

Das Handbuch zu KatePart

IndentationLine (Einrückungslinie)
Diese Farbe wird verwendet,um eine Linie links von eingerückten Textblöcken anzu-
zeigen, wenn diese Funktion aktiviert ist.

BracketMatching (Hervorhebung für Klammern)
Diese Farbe wird für den Hintergrund von zusammengehörenden Klammern ver-
wendet.

69

Das Handbuch zu KatePart

Markierungsfarben

MarkBookmark (Lesezeichen)
Mit dieser Farbe werden Lesezeichen angezeigt. Beachten Sie, dass diese Farbe eine
Deckkraft von 22 % (und 33 % für die aktuelle Zeile) in Bezug auf den Hintergrund
hat. Weitere Informationen finden Sie unter Abschnitt 3.6.

MarkBreakpointActive (Aktiver Haltepunkt)
In dieser Farbe wird vom GDB-Modul ein aktiver Haltepunkt angezeigt, Beachten
Sie, dass diese Farbe eine Deckkraft gegenüber dem Hintergrund hat. Weitere Infor-
mationen finden Sie in der Dokumentation zum GDB-Modul.

MarkBreakpointReached (Erreichter Haltepunkt)
In dieser Farbe wird vom GDB-Modul ein Haltepunkt angezeigt, der bei der Fehler-
suche erreicht wurde. Beachten Sie, dass diese Farbe eine Deckkraft gegenüber dem
Hintergrund hat. Weitere Informationen finden Sie in der Dokumentation zum GDB-
Modul.

MarkBreakpointDisabled (Nicht aktiver Haltepunkt)
In dieser Farbe wird vom GDB-Modul ein nicht aktiver Haltepunkt angezeigt, Be-
achten Sie, dass diese Farbe eine Deckkraft gegenüber dem Hintergrund hat. Weitere
Informationen finden Sie in der Dokumentation zum GDB-Modul.

MarkExecution (Ausführung)
In dieser Farbe wird vom GDB-Modul die zur Zeit ausgeführte Zeile angezeigt, Be-
achten Sie, dass diese Farbe eine Deckkraft gegenüber dem Hintergrund hat Weitere
Informationen finden Sie in der Dokumentation zum GDB-Modul.

MarkWarning (Warnung)
Mit dieser Farbe wird vom Erstellen-Modul eine Zeile eingefärbt, für die Compiler
eine Warnung ausgegeben hat. Beachten Sie, dass diese Farbe eine Deckkraft gegen-
über dem Hintergrund hat. Weitere Informationen finden Sie in der Dokumentation
zum Erstellen-Modul.

MarkError (Fehler)
Mit dieser Farbe wird vom Erstellen-Modul eine Zeile eingefärbt, für die Compiler
einen Fehler ausgegeben hat Beachten Sie, dass diese Farbe eine Deckkraft gegenüber
dem Hintergrund hat. Weitere Informationen finden Sie in der Dokumentation zum
Erstellen-Modul.

Textvorlagen & Textbausteine

70

help:/kate/kate-application-plugin-gdb.html
help:/kate/kate-application-plugin-gdb.html
help:/kate/kate-application-plugin-gdb.html
help:/kate/kate-application-plugin-gdb.html
help:/kate/kate-application-plugin-gdb.html
help:/kate/kate-application-plugin-build.html
help:/kate/kate-application-plugin-build.html

Das Handbuch zu KatePart

TemplateBackground (Hintergrund)
In dieser Farbe wird der Hintergrund eines Textbausteins in Kate angezeigt. Weitere
Informationen dazu finden Sie in der Dokumentation zu Kate-Textbausteinen.

TemplatePlaceholder (Editierbarer Platzhalter)
In dieser Farbe wird ein Platzhalter eines Textbausteins in Kate angezeigt, den Sie zur
manuellen Bearbeitung anklicken können. Weitere Informationen dazu finden Sie in
der Dokumentation zu Kate-Textbausteinen.

TemplateFocusedPlaceholder (Editierbarer Platzhalter mit Fokus)
In dieser Farbe wird der gerade bearbeitete Platzhalter eines Textbausteins in Ka-
te angezeigt Weitere Informationen dazu finden Sie in der Dokumentation zu Kate-
Textbausteinen.

TemplateReadOnlyPlaceholder (Nicht editierbarer Platzhalter)
Diese Farbe wird im Textbausteinmodul von Kate verwendet, um Platzhalter zu
kennzeichnen, der nicht manuell editiert werden kann und zum Beispiel automatisch
ausgefüllt wird. Weitere Informationen finden Sie in der Dokumentation zu Kate-
Textbausteinen.

6.3.4.2 Standardtextstile

Die Stile für Standardtext sind von den Stilen für Hervorhebungen abgeleitet, sodass der Editor
Texte immer in der gleichen Form anzeigen kann. So sind zum Beispiel Kommentare unabhängig
vom Textformat oder der Programmiersprache des Quelltextdokuments immer in der gleichen
Farbe gekennzeichnet.

ANMERKUNG
Diese Textstile können von den Standardstilen in den Definitionen der XML-Dateien zur Syntax-
hervorhebung referenziert werden. Zum Beispiel entspricht das Attribut „Normal” dem Attribut „dsNor-
mal” in den XML-Dateien, und „DataType” entspricht „dsDataType”. Weitere Informationen finden Sie
in der Abschnitt 6.2.3.3Dokumentation zur Syntaxhervorhebung.

71

help:/kate/kate-application-plugin-snippets.html
help:/kate/kate-application-plugin-snippetshtml
help:/kate/kate-application-plugin-snippets.html
help:/kate/kate-application-plugin-snippets.html
help:/kate/kate-application-plugin-snippets.html
help:/kate/kate-application-plugin-snippets.html

Das Handbuch zu KatePart

TIP
Achten Sie darauf, lesbare Farben mit gutem Kontrast zu wählen, besonders in Kombination mit dem
Editor-Farben. Siehe auch Abschnitt 6.3.6.1.

In der JSON-Datei, hat der jeweilige Schlüssel text-styles als Wert ein Objekt, wobei jeder
Schlüssel dem Namen eines Standard-Textstils in den in den Definitionen für die Syntaxhervorhe-
bung entspricht. Hier sind alle verfügbaren Stil-Schlüsselwörter für Text obli
gatorisch , diese sind unten aufgeführt.

"text -styles": {
"Normal" : {

"text -color" : "#1f1c1b",
"selected -text -color" : "#ffffff",
"bold" : false ,
"italic" : false ,
"underline" : false ,
"strike -through" : false

},
"Keyword" : {

"text -color" : "#1f1c1b",
"selected -text -color" : "#ffffff",
"bold" : true

},
"Function" : {

"text -color" : "#644a9b",
"selected -text -color" : "#452886"

},
The other text style keys...

}

Jeder Schlüssel des Standardtextstils enthält ein JSON-Objekt als Wert, in dem Werte wie
color, bold, italic, usw. angegeben werden. Es gibt folgende Schlüssel:

text-color: Eine Zeichenfolge mit der Textfarbe im hexadezimalen Farbcode. Dieser
Schlüssel/Wert ist erforderlich.
selected-text-color: Die Textfarbe für ausgewählten Text hat in der Regel den glei-
chen Wert wie „text-color”. Wenn der Text ausgewählt ist, wird der Hintergrund durch
den Wert von TextSelection in der Editor-Farben definiert, daher sollte der Text einen guten
Kontrast haben und mit diesem Hintergrund gut lesbar ist. Der Wert ist eine Zeichenfolge
mit einem hexadezimalen Farbcode. Dieser Schlüssel/Wert muss angegeben werden.
bold: Ein Boolescher Wert, der festlegt, ob der Text in Fettschrift angezeigt wird. Dieser
Schlüssel ist optional, der Standardwert ist false.
italic: Ein Boolescher Wert, der festlegt, ob der Text kursiv angezeigt wird. Dieser Schlüs-
sel ist optional, der Standardwert ist false.
underline: Ein Boolescher Wert, der festlegt, ob der Text in unterstrichen angezeigt wird.
Dieser Schlüssel ist optional, der Standardwert ist false.
strike-through: Ein Boolescher Wert, der festlegt, ob der Text in durchgestrichen ange-
zeigt wird. Dieser Schlüssel ist optional, der Standardwert ist false.
background-color: Bestimmt die Hintergrundfarbe von Text und wird zum Beispiel in
Warnungen (Alerts) in Kommentaren verwendet. Der Wert ist eine Zeichenfolge mit einem
hexadezimalen Farbcode. Dieser Schlüssel ist optional, als Voreinstellung gibt es keine Hin-
tergrundfarbe.

72

Das Handbuch zu KatePart

selected-background-color: Bestimmt die Hintergrundfarbe von ausgewähltem
Text. Der Wert ist eine Zeichenfolge mit einem hexadezimalen Farbcode. Dieser Schlüssel
ist optional, als Voreinstellung gibt es keine Hintergrundfarbe.

In der GUI zur Verwaltung der Farbthemen von KTextEditor können diese Attribute auf der Kar-
teikarte Standardtextstile geändert werden. Der Name in der Liste der Stile verwendet den
für das Element eingerichteten Stil, so dass Sie beim Ändern eines Stils sofort eine Vorschau er-
halten. Jeder Stil ermöglicht die Auswahl gemeinsamer Attribute sowie von Vorder- und Hinter-
grundfarben. Um eine Hintergrundfarbe zu deaktivieren, klicken Sie mit der rechten Maustaste,
um das Kontextmenü zu verwenden.
Folgende Schlüssel für Textstile sind verfügbar: Die Schlüssel aus der JSON-Datei sind fett ge-
schrieben, die Namen in der GUI sind in Klammern angegeben, falls sie anders sind.

Normaltext & Quelltext
Normal: Standard-Textstil für normalen Text und Quelltext ohne besondere Hervorhebung.
Keyword: Textstil für eingebaute Sprach-Schlüsselwörter.
Function: Textstil für Funktionsaufrufe und -definitionen.
Variable: Textstil für Variablen, falls zutreffend. Zum Beispiel beginnen Variablen in
PHP/Perl typischerweise mit einem $, also werden alle Bezeichner mit dem Muster $foo
als Variable hervorgehoben.
ControlFlow (Kontrollfluss): Textstile für Schlüsselwörter den Programmablauf wie zum
Beispiel if, then, else, return, switch, break, yield, continue, usw.
Operator: Textstil für Operatoren wie +, -, *, / , % usw.
BuiltIn > (Built-in): Textstil eingebaute Funktionen, Klassen und Objekte.
Extension: Textstil für bekannte Erweiterungen wie zum Beispiel Qt™-Klassen und
Funktionen/Makros in C++ und Python oder Boost.
PreprocessorTextstil für Präprozessor-Anweisungen oder Makro-Definitionen.
Attribute: Textstil für Anmerkungen oder Attribute von Funktionen oder Objekten wie
zum Beispiel @override in Java oder __declspec(...) und __attribute__((...)
) in C++.

Zahlen, Typen & Konstanten
DataType (Datentyp): Textstil für eingebaute Datentypen wie int, char, float, void, u64 usw.
DecVal (Dezimal/Wert): Textstil für Dezimalwerte.
BaseN (Base-N Integer): Textstil für Werte mit einer anderen Zahlenbasis als 10.
Float (Fließkommazahl): Textstil für Gleitkommawerte.
Constant: Textstile für Konstanten in Sprachen oder für benutzerdefinierte Konstanten
wie zum Beispiel True, False, None in Python oder nullptr in C/C++; oder mathematische
Konstanten wie PI.

Zeichenfolgen & Zeichen
Char (Zeichen): Textstil für einzelne Zeichen wie ’x’.
SpecialChar (Sonderzeichen): Textstil für maskierte Zeichen in Zeichenfolgen, z.B. „he
llo ”, und andere Zeichen mit besonderer Bedeutung in Zeichenfolgen, z. B. Ersetzungen
oder Regex-Operatoren.
String:Textstil für Zeichenfolgen wie „Hallo Welt”.
VerbatimString (Wörtliche Zeichenfolge): Textstile für wörtliche oder unveränderte
Zeichenfolgen wie raw \backlash in Perl, CoffeeScript und Shells wie auch r’\raw’
in Python oder wie in HERE-Dokumenten.
SpecialString (Besondere Zeichenfolge): Textstil für besondere Zeichenfolgen wie re-
guläre Ausdrücke in ECMAScript, im LATEX-Mathematikmodus, SQL, usw.

Import (Importe, Module, Includes): Textstil für Includes, Importe, Module oder LATEX-
Pakete.

73

Das Handbuch zu KatePart

Kommentare & Dokumentation
Comment: Textstile für normale Kommentare.
Documentation: Textstil für Kommentare zur API-Dokumentation wie z. B. /** doxyg
en comments */ oder ˝˝˝docstrings˝˝˝.
Annotation: Textstil für Anmerkungen in Kommentaren oder Dokumentationsbefehle
wie @param in Doxygen oder JavaDoc.
KommentarVar (Kommentar-Variable): Textstil, der auf Variablennamen verweist, die in
obigen Befehlen in einem Kommentar verwendet werden, wie z. B. foobar in „@param
foobar” in Doxygen oder JavaDoc.
RegionMarker (Bereichsmarkierungr): Textstil für das Markieren von Bereichen, typi-
scherweise definiert durch/ /BEGIN und / /END in Kommentaren.
Information:Textstil für Notizen und Hinweise wie zum Beispiel Schlüsselwörter wie
@note in Doxygen.
Warning: Textstil für Warnungen wie das Schlüsselwort @warning in Doxygen.
Alert: Textstil für spezielle Wörter in Kommentaren wie TODO, FIXME, XXXX und WARNI
NG.

Verschiedenes
Error: Textstil für Hervorhebungen von Fehlern und für fehlerhafter Syntax.
Others: Textstile für Attribute, die nicht für einen der anderen Standardstile zutreffen.

6.3.4.3 Benutzerdefinierte Textstile für Hervorhebungen

Hier können Sie Textstile für eine bestimmte Syntaxhervorhebung festlegen Definition festlegen
und damit den Standard-Textstil überschreiben wie in dem vorherigen Abschnitt beschrie-
ben.
In der JSON-Schemadatei entspricht dies dem Schlüssel custom-styles, dessen Wert ein ein
Objekt ist, wobei jeder Unterschema-Schlüssel mit dem Name einer Syntaxhervorhebung
sdefinition korrespondiert. Sein Wert ist ein Objekt, bei dem jeder Schlüssel auf den Name
des Stilattributs verweist, der in den itemData-Elementen der der Syntaxhervorhebung-
sXML-Datei definiert ist. Der jeweilige Wert ist ein Unterobjekt mit den Schlüsseln text-color,
selected-text-color, bold, italic, underline, strike-through, background-color und selected-background-
color, definiert im vorherigen Abschnitt. Jeder dieser Werte ist optional, denn wenn sie nicht
vorhanden sind, wird der in text-styles eingestellte Stil berücksichtigt.

Zum Beispiel hat die Syntaxhervorhebungsdefinition für „ISO C++” in diesem Quelltext einen
speziellen Textstil für die Attribute „Type Modifiers” und „Standard Classes”. In der zugehörigen
XML-Datei „isocpp.xml” verwendet das definierte Attribut „Standard Classes” den Standardstil
BuiltIn (oder dsBuiltIn). In diesem Attribut wird nur der Wert von text-color durch die
neue Farbe „#6431b3” überschrieben .

"custom -styles": {
"ISO C++": {

"Standard Classes": {
"text -color": "#6431b3"

},
"Type Modifiers": {

"bold": true ,
"selected -text -color": "#009183",
"text -color": "#00b5cf"

}
}

}

74

Das Handbuch zu KatePart

ANMERKUNG

• Sie sollten beachten, dass diese Textstile den Attributnamen zugeordnet sind, die in den XML -
Syntaxhervorhebungsdateien definiert sind. Wenn eine XML-Datei aktualisiert und einige Attribute
umbenannt oder entfernt werden, ist der im eigenen Schema definierte Stil nicht mehr gültig.

• Definitionen für Syntaxhervorhebung enthalten oft andere Definitionen. Die Syntaxhervorhebung für
„QML” zum Beispiel enthält die Syntaxhervorhebung für „JavaScript”, da beide die gleichen Funk-
tionen für die Hervorhebung verwenden.

In der GUI zum Verwalten von Schemata von KTextEditor können Sie diese Attribute auf der
Karteikarte Textstile für Hervorhebungen verwalten. Als Voreinstellung wird die Her-
vorhebung des aktuellen Dokuments vom Editor eingestellt. Sie werden feststellen, dass viele
Hervorhebungen andere Hervorhebungen enthalten, die durch Gruppen in der Stilliste repräsen-
tiert werden. Zum Beispiel importieren die meisten Hervorhebungen die Hervorhebung „Alert”
und viele Quelltextformate importieren die Hervorhebung „Doxygen”.

6.3.5 Die GUI der Farbschemata

Farbschemata lassen sich am einfachsten über die GUI im „Einrichtungs”-Dialog von KTextEdi-
torerstellen und bearbeiten. .Um diesen Dialog zu öffnen, wählen Sie Einstellungen→ Anwendu
ng einrichten ... aus der Menüleiste in Ihrer Textverarbeitung. Wählen Sie dann Farbschema in
der Seitenleiste.

Kates Einrichtungsdialog mit der Bearbeitung von Farbschemata.

In diesem Dialog können Sie alle alle Farben in einem beliebigen Schema einstellen, neue Sche-
mata erstellen/kopieren, löschen, sie in eine .theme-Datei im JSON Format exportieren oder aus
externen .theme-Dateien importieren. Jedes Schema hat Einstellungen für Textfarben und Stile.

Die eingebauten Schemata können als Voreinstellung nicht geändert werden. Dazu müssen Sie
sie unter einem neuen Namen kopieren.

75

https://api.kde.org/frameworks/ktexteditor/html/
https://api.kde.org/frameworks/ktexteditor/html/

Das Handbuch zu KatePart

Um ein Farbschema dauerhaft in im Texteditor zu verwenden, müssen Sie es im Kombinations-
feld mit der Bezeichnung Standardschema für Anwendung am unteren Rand des Dialogs auswäh-
len und dann Anwenden oder OK drücken. Standardmäßig wird die Automatische Auswahl
aktiviert. Damit wird ein geeigneteres Farbschema passend zum KDE Plasma-Farbschema für die
Textbearbeitung gewählt. Normalerweise wird zwischen „Breeze-Hellt” und „Breeze-Dunkel”
gewählt.

TIP
Sie können das globale Farbschema für KDE im Modul Farben in den Systemeinstellungen anpassen.
Für einzelne Anwendungen wie Kate und KDevelop können Sie ein Schema auch mit Einstellungen
→ Farbschema ändern.

6.3.5.1 Ein neues Schema erstellen

Um ein neues Farbschema zu erstellen, müssen Sie zuerst ein vorhandenes Schema kopie-
ren, Wählen Sie ein vorhandenes Schema aus, das Sie als Grundlage verwenden möchten wie
„Breeze-Hell” oder „Breeze-Dunkel”. Klicken Sie dann auf Kopieren und geben den Namen für
das neue Schema ein.
Möchten Sie ein eingebautes oder nur lesbares Schema verändern, müssen Sie es zuerst unter
einem anderen Namen kopieren.

6.3.5.2 JSON-Schemadateien importieren oder exportieren

Mit Exportieren können Sie ein ausgewähltes Schema einschließlich der eingebauten Schemata in
eine JSON-Datei mit der Dateierweiterung .theme exportieren. Damit öffnen Sie einen Dialog
zum Speichern der Datei. Um eine Farbschema aus einer externen JSON-Datei hinzuzufügen,
drücken Sie den Knopf Importieren und wählen dann die .theme-Datei im Dialog.

TIP

• Wie oben erwähnt, werden benutzerdefinierte Farbschema-Dateien im Ordner org.kde.syntax-
highlighting/themes/ abgelegt. Wenn Sie ein Farbschema kopieren oder neu erstellen, wird
es automatisch dort gespeichert. Auch das Importieren oder Hinzufügen eines Farbschemas ent-
spricht dem Kopieren einer externen .theme-Datei in diesen Ordner. KSyntaxHighlighting holt sich
automatisch Schemadateien aus diesem Ordner.

• Wenn Sie ein von Ihnen erstelltes Schema veröffentlichen wollen, ist es unbedingt erforderlich, das
Metadaten-Objekt der JSON Datei zu prüfen, eine passende Lizenz hinzuzufügen und die Revisi-
onsnummer zu überprüfen.

6.3.5.3 Bearbeitung von Farbschemata

6.3.5.3.1 Farben

Hier können die Farben des Editorbereichs angepasst werden. Mehr Informationen dazu finden
Sie in Abschnitt 6.3.4.1.

6.3.5.3.2 Standardtextstile

Die Stile für Standardtext sind von den Stilen für Hervorhebungen abgeleitet, sodass der Editor
Texte immer in der gleichen Form anzeigen kann. So sind zum Beispiel Kommentare unabhängig

76

help:/kcontrol/colors/

Das Handbuch zu KatePart

vom Textformat oder der Programmiersprache des Quelltextdokuments immer in der gleichen
Farbe gekennzeichnet.

Der Name in der Liste der Stile wird so wie Elemente im Dokument mit diesem Kontext ange-
zeigt. So erhalten Sie sofort eine Vorschau beim Bearbeiten.

Zu jedem Stil können Sie Eigenschaften sowie Vordergrund- und Hintergrundfarbe einstellen.
Um eine Hintergrundfarbe zu löschen, benutzen Sie die rechte Maustaste, um das Kontextmenü
aufzurufen.
Die Attribute in diesem Bereich werden in Abschnitt 6.3.4.2 erläutert.

6.3.5.3.3 Textstile für Hervorhebungen

Hier können Sie die Textstile für bestimmte Hervorhebungsdefinitionen einstellen. Der Editor
startet diese Seite mit der Hervorhebung für das aktuelle Dokument. Wenn Sie an einer anderen
Hervorhebungsdefinition Veränderungen vornehmen wollen, dann wählen Sie diese mit dem
Auswahlfeld Hervorhebung aus.

Der Name in der Liste der Stile wird so wie Elemente im Dokument mit diesem Kontext ange-
zeigt. So erhalten Sie sofort eine Vorschau beim Bearbeiten.

Zu jedem Stil können Sie Eigenschaften sowie Vordergrund- und Hintergrundfarbe einstellen.
Um eine Hintergrundfarbe zu löschen, benutzen Sie die rechte Maustaste, um das Kontextmenü
aufzurufen. Zusätzlich gibt es noch ein Feld, das anzeigt, ob der eingestellte Stil der Standardde-
finition entspricht - wenn nicht klicken Sie einfach auf dieses Feld, um die Standardeinstellungen
herzustellen.
Sie werden feststellen, dass viele Hervorhebungen andere Hervorhebungen enthalten, die in Un-
tergruppen geordnet sind. So werden zum Beispiel die Hervorhebungen für Warnungen (Alerts)
in die meisten Hervorhebungen importiert, viele Quelltexte importieren außerdem die Hervorhe-
bungen für Doxygen. Wenn Sie Änderungen an den importierten Hervorhebungen vornehmen,
dann werden nur die Stile im bearbeiteten Format beeinflusst. Andere Formate, die die gleichen
Hervorhebungen importiert haben, werden nicht beeinflusst.

6.3.6 Tipps & Tricks

6.3.6.1 Kontrast von Textfarben

Ein wichtiger Aspekt bei der Arbeit mit Farbschemata ist die Wahl eines Textkontrasts, der die
Lesbarkeit des Textes erleichtert, insbesondere in Kombination mit dem Hintergrund.

Kontrast ist eine Anwendung zur Überprüfung von Farbkontrasten. Damit erkennen Sie, ob
die Kombinationen aus Textfarbe und Hintergrundfarbe lesbar und zugänglich sind, daher ist
dies ein ausgezeichnetes Werkzeug für die Erstellung von Farbschemata.

Sie können Kontrast von der KDE-Webseite mit Anwendungen oder als Flatpak-Paket auf Fla-
thub herunterladen (nur für GNU/Linux).

Die GNOME-Anwendung Contrast funktioniert ähnlich. Sie können sie als Flatpak-Paket auf
Flathub herunterladen (nur für GNU/Linux).

6.3.6.2 Vorschläge zur Konsistenz bei der Syntaxhervorhebung

KSyntaxHighlighting enthält mehr als 300 Definitionen für Syntaxhervorhebung, daher sollten
Sie dafür sorgen, dass Ihr neues Schema in allen Definitionen der Syntaxhervorhebung gut aus-
sieht. Die eingebauten Farbschemata haben folgende Gemeinsamkeiten, die Sie beachten sollten,
um eine eine korrekte Darstellung aller Definitionen der Syntaxhervorhebung zu erhalten:

• Verwenden Sie Fettschrift für „Keyword” und „ControlFlow” als Textstile.

77

https://apps.kde.org/de/kontrast
https://flathub.org/apps/details/org.kde.kontrast
https://flathub.org/apps/details/org.kde.kontrast
https://flathub.org/apps/details/org.kde.kontrast
https://flathub.org/apps/details/org.kde.kontrast
https://kate-editor.org/syntax/

Das Handbuch zu KatePart

• Benutzen Sie keine Hintergrundfarbe in einem Textstil, außer bei „Alert” und „RegionMar-
ker”.

Die meisten der Syntaxhervorhebungen sind für die Standarddesigns „Breeze-Hell” und
„Breeze-Dunkel” optimiert.Daher sollten Sie für die Einheitlichkeit ähnlicher Farben verwen-
den wie in den Textstilen, wie grün für „Präprozessor” und „Andere”, blau für „Datentyp” und
„Attribut” oder purpur für „Funktion”.

Beachten Sie, dass diese Empfehlungen nicht zwingend für das Erstellen und Veröffentlichen
eines Schemas sind.

6.4 Scripting mit JavaScript

Die Editorkomponente von KatePart kann durch Skripte erweitert werden. Als Skriptsprache
wird ECMAScript verwendet, das auch unter dem Namen JavaScript bekannt ist. In KatePart
können zwei Arten von Skripten benutzt werden: Einrückungs- und Befehlszeilenskripte.

6.4.1 Einrückungsskripte

Mit Einrückungsskripten wird der Quelltext automatisch bei der Eingabe eingerückt. Nach
Drücken der Eingabetaste wird die Einrückungstiefe zum Beispiel oft vergrößert.

Die folgenden Abschnitte beschreiben Schritt für Schritt, wie das Gerüst für ein einfaches Ein-
rückungsskript entsteht. Zuerst wird eine neue *.js-Datei z. B. mit dem Namen $XDG_DATA_HOM
E /katepart5/script/indentation erzeugt. Darin wird die Umgebungsvariable XDG_DATA_HOME
normalerweise entweder zu ~/.local oder ~/.local/share erweitert.

Auf Windows®-Systemen finden Sie diese Dateien unter %USERPROFILE%\AppData\Local\katepa
rt5\indentation. Dabei ist %USER% normalerweise C:\\Users\\user.

6.4.1.1 Der Vorspann des Einrückungsskripts

Der Vorspann der Datei javascript.js ist als JSON am Anfang des Dokumentes eingebettet und
hat folgende Form:

var katescript = {
"name": "JavaScript",
"author": "Example Name <example.name@some.address.org >",
"license": "BSD License",
"revision": 1,
"kate -version": "5.1",
"required -syntax -style": "javascript",
"indent -languages": ["javascript"],
"priority": 0,

}; // kate -script -header , muss am Anfang der Datei stehen und darf keine ←↩
Kommentare enthalten

Jede Zeile wird jetzt im Detail erklärt:

• name [erforderlich]: Dies ist der Name des Skripts, der im Menü Extras→ Einrückung und im
Einrichtungsdialog angezeigt wird.

• author [optional]: Der Name des Autors und weitere Kontaktinformationen.

• license [optional]: Kurzform der Lizenz, wie zum Beispiel BSD-Lizenz oder LGPLv3.

78

Das Handbuch zu KatePart

• revision [erforderlich]: Die Version des Skripts, sie sollte bei jeder Änderung des Skripts er-
höht werden.

• kate-version [required]: Minimal erforderliche KatePart-Version.

• required-syntax-style [optional]: Der erforderliche Sytaxstil, der zum angebenen style in
Syntaxhervorhebungs-Stildateien passt. Dies ist wichtig für Einrückungsskripte, die besonde-
re Informationen über die Hervorhebung im Dokument benötigen. Wenn ein erforderlicher
Syntaxstil angegeben ist, ist das Einrückungsskript nur verfügbar, wenn auch die zugehörige
Hervorhebung aktiviert ist. Dies verhindert ein „nicht definiertes Verhalten” beim Verwenden
einer Einrückung ohne das erwartete Hervorhebungschema. Ein Beispiel dafür ist das Ein-
rückungsskript für Ruby, das diese Option in den Dateien ruby.js und ruby.xml benutzt.

• indent-languages [optional]: JSON-Feld von Syntaxstilen, die das Skript richtig einrücken
kann, z. B.: [˝c++˝, ˝java˝].

• priority [optional]: Wenn es mehrere Einrückungsskripte für eine bestimmte hervorgehobene
Datei gibt, bestimmt die Priorität, welches Skript als Standard verwendet wird.

6.4.1.2 Der Quelltext des Einrückungsskripts

Nachdem der Vorspann beschrieben wurde, erklärt dieser Abschnitt wie das Einrückungsskript
selbst funktioniert. Die Basisvorlage für den Quelltext sieht so aus:

// benötigt die Bibliothek „ katepart js“ z. B. range.js wenn ←↩
Range benutzt wird

require ("range.js");

triggerCharacters = "{}/:;";
function indent(line , indentWidth , ch)
{

// wird für jedem Zeilenumbruch (ch == ’\n’) und alle in der
// globalen Variable triggerCharacters festgelegten Zeichen aufgerufen. ←↩

Wenn ExtrasAusrichten
// gewählt wird , ist die Variable ch leer , d. h. ch == ’’.
//
// siehe auch: Skript -API
return -2;

}

Die Funktion indent() hat drei Argumente:

• line: die Zeile die eingerückt werden soll

• indentWidth: die Einrückungstiefe mit der Anzahl der Leerzeichen

• ch: entweder das Zeichen für Zeilenumbruch (ch == ’\n’), ein in triggerCharacters festge-
legtes Zeichen oder ein leeres Zeichen, wenn der Benutzer die Aktion Extras→ Ausrichten
aufgerufen hat.

Der Rückgabewert der Funktion indent() bestimmt, wie die Zeile eingerückt wird. Ist dieser
Wert eine Ganze Zahl, wird sie wie folgt interpretiert:

• Rückgabewert -2: keine Aktion

• Rückgabewert -1: Einrückung beibehalten (sucht nach vorherigen nicht leeren Zeilen)

• Rückgabewert 0: eine Zahl >= 0 gibt die Anzahl der Leerzeichen zum Einrücken an

79

Das Handbuch zu KatePart

Alternativ kann ein Feld mit zwei Elementen zurückgegeben werden:

• Rückgabewert [indent, align];

In diesem Fall ist das erste Element die Einrückungstiefe wie oben mit derselben Bedeutung
spezieller Werte. Das zweite Element ist ein absoluter Wert für die Spalte der „Ausrichtung”. Ist
dieser Wert größer als der Einrückungswert, legt die Differenz der Werte die Anzahl von Leerzei-
chen fest, die zum ersten Wert für die gesamte Einrückung hinzuaddiert werden. Anderenfalls
wird der zweite Rückgabewert ignoriert. Die Benutzung von Tabulator- und Leerzeichen wird
oft als „Mischmodus” bezeichnet.

Betrachten Sie das folgende Beispiel: Angenommen das Tabulatorzeichen wird zur Einrückung
verwendet und die Tabulatorweite beträgt 4. Hier steht <tab> für den Tabulator und ’.’ für ein
Leerzeichen:

1: <tab><tab>foobar("hello",
2: <tab><tab >......." world");

Beim Einrücken der Zeile 2 gibt die Funktion indent() [8, 15] zurück. Daher werden zwei Tabu-
latoren für das Einrücken bis Spalte 8 und noch zusätzlich 7 Leerzeichen hinzugefügt. Dadurch
steht der zweite Parameter unter dem ersten und bleibt auch so ausgerichtet, wenn die Datei mit
einer anderen Tabulatorweite angezeigt wird.

In der Standardinstallation von KDE wird KatePart mit einigen Einrückungsskripten installiert.
Die entsprechenden JavaScript-Quelltexte finden Sie unter $XDG_DATA_DIRS /katepart5/scrip
t/indentation.

Auf Windows®-Systemen finden Sie diese Dateien unter %USERPROFILE%\AppData\Local\katepa
rt5\indentation. Dabei ist %USER% normalerweise C:\\Users\\user.
Bei der Entwicklung eines Einrückungsskripts muss das Skript wieder neu geladen werden, um
testen zu können, ob es richtig funktioniert. Anstatt das ganze Programm neu zu starten, wech-
seln Sie zur Befehlszeile und geben reload-scripts ein.

Wenn Sie nützliche Skripte entwickelt haben, sollten Sie darüber nachdenken, sie zum KatePart-
Projekt hinzufügen. Schreiben Sie dazu an die Mailingliste.

6.4.2 Befehlszeilenskripte

Da nicht alle gewünschten Funktionen in KatePart eingebaut werden können, ist es möglich,
kleine Hilfsskripte für die schnelle Änderung von Textes mit der eingebauten Befehlszeile aus-
zuführen. Der Befehl sort ist zum Beispiel als Skript geschrieben. Dieser Abschnitt erklärt, wie
*.js-Dateien erstellt werden, um die Fähigkeiten von KatePart mit beliebigen Hilfsskripten zu
erweitern.
Befehlszeilenskripte werden im gleichen Ordner wie Einrückungsskripte gespeichert. Zuerst er-
stellen Sie eine neue *.js-Datei namens myutils.js im lokalen persönlichen Ordner $XDG_DATA_
HOME /katepart5/script/commands. Darin wird die Umgebungsvariable XDG_DATA_HOME norma-
lerweise entweder zu ~/.local oder ~/.local/share erweitert.

Auf Windows®-Systemen finden Sie diese Dateien unter %USERPROFILE%\AppData\Local\katepa
rt5\commands. Dabei ist %USERPROFILE% normalerweise C:\\Users\\user.

6.4.2.1 Der Vorspann des Befehlszeilenskripts

Der Vorspann jedes Befehlszeilen-Skripts ist in der JSON-Datei am Anfang des Skripts so einge-
bettet:

80

mailto:kwrite-devel@kde.org

Das Handbuch zu KatePart

var katescript = {
"author": "Example Name <example.name@some.address.org >",
"license": "LGPLv2+",
"revision": 1,
"kate -version": "5.1",
"functions": ["sort", "moveLinesDown"],
"actions": [

{ "function": "sort",
"name": "Sort Selected Text",
"category": "Editing",
"interactive": "false"

},
{ "function": "moveLinesDown",

"name": "Move Lines Down",
"category": "Editing",
"shortcut": "Ctrl+Shift+Down",
"interactive": "false"

}
]

}; // kate -script -header , muss am Anfang der Datei stehen und darf keine ←↩
Kommentare enthalten

Jede Zeile wird jetzt im Detail erklärt:

• author [optional]: Der Name des Autors und weitere Kontaktinformationen.

• license [optional]: Kurzform der Lizenz, wie zum Beispiel BSD-Lizenz oder LGPLv2.

• revision [erforderlich]: Die Version des Skripts, sie sollte bei jeder Änderung des Skripts er-
höht werden.

• kate-version [required]: Minimal erforderliche KatePart-Version.

• functions [erforderlich]: JSON-Feld der Befehle im Skript.

• actions [optional]: JSON-Feld mit JSON-Objekten, das die Aktionen festlegt, die im Anwen-
dungsmenü erscheinen sollen. Weitergehende Informationen finden Sie im Abschnitt Kurzbe-
fehle festlegen.

Da der Inhalt von functions ein JSON-Feld ist, kann ein einzelnes Skript eine beliebige Anzahl
von Befehlen für die Befehlszeile enthalten. Jede Funktion ist durch die eingebaute Befehlszeile
in KatePart verfügbar.

6.4.2.2 Der Quelltext des Skripts

Alle im Vorspann aufgeführten Funktionen müssen im Skript implementiert werden. Im oben
gezeigten Skript müssen zum Beispiel die beiden Funktionen sort und moveLinesDown imple-
mentiert werden. Alle Funktionen haben folgende Syntax:

// benötigt die Bibliothek „ katepart js“ z. B. range.js wenn ←↩
Range benutzt wird

require ("range.js");
function <name >(arg1 , arg2 , ...)
{

// ... Implementierung , siehe auch: Skript -API
}

81

Das Handbuch zu KatePart

Argumente in der Befehlszeile werden der Funktion als arg1, arg2 usw. übergeben. Um für jeden
Befehl eine Dokumentation zu Verfügung zu stellen, verwenden Sie die Funktion „help“ wie im
folgenden Beispiel:

function help(cmd)
{

if (cmd == "sort") {
return i18n("Sortiert den ausgewählten Text.");

} else if (cmd == "...") {
// ...

}
}

Durch den Aufruf von help sort auf der Befehlszeile wird dann diese Hilfefunktion mit dem
Argument cmd für den verwendeten Befehl benutzt, d. h. mit cmd == ˝sort˝ . zeigt Kate den
zurückgegebenen Text als Hilfe für den Benutzer an. Denken Sie daran, die Texte zu übersetzen .

Bei der Entwicklung eines Befehlszeilenskripts muss das Skript wieder neu geladen werden,
um testen zu können, ob es richtig funktioniert. Anstatt das ganze Programm neu zu starten,
wechseln Sie zur Befehlszeile und geben reload-scripts ein.

6.4.2.2.1 Kurzbefehle festlegen

Das Skript braucht einen passenden Skript-Header, der die Skripte über das Anwendungsmenü
verfügbar macht. Im Beispiel erscheinen die Funktionen sort und moveLinesDown im Menü. Das
wird durch den folgenden Skript-Header erreicht:

var katescript = {
...
"actions": [

{ "function": "sort",
"name": "Sort Selected Text",
"icon": "",
"category": "Editing",
"interactive": "false"

},
{ "function": "moveLinesDown",

"name": "Move Lines Down",
"icon": "",
"category": "Editing",
"shortcut": "Ctrl+Shift+Down",
"interactive": "false"

}
]

};

Die Felder für eine Aktion lauten wie folgt:

• function [erforderlich]: Die Funktion, die im Menü Extras→ Skripte erscheint.

• name [erforderlich]: Der Text, der im Menü Skript angezeigt wird.

• icon [optional]: Dieses Symbol erscheint neben dem Text im Menü. Alle KDE-Symbolnamen
können hier benutzt werden.

• category [optional]: Wenn eine Kategorie angegeben ist, dann erscheint das Skript in einem
Untermenü.

• shortcut [optional]: Der hier angegebene Kurzbefehl ist der Standard. Beispiel: Ctrl+Alt+T.
Sehen Sie in der Qt-Dokumentation für weitere Einzelheiten nach.

82

https://doc.qt.io/qt-5/qt.html#Key-enum

Das Handbuch zu KatePart

• interactive [optional]: Wenn das Skript Benutzereingaben auf der Befehlszeile braucht, dann
setzen Sie diesen Parameter auf true.

Wenn Sie nützliche Skripte entwickelt haben, sollten Sie darüber nachdenken, sie zum KatePart-
Projekt hinzufügen. Schreiben Sie dazu an die Mailingliste.

6.4.3 Skript-API

Die hier vorgestellte Programmierschnittstelle (API) ist in allen Skripten verfügbar, d. h. in
Einrückungs- und Befehlszeilenskripten. Die Klassen Cursor und Range werden durch die Bi-
bliotheksdateien in $XDG_DATA_DIRS /katepart5/libraries bereit gestellt. Wenn Sie sie in Ihren
Skripten verwenden möchten, was für einige der Funktionen Document oder View erforderlich ist,
fügen Sie bitte die benötigte Bibliothek wie folgt ein:

// benötigt die Bibliothek „ katepart js“ z. B. range.js wenn ←↩
Range benutzt wird

require ("range.js");

Um die Standard-Skript-API mit eigenen Funktionen und Prototypen zu erweitern, erzeugen Sie
eine neue Datei im lokalen Einrichtungsordner für KDE $XDG_DATA_HOME /katepart5/libraries
und schließen Sie sie in Ihr Skript mit folgendem Befehl ein:

require ("myscriptnamehere.js");

Auf Windows®-Systemen finden Sie diese Dateien unter %USERPROFILE%\AppData\Local\katepa
rt5\libraries. Dabei ist %USERPROFILE% normalerweise C:\\Users\\user.
Um vorhandene Prototypen wie Cursor oder Range zu erweitern, wird empfohlen, nicht die glo-
balen *.js-Dateien zu ändern. Ändern Sie stattdessen den Cursor-Prototyp in JavaScript, nach-
dem cursor.js in Ihrem Skript mit require eingefügt ist.

6.4.3.1 Cursor und Bereiche

Da KatePart ein Texteditor ist, basiert die Skript-API soweit möglich auf Cursor und Bereichen.
Ein Cursor ist ein einfaches Tupel (Zeile, Spalte) für eine Textposition im Dokument. Ein Be-
reich umfasst Text vom Start bis zum Ende der Cursor-Position. Die Programmschnittstelle wird
in den nächsten Abschnitten im Einzelnen erläutert.

6.4.3.1.1 Der Cursor-Prototyp

Cursor();

Konstruktor. Gibt einen Cursor an der Position (0, 0) zurück.
Beispiel: var cursor = new Cursor();

Cursor(int zeile, int spalte);

Konstruktor. Gibt einen Cursor an der Position (zeile, spalte) zurück.
Beispiel: var cursor = new Cursor(3, 42);

Cursor(Cursor other);

Kopierkonstruktor. Gibt die Kopie des Cursors other zurück.
Beispiel: var copy = new Cursor(cursor);

83

mailto:kwrite-devel@kde.org

Das Handbuch zu KatePart

Cursor Cursor.clone();

Gibt einen Klon des Cursors zurück.
Beispiel: var clone = cursor.clone();

Cursor.setPosition(int zeile, int spalte);

Setzt die Cursor-Position auf zeile und spalte.
Since: KDE 4.11

bool Cursor.isValid();

Überprüft, ob der Cursor gültig ist. Ein Cursor ist ungültig, wenn die Zeile und oder die
Spalte den Wert -1 haben.
Beispiel: var valid = cursor.isValid();

Cursor Cursor.invalid();

Gibt einen neuen ungültigen Cursor an der Position (-1, -1) zurück.
Beispiel: var invalidCursor = cursor.invalid();

int Cursor.compareTo(Cursor other);

Vergleicht diesen Cursor mit dem Cursor other. Gibt folgende Werte zurück:

• -1, wenn dieser Cursor sich vor dem Cursor other befindet,
• 0, wenn beide Cursor an der gleichen Stelle stehen und
• +1, wenn dieser Cursor sich hinter dem Cursor other befindet.

bool Cursor.equals(Cursor other);

Gibt true zurück, wenn dieser Cursor und der Cursor other gleich sind, sonst false.

String Cursor.toString();

Gibt den Cursor als Zeichenfolge in der Form „Cursor(zeile, spalte)” zurück.

6.4.3.1.2 Der Bereich-Prototyp

Range();

Konstruktor. Der Aufruf new Range() gibt einen Bereich von (0, 0) - (0, 0) zurück.

Range(Cursor start, Cursor ende);

Konstruktor. Der Aufruf new Range(start, end) gibt einen Bereich von (start, ende) zu-
rück.

Range(int startZeile, int startspalte, int endZeile, int endSpalte);

Konstruktor. Der Aufruf von new Range(startZeile, startSpalte, endZeile, endSpalt
e). Gibt den Bereich von (startZeile, startSpalte) bis (endZeile, endSpalte) zurück.

Range(Range other);

Kopierkonstruktor. Gibt eine Kopie von Range other zurück.

Range Range.clone();

Gibt einen Klon des Bereichs zurück.
Beispiel: var clone = range.clone();

bool Range.isEmpty();

Gibt true zurück, wenn der Start- und der End-Cursor gleich sind.
Beispiel: var empty = range.isEmpty();

Since: KDE 4.11

84

Das Handbuch zu KatePart

bool Range.isValid();

Gibt true zurück, wenn sowohl Start- als auch End-Cursor gültig sind, sonst false.
Beispiel: var valid = range.isValid();

Range Range.invalid();

Gibt den Bereich von (-1, -1) bis (-1, -1) zurück.

bool Range.contains(Cursor cursor);

Gibt true zurück, wenn dieser Bereich die Cursor-Position enthält, sonst false.

bool Range.contains(Range other);

Gibt true zurück, wenn dieser Bereich den Bereich other enthält, sonst false.

bool Range.containsColumn(int spalte);

Gibt true zurück, wenn spalte in dem halboffenen Intervall [start.spalte, end.spalte)
liegt, sonst false.

bool Range.containsLine(int zeile);

Gibt true zurück, wenn zeile in dem halboffenen Intervall [start.zeile, end.zeile)
liegt, sonst false.

bool Range.overlaps(Range other);

Gibt true zurück, wenn dieser Bereich und der Bereich other sich überlappen, sonst false.

bool Range.overlapsLine(int zeile);

Gibt true zurück, wenn zeile in dem Intervall [start.zeile, end.zeile] liegt, sonst fa
lse.

bool Range.overlapsColumn(int spalte);

Gibt true zurück, wenn spalte in dem Intervall [start.spalte, end.spalte] liegt, sonst
false.

bool Range.onSingleLine();

Gibt true zurück, wenn der Bereich in der gleichen Zeile beginnt und endet, d. h. wenn
Range.start.line == Range.end.line ist.
Seit: KDE 4.9

bool Range.equals(Range other);

Gibt true zurück, wenn dieser Bereich und der Bereich other gleich sind, sonst false.

String Range.toString();

Gibt den Bereich als Zeichenfolge in der Form „Range(Cursor(zeile, spalte), Cursor(z
eile, spalte))” zurück.

6.4.3.2 Globale Funktionen

Dieser Abschnitt listet alle globalen Funktionen auf.

6.4.3.2.1 Lesen & Einfügen von Dateien

String read(String datei);

Sucht nach der angegebenen datei relativ zum Ordner katepart/script/files und gibt
den Inhalt der Datei als String zurück.

void require(String datei);

Sucht die angegebene datei relativ zum Ordner katepart/script/libraries und wertet
sie aus. require verhindert intern, dass die gleiche datei mehrfach eingeschlossen wird.
Seit: KDE 4.10

85

Das Handbuch zu KatePart

6.4.3.2.2 Fehlersuche

void debug(String text);

Gibt den text auf der Standardausgabe stdout in der Konsole aus, von der das Programm
gestartet wurde.

6.4.3.2.3 Übersetzung

Die Lokalisierung wird durch einige Funktionen zum Übersetzen von Zeichenfolgen in Skripten
unterstützt, so durch i18n, i18nc, i18np und i18ncp. Diese Funktionen arbeiten genau wie auf
der Seite KDE’s Übersetzungsfunktionen beschrieben.

Die Übersetzungsfunktionen übersetzen die eingepackten Zeichenfolgen durch KDE’s Überset-
zungssystem in die Sprache, die in der Anwendung benutzt wird. Zeichenfolgen in Skripten, die
in den offiziellen KatePart-Quellen entwickelt werden, werden automatisch extrahiert und sind
übersetzbar. Anders gesagt, müssen Sie sich als Entwickler von KatePart nicht um das Extra-
hieren und Übersetzen kümmern. Achtung, diese Funktionalität gibt es nur innerhalb der KDE-
Infrastruktur. Neue Texte in Skripten, die von Anderen ausserhalb von KDE entwickelt wurden,
werden nicht automatisch übersetzt. Bitte denken Sie darüber nach, solche Skripte an KDE zu
geben, so dass die korrekte Übersetzung möglich wird.

void i18n(String text, arg1, ...);

Übersetzt text in die von der Anwendung benutzte Sprache. Die Argumente arg1, ..., sind
optional und werden benutzt, um die Platzhalter %1, %2 usw. zu ersetzen.

void i18nc(String context, String text, arg1, ...);

Übersetzt text in die von der Anwendung benutzte Sprache. Zusätzlich ist die Zeichen-
folge context sichtbar, so dass Übersetzer bessere Übersetzungen anfertigen können. Die
Argumente arg1, ..., sind optional und werden benutzt, um die Platzhalter %1, %2 usw.. zu
ersetzen.

void i18np(String singular, String plural, int number, arg1, ...);

Übersetzt entweder singular oder plural in die von der Anwendung benutzte Sprache.
Dies ist abhängig von der angegebenen number. Die Argumente arg1, ..., sind optional und
werden benutzt, um die Platzhalter %1, %2 usw.. zu ersetzen.

void i18ncp(String context, String singular, String plural, int number, ar-
g1, ...);

Übersetzt entweder singular oder plural in die von der Anwendung benutzte Sprache.
Dies ist abhängig von der angegebenen number. Zusätzlich ist die Zeichenfolge context

sichtbar, so dass Übersetzer bessere Übersetzungen anfertigen können. Die Argumente ar
g1, ..., sind optional und werden benutzt, um die Platzhalter %1, %2 usw.. zu ersetzen.

6.4.3.3 Die Programmschnittstelle zur Ansicht

Für jedes ausgeführte Skript gibt es eine globale Variable „view”, für die aktuelle Editoransicht.
Im Folgenden finden Sie eine Liste aller verfügbaren Funktionen für eine Ansicht.

void view.copy()

Kopiert eine vorhandene Auswahl, ansonsten die aktuelle Zeile, wenn die Einstel-
lung [] Die aktuelle Zeile kopieren/ausschneiden, wenn keine Marki
erung vorliegt aktiviert ist.
Seit KDE Frameworks 5.79

86

https://techbase.kde.org/Development/Tutorials/Localization/i18n

Das Handbuch zu KatePart

void view.cut()

Schneidet eine vorhandene Auswahl, ansonsten die aktuelle Zeile aus, wenn die Ein-
stellung [] Die aktuelle Zeile kopieren/ausschneiden, wenn keine Mar
kierung vorliegt aktiviert ist.
Seit KDE Frameworks 5.79

void view.paste()

Inhalt der Zwischenablage einfügen.
Seit KDE Frameworks 5.79

Cursor view.cursorPosition()

Gibt die aktuelle Position des Cursors in der Ansicht zurück.

void view.setCursorPosition(int zeile, int spalte); void
view.setCursorPosition(Cursor cursor);

Setzt die aktuelle Position des Cursors entweder auf (zeile, spalte) oder auf den angegebe-
nen Cursor.

Cursor view.virtualCursorPosition();

Gibt die virtuelle Cursor-Position zurück, dabei wird jeder Tabulator mit der Anzahl der
Leerzeichen entsprechend der aktuellen Tabulatorweite berechnet.

void view.setVirtualCursorPosition(int zeile, int spalte); void
view.setVirtualCursorPosition(Cursor cursor);

Setzt die aktuelle Position des virtuellen Cursors entweder auf (zeile, spalte) oder auf den
angegebenen Cursor.

String view.selectedText();

Gibt den ausgewählten Text zurück. Ist kein Text ausgewählt, wird eine leere Zeichenfolge
zurückgegeben.

bool view.hasSelection();

Gibt true zurück, wenn die Ansicht ausgewählten Text enthält, sonst false.

Range view.selection();

Gibt den ausgewählten Textbereich zurück. Der zurückgegebene Bereich ist ungültig, wenn
kein Text ausgewählt ist.

void view.setSelection(Range range);

Setzt den ausgewählten Text zum angegebenen Bereich.

void view.removeSelectedText();

Entfernt den ausgewählten Text. Wenn in der Ansicht kein Text ausgewählt ist, passiert
nichts.

void view.selectAll();

Wählt den gesamten Text im Dokument aus.

void view.clearSelection();

Löscht die Textauswahl, aber nicht den Text selbst.

object view.executeCommand(String command, String args, Range range);

Führt den Befehl command mit den optionalen Argumenten args und range aus. Das zu-
rückgegebene objecthat die boolesche Eigenschaft object.ok, mit der angegeben wird,
ob der Befehl command erfolgreich ausgeführt wurde. Bei einem Fehler enthält object.sta
tus die Fehlermeldung.
Seit KDE Frameworks 5.50

87

Das Handbuch zu KatePart

6.4.3.4 Die Programmschnittstelle zum Dokument

Für jedes ausgeführte Skript gibt es eine globale Variable „document”, die das aktuelle Dokument
verweist. Im Folgenden finden Sie eine Liste aller verfügbaren Funktionen für ein Dokument.

String document.fileName();

Gibt den Dateinamen des Dokuments zurück oder eine leere Zeichenfolge für nicht gespei-
cherte Textpuffer.

String document.url();

Gibt die vollständige URL des Dokuments zurück oder eine leere Zeichenfolge für nicht
gespeicherte Textpuffer.

String document.mimeType();

Gibt den MIME-Typ des Dokuments zurück oder application/octet-stream, wenn kein
passender MIME-Typ gefunden wurde.

String document.encoding();

Gibt die aktuell verwendete Kodierung zum Speichern der Datei zurück.

String document.highlightingMode();

Gibt den globalen Hervorhebungsmodus für das gesamte Dokument zurück.

String document.highlightingModeAt(Cursor pos);

Gibt den Hervorhebungsmodus an der angegebenen Cursor-Position im Dokument zu-
rück.

Array document.embeddedHighlightingModes();

Gibt ein Feld von Hervorhebungsmodi zurück, die in diesem Dokument eingebettet sind..

bool document.isModified();

Gibt true zurück, wenn das Dokument ungespeicherte Änderungen enthält, sonst false.

String document.text();

Gibt den gesamten Inhalt des Dokuments in einer einzigen Zeichenfolge zurück. Zeilenum-
brüche werden mit dem zugehörigen Zeichen „\n” markiert.

String document.text(int vonZeile, int vonSpalte, int bisZeile, in-
t bisSpalte); String document.text(Cursor von, Cursor bis); String
document.text(Range range);

Gibt den Text im angegebenen Bereich zurück. Es wird empfohlen, die Cursor- und Be-
reichsbasierte Version zu benutzen, dadurch ist der Quelltext besser lesbar.

String document.line(int zeile);

Gibt die angegebene Textzeile als Zeichenfolge zurück. Die Zeichenfolge ist leer, wenn die
angeforderte Zeile außerhalb des Bereichs liegt.

String document.wordAt(int zeile, int spalte); String document.wordAt(C-
ursor cursor);

Gibt das Wort an der angegebenen Cursor-Position zurück.

Range document.wordRangeAt(int zeile, int spalte); Range
document.wordRangeAt(Cursor cursor);

Gibt den Bereich des Wortes an der angegebenen Cursor-Position zurück. Der zurückge-
gebene Bereich ist ungültig (siehe Range.isValid()), wenn die Textposition nach dem Zei-
lenende liegt. Befindet sich an der angegebenen Cursor-Position kein Wort, wird ein leere
Bereich zurückgegeben.
Seit: KDE 4.9

88

Das Handbuch zu KatePart

String document.charAt(int zeile, int spalte); String document.charAt(C-
ursor cursor);

Gibt das Zeichen an der aktuellen Cursor-Position zurück.

String document.firstChar(int zeile);

Gibt in der angegebenen zeile das erste Zeichen zurück, das kein Leerraumzeichen ist.
Wenn die Zeile leer ist oder nur Leerraumzeichen enthält, wird eine leere Zeichenfolge
zurückgegeben.

String document.lastChar(int zeile);

Gibt in der angegebenen zeile das letzten Zeichen zurück, das kein Leerraumzeichen ist.
Wenn die Zeile leer ist oder nur Leerraumzeichen enthält, wird eine leere Zeichenfolge
zurückgegeben.

bool document.isSpace(int zeile, int spalte); bool document.isSpace(Curs-
or cursor);

Gibt true zurück, wenn das Zeichen an der angegebenen Cursor-Position ein Leerraumzei-
chen ist, sonst false.

bool document.matchesAt(int line, int column, String text); bool
document.matchesAt(Cursor cursor, String text);

Gibt true zurück, wenn der angegebene text mit der zugehörigen Cursor-Position über-
einstimmt, sonst false.

bool document.startsWith(int zeile, String text, bool skipWhiteSpaces);

Gibt true zurück, wenn die Zeile mit text beginnt, sonst false. Das Argument skipWhit
eSpaces bestimmt, ob führende Leerraumzeichen ignoriert werden.

bool document.endsWith(int zeile, String text, bool skipWhiteSpaces);

Gibt true zurück, wenn die Zeile mit text endet, sonst false. Das Argument skipWhiteS
paces bestimmt, ob angehängte Leerraumzeichen ignoriert werden.

bool document.setText(String text);

Setzt den Text für das gesamte Dokument.

bool document.clear();

Löscht den gesamten Text im Dokument.

bool document.truncate(int zeile, int spalte); bool document.truncate(C-
ursor cursor);

Schneidet die angegebene Zeile an der Spalte oder an der Cursor-Position ab. War das er-
folgreich, wird true zurückgegeben, oder false, wenn die angegeben Zeile nicht im Bereich
des Dokuments liegt.

bool document.insertText(int zeile, int spalte, String text); bool
document.insertText(Cursor cursor, String text);

Fügt den text an der angegebenen Cursor-Position ein. War das erfolgreich, wird true
zurückgegeben, oder false, wenn das Dokument im Nur-Lesen-Modus geöffnet wurde.

bool document.removeText(int vonZeile, int vonSpalte, int bisZeile, i-
nt bisSpalte); bool document.removeText(Cursor von, Cursor bis); bool
document.removeText(Range bereich);

Löscht den Text im angegebenen Bereich. War das erfolgreich, wird true zurückgegeben,
oder false, wenn das Dokument im Nur-Lesen-Modus geöffnet wurde.

bool document.insertLine(int zeile, String text);

Fügt Text in einer angegebenen Zeile ein. War das erfolgreich, wird true zurückgegeben,
oder false, wenn das Dokument im Nur-Lesen-Modus geöffnet wurde oder die Zeile nicht
mehr im Bereich des Dokuments liegt.

89

Das Handbuch zu KatePart

bool document.removeLine(int zeile);

Löscht die angegebene Textzeile. War das erfolgreich, wird true zurückgegeben, oder fals
e, wenn das Dokument im Nur-Lesen-Modus geöffnet wurde oder die Zeile nicht mehr im
Bereich des Dokuments liegt.

bool document.wrapLine(int zeile, int spalte); bool document.wrapLine(C-
ursor cursor);

Bricht die Zeile an der angegebenen Cursor-Position um. War das erfolgreich, wird true
zurückgegeben, ansonsten false, z. B. wenn die angegeben Zeilennummer < 0 ist.
Seit: KDE 4.9

void document.joinLines(int startZeile, int endZeile);

Verbindet die Zeilen von startZeile bis endZeile. Zwei aufeinanderfolgende Textzeilen
werden immer mit einem einzelnen Leerzeichen getrennt.

int document.lines();

Gibt die Zeilenanzahl des Dokuments zurück.
bool document.isLineModified(int zeile);

Gibt true zurück, wenn die zeile noch nicht gespeicherte Daten enthält.
Seit: KDE 5.0

bool document.isLineSaved(int zeile);

Gibt true zurück, wenn zeile geändert und das Dokument gespeichert wurde. Folglich
enthält die aktuelle Zeile keine ungesicherten Daten.
Seit: KDE 5.0

bool document.isLineTouched(int zeile);

Gibt true zurück, wenn zeile ungesicherte Daten enthält oder geändert wurde.
Seit: KDE 5.0

void document.findTouchedLine(int startZeile, bool nach unten);

Suche nach der nächsten Zeile, die ungesicherte Daten enthält oder geändert wurde. Die
Suche wird in der startZeile begonnen und in der Richtung durchgeführt, die in nach
unten angegeben ist.
Seit: KDE 5.0

int document.length();

Gibt die Anzahl der Zeichen des Dokuments zurück.
int document.lineLength(int zeile);

Gibt die Länge der zeile zurück.

void document.editBegin();

Beginnt eine Bearbeitungsgruppe für die Gruppierung von Rückgängig/Wiederherstellen.
Achten Sie darauf, editEnd() immer genauso oft wie editBegin() zu benutzen. Der Auf-
ruf von editBegin() verwendet intern einen Referenzzähler, d. h. diese Aufrufe können
geschachtelt werden.

void document.editEnd();

Beendet eine Bearbeitungsgruppe. Der letzte Aufruf von editEnd() (d. h. der Aufruf zum
ersten Aufruf von editBegin()) beendet den Bearbeitungsschritt.

int document.firstColumn(int zeile);

Gibt die erste Spalte in der angegebenen zeile zurück, die kein Leerraumzeichen enthält.
Besteht die Zeile nur aus Leerraumzeichen, wird -1 zurückgegeben.

int document.lastColumn(int zeile);

Gibt die letzte Spalte in der angegebenen zeile zurück, die kein Leerraumzeichen enthält.
Besteht die Zeile nur aus Leerraumzeichen, wird -1 zurückgegeben.

90

Das Handbuch zu KatePart

int document.prevNonSpaceColumn(int zeile, int spalte); int
document.prevNonSpaceColumn(Cursor cursor);

Gibt die Spalte zurück, die keine Leerraumzeichen enthält. Die Suche beginnt an der ange-
gebenen Cursor-Position und erfolgt dabei rückwärts.

int document.nextNonSpaceColumn(int zeile, int spalte); int
document.nextNonSpaceColumn(Cursor cursor);

Gibt die Spalte zurück, die keine Leerraumzeichen enthält. Die Suche beginnt an der ange-
gebenen Cursor-Position und erfolgt dabei vorwärts.

int document.prevNonEmptyLine(int zeile);

Gibt die nächste nicht leere Zeile zurück, die keine Leerraumzeichen enthält. Die Suche
erfolgt dabei rückwärts.

int document.nextNonEmptyLine(int zeile);

Gibt die nächste nicht leere Zeile zurück, die keine Leerraumzeichen enthält. Die Suche
erfolgt dabei vorwärts.

bool document.isInWord(String zeichen, int attribut);

Gibt true zurück, wenn das angegebene zeichen mit den angegebenen attribut Teil eines
Wortes sein kann, sonst false.

bool document.canBreakAt(String zeichen, int attribut);

Gibt true zurück, wenn die Zeile an dem angegebenen zeichen mit den angegebenen att
ribut umgebrochen werden kann, sonst false.

bool document.canComment(int startAttribut, int endAttribut);

Gibt true zurück, wenn ein mit dem angegebenen Attribut beginnender und endender
Bereich auskommentiert werden kann, sonst false.

String document.commentMarker(int attribut);

Gibt das Kommentarzeichen für einzeilige Kommentare für ein angegebenes attribut zu-
rück.

String document.commentStart(int attribut);

Gibt das Kommentarzeichen für den Beginn von mehrzeiligen Kommentaren für ein ange-
gebenes attribut zurück.

String document.commentEnd(int attribut);

Gibt das Kommentarzeichen für das Ende von mehrzeiligen Kommentaren für ein angege-
benes attribut zurück.

Range document.documentRange();

Gibt einen Bereich zurück, der dass gesamte Dokument umfasst.

Cursor documentEnd();

Gibt einen Cursor zurück, der an der letzten Spalte in der letzten Zeile des Dokuments
positioniert ist.

bool isValidTextPosition(int zeile, int spalte); bool
isValidTextPosition(Cursor cursor);

Gibt true zurück, wenn der Cursor an eine gültigen Position innerhalb eines Textes posi-
tioniert ist. Eine Textposition ist nur dann gültig, wenn der Cursor am Anfang, in der Mitte
oder am Ende einer gültigen Zeile positioniert ist. Weiterhin ist eine Textposition ungültig,
wenn diese in einem Unicode-Surrogat liegt.
Seit: KDE 5.0

int document.attribute(int zeile, int spalte); int document.attribute(C-
ursor cursor);

Gibt das Attribut an der aktuellen Cursor-Position zurück.

91

Das Handbuch zu KatePart

bool document.isAttribute(int zeile, int spalte, int attribut); bool
document.isAttribute(Cursor cursor, int attribut);

Gibt true zurück, wenn das Attribut an der angegebenen Cursor-Position gleich attribut
ist, sonst false.

String document.attributeName(int zeile, int spalte); String
document.attributeName(Cursor cursor);

Gibt den Attributnamen als lesbaren Text zurück. Dies entspricht dem Namen itemData in
den Syntaxhervorhebungs-Dateien.

bool document.isAttributeName(int zeile, int spalte, String name); bool
document.isAttributeName(Cursor cursor, String name);

Gibt true zurück, wenn der Attributname an der angegebenen Cursor-Position gleich name
ist, sonst false.

String document.variable(String key);

Gibt den Wert der angefragten Dokumentvariablen key zurück. Existiert diese Variable
nicht, wird eine leere Zeichenfolge zurückgegeben.

void document.setVariable(String key, String value);

Setzt den Wert der angefragten Dokumentvariablen key.
Siehe auch: Kate-Dokumentvariable
Seit: KDE 4.8

int document.firstVirtualColumn(int zeile);

Gibt in der angegebenen Zeile die virtuelle Spalte des ersten Zeichens zurück, das kein
Leerraumzeichen ist, oder -1, wenn die Zeile leer ist oder nur Leerraumzeichen enthält.

int document.lastVirtualColumn(int zeile);

Gibt in der angegebenen Zeile die virtuelle Spalte des letzten Zeichens zurück, das kein
Leerraumzeichen ist, oder -1, wenn die Zeile leer ist oder nur Leerraumzeichen enthält.

int document.toVirtualColumn(int zeile, int spalte);
int document.toVirtualColumn(Cursor cursor); Cursor
document.toVirtualCursor(Cursor cursor);

Wandelt die angegebene „reale” Cursor-Position in eine virtuelle Cursor-Position um und
gibt entweder einen „int“-Wert oder ein Cursor-Objekt zurück.

int document.fromVirtualColumn(int zeile, int virtuelleSpalte);
int document.fromVirtualColumn(Cursor virtuellerCursor); Cursor
document.fromVirtualCursor(Cursor virtuellerCursor);

Wandelt die angegebene virtuelle Cursor-Position in eine „reale” Cursor-Position um und
gibt entweder einen „int“-Wert oder ein Cursor-Objekt zurück.

Cursor document.anchor(int zeile, int spalte, Char zeichen); Cursor
document.anchor(Cursor cursor, Char zeichen);

Sucht rückwärts nach dem angegebenen Zeichen und beginnt dabei an dem angegebenen
Cursor. Wenn zum Beispiel „(“ als Zeichen ist, gibt diese Funktion die Position der öffnen-
den Klammer „(“. Dabei wird das Vorkommen mitgezählt, d. h. andere Klammern „(...)“
werden ignoriert.

Cursor document.rfind(int zeile, int spalte, String text, int attribu-
t = -1); Cursor document.rfind(Cursor cursor, String text, int attribut =
-1);

Sucht rückwärts nach dem angegeben Text mit dem passenden attribut. Ein Attribut mit
dem Wert -1wird dabei ignoriert. Es wird ein ungültiger Cursor zurückgegeben, wenn der
Text nicht gefunden wurde.

92

Das Handbuch zu KatePart

int document.defStyleNum(int zeile, int spalte); int
document.defStyleNum(Cursor cursor);

Gibt den Standardstil zurück, der an der angegebenen Cursor-Position benutzt wird.

bool document.isCode(int zeile, int spalte); bool document.isCode(Cursor
cursor);

Gibt true zurück, wenn das Attribut an der angegeben Cursor-Position nicht den folgenden
Stilen entspricht: dsComment, dsString, dsRegionMarker, dsChar, dsOthers.

bool document.isComment(int zeile, int spalte); bool
document.isComment(Cursor cursor);

Gibt true zurück, wenn das Attribut des Zeichens an der Cursor-Position dsComment ist,
sonst false.

bool document.isString(int zeile, int spalte); bool document.isString(C-
ursor cursor);

Gibt true zurück, wenn das Attribut des Zeichens an der Cursor-Position dsString ist,
sonst false.

bool document.isRegionMarker(int zeile, int spalte); bool
document.isRegionMarker(Cursor cursor);

Gibt true zurück, wenn das Attribut des Zeichens an der Cursor-Position dsRegionMarker
ist, sonst false.

bool document.isChar(int zeile, int spalte); bool document.isChar(Cursor
cursor);

Gibt true zurück, wenn das Attribut des Zeichens an der Cursor-Position dsChar ist, sonst
false.

bool document.isOthers(int zeile, int spalte); bool document.isOthers(C-
ursor cursor);

Gibt true zurück, wenn das Attribut des Zeichens an der Cursor-Position dsOthers ist,
sonst false.

6.4.3.5 Die Programmschnittstelle zum Editor

Zusätzlich zur Programmierschnittstelle für das Dokument und die Ansicht gibt es eine weitere
Schnittstelle mit Funktionen für Skripte des Editors.

String editor.clipboardText();

Gibt den aktuellen Text aus der globalen Zwischenablage zurück.
Seit KDE Frameworks 5.50

String editor.clipboardHistory();

Der Editor enthält den Verlauf der Zwischenablage mit bis zu 10 Eintragen. Diese Funktion
gibt alle Einträge zurück, die aktuell im Verlauf der Zwischenablage vorhanden sind.
Seit KDE Frameworks 5.50

void editor.setClipboardText(String text);

Setzt den Inhalt der Zwischenablagen auf den Wert text, der auch zum Verlauf hinzuge-
fügt wird.
Seit KDE Frameworks 5.50

93

Das Handbuch zu KatePart

Kapitel 7

Einrichten von KatePart

Die Auswahl von Einstellungen→ Anwendung einrichten ... im Menü öffnet das Einrichtungs-
fenster;. In diesem Dialogfenster können eine ganze Reihe von Einstellungen vorgenommen wer-
den. Die angezeigten Einstellungsmöglichkeiten hängen von der Auswahl eines links in der Lis-
te angezeigten Symbols ab. Die drei Knöpfe am unteren Rand des Dialogfeldes rufen die Hil-
fe auf, machen die aktuellen Einstellungen mit OK gütig, oder brechen mit Abbrechen den
Einstellungs-Prozess ab.

Sie können das Hilfesystem aufrufen, die aktuellen Einstellungen mit OK übernehmen und das
Dialogfeld schließen, oder den Knopf Abbrechen benutzen, um das Dialogfeld zu schließen,
ohne Änderungen zu speichern. Die zur Auswahl stehenden Kategorien - Erscheinungsbild,
Schriften & Farben, Bearbeitung, Öffnen/Speichern und Erweiterungen sind nachfolgend er-
läutert.

7.1 Einstellungen für die Editor-Komponente

Diese Gruppe enthält alle Seiten, auf denen die Einstellungen zum Editor von KatePart vorge-
nommen werden. Für die meisten der Einstellungen gibt es Standardwerte, die durch Festlegen
von Datentypen, Dokumentvariablen oder durch dokumentbezogene Einstellungen verändert
werden können.

7.1.1 Erscheinungsbild

7.1.1.1 Schriftart

Hier stellen Sie die Schriftarten für den Text im Editor ein. Sie können jede Schriftart verwenden,
die auf Ihrem System verfügbar ist und Sie können eine Standardgröße einstellen. Unten im
Dialog wird ein Beispiel in der gewählten Schrift angezeigt, sodass Sie die Auswirkungen Ihrer
Wahl sofort sehen.
Weitere Informationen dazu finden Sie im Abschnitt Auswahl von Schriftarten der KDE-
Grundlagen.

7.1.1.2 Allgemein

Dynamischer Zeilenumbruch
Wenn eingeschaltet, dann werden die Zeilen am rechten Bildschirmrand automatisch um-
gebrochen.

94

help:/fundamentals/fonts.html
help:/fundamentals/fonts.html

Das Handbuch zu KatePart

Kennzeichnung für dynamischen Zeilenumbruch:
Wählen Sie hier, ob die Markierungen für den dynamischen Zeilenumbruch angezeigt
werden sollen, entweder Aus, Zeilennummern folgen or Immer aktiv.

Dynamisch umbrochene Zeilen an der Einrückungstiefe ausrichten:
Dynamisch umgebrochene Zeilen werden auf die Einrückungsposition der ersten
Zeile des Abschnittes eingerückt. Dadurch werden Quelltexte besser lesbar.
Zusätzlich können sie hier ein Maximum angeben, ab dem die neuen Zeilen nicht
weiter eingerückt werden. Wenn Sie hier zum Beispiel 50 % angeben, dann werden
Zeilen nicht weiter eingerückt, deren Einrückung weiter als 50 % der Bildschirmbreite
sein würde.

Leerraum-Hervorhebung

Tabulatoren hervorheben
Im Editor wird ein »-Symbol für einen vorhandenen Tabulator angezeigt.

Leerzeichen am Zeilenende hervorheben
Im Editor werden Punkte angezeigt, wenn zusätzliche Leerzeichen am Zeilenende
vorhanden sind.

Größe der Hervorhebungsmarkierungen
Ändern Sie mit dem Schieberegler die Größe der sichtbaren Markierung für Hervor-
hebungen.

Erweitert

Einrückungslinien anzeigen
Wenn dieses Feld angekreuzt ist, dann werden im aktuellen Dokument senkrechte
Linien angezeigt, die Ihnen helfen, eingerückte Zeilen zuzuordnen.

Bereich zwischen zusammengehörenden Klammern hervorheben
Ist diese Einstellung markiert, wird der Bereich zwischen den ausgewählten, zusam-
mengehörenden Klammern hervorgehoben.

Zusammengehörige Klammern animieren

Ist dies aktiviert, werden mit dem Mauszeiger auf Klammern ({, [,], },(oder)) die zugehö-
rigen schließenden Klammern hervorgehoben.

Erste Zeile ausblenden
Ist die aktiviert, dann wird die erste Zeile ausgeblendet. Benutzen Sie diese Einstellung,
wenn die Datei mit einem Kommentar with zum Beispiel einem Copyright beginnt.

Wortanzahl anzeigen

Zeigt die Zahl der Wörter und Zeichen im Dokument und in der aktuellen Auswahl in der
Statusleiste. Diese Einstellung finden Sie auch im Kontextmenü der Statusleiste.

Zeilenanzahl anzeigen

Zeigt die Zeilenanzahl im Dokument in der Statusleiste. Diese Einstellung finden Sie auch
im Kontextmenü der Statusleiste.

7.1.1.3 Randbereiche

Randbereiche

Markierungen für Quelltextausblendungen anzeigen
Wenn dieses Feld angekreuzt ist, dann werden im aktuellen Dokument für Quelltext-
ausblendungen Markierungen angezeigt.

95

Das Handbuch zu KatePart

Vorschau des ausgeblendeten Texts anzeigen
Ist dies aktiviert, wird beim Überfahren eines ausgeblendeten Bereich eine Vorschau
des ausgeblendeten Texts in einen Fenster angezeigt.

Symbolrand anzeigen
Wenn dieses Feld angekreuzt ist, dann wird im aktuellen Dokument an der linken
Seite der Symbolrand angezeigt. Darin werden zum Beispiel Markierungen für Lese-
zeichen angezeigt.

Zeilennummern anzeigen
Wenn dieses Feld angekreuzt ist, dann werden im aktuellen Dokument an der linken
Seite Zeilennummern angezeigt.

Markierungen für geänderte Zeilen anzeigen
Ist diese Einstellung aktiv, werden Markierungen für geänderte Zeilen angezeigt.
Weitere Informationen finden Sie unter Abschnitt 3.9.

Markierung für Bildlaufleiste anzeigen
Wenn dieses Feld angekreuzt ist, dann werden im aktuellen Dokument Markierungen
in der senkrechten Bildlaufleiste angezeigt. Diese zeigen zum Beispiel Lesezeichen.

Textvorschau an der Bildlaufleiste anzeigen
Ist diese Einstellung aktiviert, wird beim Überfahren der Bildlaufleiste mit dem Maus-
zeiger eine verkleinerte Textvorschau mit mehreren Textzeilen um die Position des
Mauszeigers angezeigt. Damit können Sie schnell zu anderen Bereichen des Doku-
ments wechseln.

Textgrafik auf Bildlaufleiste anzeigen
Ist diese Einstellung aktiv, zeigen neu geöffnete Ansichten ein verkleinerte Grafik des
Texts im Dokuments auf der senkrechten Bildlaufleiste.
Weitere Informationen über die Textgrafik auf der Bildlaufleiste finden Sie im Ab-
schnitt Abschnitt 3.10.

Breite der Textgrafik:
Bestimmt die Breite der Textgrafik auf der Bildlaufleiste in Pixeln.

Anzeige der Bildlaufleisten
Schaltet die Bildlaufleisten ein, aus oder nur ein, wenn erforderlich. Klicken Sie mit
der linken Maustaste auf das blaue Rechteck, dann wird der Zeilenbereich des Doku-
mentausschnitts auf dem Bildschirm angezeigt. Halten Sie die linke Maustaste außer-
halb des blauen Rechtecks, um automatisch durch des Dokument zu blättern.

Lesezeichenmenü sortieren

Nach Erstellungszeitpunkt
Jedes neue Lesezeichen wird am Ende der Liste hinzugefügt.

Nach Position
Die Lesezeichen werden nach Zeilennummern geordnet.

7.1.2 Farbschemata

Dieser Abschnitt erlaubt die Einstellung aller Farben in jedem Ihrer Farbschemata. Sie können
auch neue Schemata erstellen oder bereits existierende löschen. Jedes Schema hat Einstellungen
für Farben sowie normale und hervorgehobene Textstile.

KatePart startet diese Seite mit dem aktuell aktiven Farbschema. Wenn Sie an einem anderen
Farbschema Veränderungen vornehmen wollen, dann wählen Sie dieses mit im Auswahlfeld
Schema. Mit den Knöpfen Neu und Löschen können Sie neue Schemata als Kopie eines vorhan-
denen Schemas erstellen oder vorhandene entfernen.
Unten auf dieser Seite wählen Sie das Standardschema für Anwendung.

Dies wird ausführlich in diesem Abschnitt Abschnitt 6.3.5 beschrieben.

96

Das Handbuch zu KatePart

7.1.3 Bearbeitungseinstellungen

7.1.3.1 Allgemein

Statischer Zeilenumbruch
Zeilenumbruch ist eine Funktion, die bewirkt, dass der Editor automatisch eine neue Text-
zeile beginnt und den Cursor an den Anfang dieser neuen Zeile verschiebt. Wenn diese
Option aktiv ist, beginnt KatePart automatisch eine neue Zeile, sobald die aktuelle Zeile
die Länge erreicht, die im Feld Zeilenumbruch bei: angegeben ist.

Statischen Zeilenumbruch aktivieren
Schaltet den statischen Zeilenumbruch ein und aus.

Markierung für statischen Zeilenumbruch anzeigen (falls zutreffend)
Wenn eingeschaltet, dann wird eine senkrechte Linie in der Spalte, an der der Zeile-
numbruch erfolgt, angezeigt. Die Position wird in Einstellungen→ Editor einrich-
ten ... auf der Karte Bearbeitung festgelegt. Die Markierung wird nur dann angezeigt,
wenn Sie eine Schrift mit fester Buchstabenbreite verwenden.

Zeilenumbruch bei:
Wenn die Option Statischen Zeilenumbruch aktivieren eingeschaltet ist, dann wird
hier eingestellt, bei welcher Zeilenlänge in Zeichen der Editor automatisch eine neue
Zeile beginnt.

Eingabemodus

Der hier ausgewählte Eingabemodus wird aktiviert, wenn eine neue Ansicht geöffnet wird.
Sie können den VI-Eingabemodus weiterhin über das Menü Bearbeiten für jede Ansicht
separat ein-/ausschalten.

Automatische Klammern
Wenn dies Option aktiv ist, setzt KatePart beim Eingeben einer linken Klammer ([, (oder
{) automatisch eine rechte Klammer des gleichen Typs (},), or]) rechts vom Cursor. Diese
braucht dann zum Schließen der Klammer nur noch übersprungen zu werden.
Ist Text ausgewählt, wird bei Eingabe dieser Zeichen der Text umgebrochen.

Kopieren und Einfügen

Die aktuelle Zeile kopieren/ausschneiden, wenn keine Markierung vorliegt
Ist diese Einstellung aktiv und kein Text ausgewählt, werden die Aktionen Kopieren
und Ausschneiden für die ganze Textzeile an der aktuellen Cursorposition ausge-
führt.

7.1.3.2 Textnavigation

Text-Cursor-Bewegung

Intelligente Tasten Pos 1 und Ende
Wenn dieses Feld angekreuzt ist, dann bewegt das Drücken der Taste Pos1 den Cursor
an den Beginn des Textes in der aktuellen Zeile, Leerzeichen und Tabulatoren davor
werden übersprungen.

97

Das Handbuch zu KatePart

Cursor folgt Bild auf/ab
Diese Option ändert das Verhalten des Cursors, wenn der Benutzer die Tasten Bild
auf oder Bild ab drückt. Wenn diese Option ausgeschaltet ist, dann bleibt der Cursor
an der gleichen Stelle innerhalb des sichtbaren Bildes, es wird also der Text unter
dem Cursor verschoben. Bei Erreichen des Textendes oder Textanfangs kann dies aber
nicht immer funktionieren. Bei eingeschalteter Option wird der Cursor beim ersten
Drücken der Taste an den Bildanfang oder das Bildende bewegt. Erst beim nächsten
Betätigen wird dann der Text bewegt.

Cursor-Bewegung mit Binnenmajuskeln (Camel Case) aktivieren
Diese Einstellung ändert das Verhalten des Cursors, wenn der Benutzer die Tasten-
kombination Strg-Pfeil links oder Strg-Pfeil rechts drückt. Wenn diese Einstellung
nicht ausgewählt ist, springt der Textcursor über die ganzen Wörter. Wenn diese Ein-
stellung ausgewählt ist, springt der Cursor zu den Binnenmajuskeln (Großbuchstaben
innerhalb eines Wortes).

Automatische Cursor-Zentrierung:
Setzt die Anzahl der Zeilen, die der Cursor Abstand vom oberen oder unteren Bild-
rand hält, wenn möglich.

Textmarkierungsmodus

Normal
Die Auswahl wird durch Texteingaben überschrieben und geht beim Bewegen des
Cursors verloren.

Beständig
Die Auswahl bleibt auch beim Bewegen des Cursors und bei Texteingaben bestehen.

Rollen über das Dokumentende hinaus zulassen
Mit dieser Einstellung ist es möglich, über das Dokumentende hinaus zu blättern.
Damit kann das Ende des Dokuments im Fenster zentriert oder bis zum Anfang der
Ansicht hochgeschoben werden.

Rücktaste löscht Basis- und zugehöriges diakritische Zeichen
Ist dies aktiviert, werden zusammengesetzte Zeichen mit den zugehörigen diakriti-
schen Zeichen gelöscht, nicht nur die Basiszeichen allein. Dies ist nützlich für indische
Schriften.

7.1.3.3 Einrückung

Standard-Einrückungsmodus:

Hier wählen Sie den Einrückungsmodus, den Sie als Standard benutzen wollen. Es wird
empfohlen, dass Sie hier Kein oder Normal einstellen und die Einstellungen für Dateity-
pen benutzen, um andere Einrückungen, wie zum Beispiel C/C++-Quelltext oder XML zu
wählen.

Einrücken mit

Tabulatoren
Wenn dieses Feld angekreuzt ist, setzt der Editor Tabulatorzeichen ein, wenn die Taste
Tab gedrückt oder die Automatische Einrückung benutzt wird.

Leerzeichen
Wenn dieses Feld angekreuzt ist, setzt der Editor eine berechnete Anzahl von Leerzei-
chen ein, wenn die Taste Tab gedrückt oder Automatische Einrückung benutzt wird.
Die Anzahl der Leerzeichen wird aus der Position im Text und der Einstellung für
Tabulatorweite berechnet.

98

Das Handbuch zu KatePart

Tabulatoren und Leerzeichen
Ist diese Einstellung aktiv, werden Leerzeichen wie oben beschrieben eingefügt, wenn
die Tabtaste am Zeilenanfang gedrückt oder Einrückung benutzt wird. Wird die
Tabtaste mitten in der Zeile oder am Zeilenende gedrückt, werden Tabulatorzeichen
eingefügt.

Tabulatorweite:
Hier wird die Anzahl der Leerzeichen angegeben, die für ein Tabulatorzeichen ange-
zeigt werden.

Einrückungstiefe:
Die Einrückungstiefe ist die Anzahl Leerzeichen, die zum Einrücken einer Zeile ver-
wendet wird. Ist das Einrücken mit Tabulator eingestellt , wird für die Einrückung ein
Tabulator-Zeichen verwendet, sofern die Einrückungstiefe durch die Tabulatorweite
teilbar ist.

Einrückungseigenschaften

Zusätzliche Leerzeichen beibehalten
Ist diese Einstellung nicht aktiv, richtet die Änderung der Einrückungsebene eine Zei-
le an einem Vielfachen der angegebenen Einrückungstiefe aus.

Einrückung von Text vornehmen, der aus der Zwischenablage eingefügt wird
Ist diese Einstellung ausgewählt, wird aus der Zwischenablage eingefügter Text ein-
gerückt. Durch die Aktion Rückgängig kann die Einrückung rückgängig gemacht
werden.

Einrückungs-Aktionen

Rücktaste verringert Einrückungsebene (im führenden Leerbereich einer eingerückten Zeile)
Ist diese Einstellung markiert, verringert die Rücktaste die Einrückungsebene, wenn
der Cursor in den Leerzeichen am Anfang einer Zeile steht.

Aktion der Tabulator-Taste (wenn keine Markierung vorliegt)
Wenn Sie möchten, dass die Tabtaste die aktuelle Zeile im aktuellen Quelltextblock
wie in Emacs ausrichtet, weisen Sie der Tabtaste den Kurzbefehl Ausrichten zu.

Immer zur nächsten Tabulatorposition vorrücken
Ist diese Einstellung aktiv, fügt die Tabulator-Taste immer Leerzeichen bis zum
nächsten Tabulatorstop ein. Ist die Einstellung Leerzeichen statt Tabulatoren
für Einrückung verwenden auf der Karteikarte Allgemein der Seite Bearbei-
tung aktiv, werden Leerzeichen eingefügt, anderenfalls ein einzelner Tabulator.

Einrückungsebene immer erhöhen
Ist diese Einstellung aktiv, fügt die Tab-Taste immer die unter Einrückungstiefe
angegebene Anzahl Leerzeichen ein.

Einrückungsebene erhöhen, wenn im Leerzeichenbereich am Zeilenanfang
Ist die Einstellung markiert, rückt die Taste Tab entweder die aktuelle Zeile ein
oder springt zur nächsten Tabulatorposition. Wird der Tabulator an oder vor der
Position des ersten Zeichens eingefügt, dass kein Leerzeichen ist, oder liegt ei-
ne Markierung vor, wird die aktuelle Zeile um die Anzahl Zeichen eingerückt,
die unter Einrückungstiefe: angegeben ist. Wird der Tabulator nach dem ers-
ten Zeichen, dass kein Leerzeichen ist, eingefügt und es liegt keine Markierung
vor, werden Leerräume bis zum Erreichen der nächsten Tabulatorposition ein-
gefügt. Ist die Einstellung Leerzeichen statt Tabulatoren für Einrückung ver-
wenden auf der Karteikarte Allgemein der Seite Bearbeitung aktiviert, werden
Leerzeichen eingefügt, anderenfalls ein Tabulatorzeichen.

99

Das Handbuch zu KatePart

7.1.3.4 Autovervollständigung

Allgemein

Autovervollständigung aktivieren
Ist dies aktiviert, erscheint bei der Eingabe automatisch eine Liste mit Texteinträgen,
mit denen der aktuelle Text unter dem Cursor vervollständigt werden kann.

Ersten Vervollständigungseintrag automatisch wählen
Wenn dies aktiviert ist, wird das erste Element der automatischen Vervollständigung
immer vorausgewählt, so dass Sie es mit Eingabe einfügen können. Wenn Sie ein
solches Verhalten nicht möchten, z. B. wenn Sie mit Eingabe nur einen Zeilenumbruch
einfügen wollen, dann deaktivieren Sie diese Einstellung.

Minimale Wortlänge für Vervollständigung

Bei der Texteingabe sucht die Wortvervollständigung im Dokument nach Wörtern, die mit
dem bereits eingegebenen Text beginnen. Diese Einstellung legt die minimale Anzahl der
einzugebenden Zeichen fest, ab der die Wortvervollständigung aktiviert und das Feld mit
passenden Vorschlägen angezeigt wird.

Bei Vervollständigung Wortende entfernen

Entfernt ein bestehendes Wortende, wenn eine Vervollständigung aus der Liste gewählt
wird

Schlüsselwortvervollständigung

Die eingebaute automatische Vervollständigung verwendet die Schlüsselwörter, die in der
Syntaxhervorhebung definiert sind.

7.1.3.5 Rechtschreibprüfung

Die Einstellungen für die Rechtschreibprüfung werden Sie im Systemeinstellungen-Module
Rechtschreibprüfung erläutert.

7.1.3.6 VI-Eingabemodus

Allgemein

VI-Befehle überschreiben Kate-Kurzbefehle
Wenn diese Einstellung aktiviert ist, werden VI-Befehle KatePart’s eingebaute Befehle
überschreiben. Beispielsweise wird Strg+R eine Aktion wiederherstellen anstatt die
Standard-Aktion auszuführen (den Dialog „Suchen und Ersetzen“ anzeigen).

Relative Zeilennummern anzeigen
Ist dies aktiviert, wird immer die aktuelle Zeile als Zeile „0“ gezählt und Zeilen über
und unter der aktuellen Zeile relativ zur aktuellen Zeile nummeriert.

Tastenzuordnung

Mit der Tastenzuordnung können Sie die Bedeutung von gedrückten Tasten auf der Tasta-
tur anpassen. Sie können Befehle auf andere Tasten umlegen oder besondere Tastenkombi-
nationen definieren, um eine Serie von Befehlen auszuführen.
Beispiel:
F2 -> I-- Esc
Dadurch wird einer Zeile beim Drücken von F2 die Zeichenfolge I-- vorangestellt.

100

help:/kcontrol/spellchecking

Das Handbuch zu KatePart

7.1.4 Öffnen/Speichern

7.1.4.1 Allgemein

Dateiformat

Kodierung
Hier wird die Standardkodierung zum Öffnen/Speichern von Dateien festgelegt, falls
diese nicht im Öffnen-/Speichern-Dialog oder über die Befehlszeile bereits festgelegt
ist.

Erkennung der Kodierung
Wählen Sie einen Eintrag aus der Liste im Auswahlfeld, um die automatische Erken-
nung abzuschalten oder mit Allgemein für alle Kodierungen zu aktivieren. Da diese
Einstellung oft nur die Kodierung utf-8 oder utf-16 erkennt, wird bei der Auswahl
einer Region mit dafür angepassten Verfahren die richtige Kodierung eher erkannt.
Falls weder die oben angegebene Kodierung, noch die im Öffnen-/Speichern-Dialog
oder die über die Befehlszeile angegebene Kodierung für die Datei passend sind, wird
die automatische Erkennung gestartet.

Ausweich-Kodierung:
Hier wird die Ausweich-Kodierung festgelegt, mit der Dateien geöffnet werden, falls
keine der sonstigen angegebenen Kodierungen passend ist. Bevor die Ausweich-
Kodierung eingesetzt wird, wird zunächst versucht, die korrekte Kodierung anhand
einer Byte-Reihenfolge-Markierung am Anfang der Datei automatisch festzustellen:
Wenn eine gefunden wird, wird die korrekte Unicode-Kodierung verwendet; ansons-
ten wird die Kodierungserkennung gestartet. Erst wenn beides fehlschlägt, wird die
Ausweich-Kodierung verwendet.

Zeilenende
Wählen Sie den Zeilenendemodus für das aktuelle Dokument. Sie haben die Auswahl
zwischen UNIX®, DOS/Windows® oder Macintosh.

Automatische Zeilenendeerkennung
Wenn dieses Feld angekreuzt ist, dann stellt der Editor den Zeilenendetyp automa-
tisch fest. Dazu wird das erste gefundene Zeilenende benutzt.

Byte-Reihenfolge-Markierung aktivieren (BOM)
Die Byte-Reihenfolge-Markierung ist eine spezielle Abfolge am Anfang von Unicode-
kodierten Dokumenten. Sie unterstützt Editoren beim Öffnen von Textdokumenten
mit der richtigen Unicode-Kodierung. Die Byte-Reihenfolge-Markierung ist im ange-
zeigten Dokument nicht sichtbar. Weitere Informationen finden Sie im Artikel Byte-
Reihenfolge-Markierung.

Begrenzung der Zeilenlänge
Wegen Mängeln in Qt™ verarbeitet KatePart sehr lange Zeilen nur mit eingeschränk-
ter Leistungsfähigkeit. Daher werden Zeilen mit einer größeren Anzahl von Zeichen
als hier angegeben automatisch umgebrochen. Um den automatischen Umbruch ab-
zuschalten, setzen Sie diesen Wert auf 0.

Automatische Bereinigung beim Speichern

Leerzeichen am Zeilenende entfernen
Der Editor entfernt überflüssige Leerzeichen an den Zeilenenden beim Speichern.Sie
können Nie zum Abschalten dieser Funktion, Nur geänderte Zeilen oder Im gesam-
ten Dokument einstellen und so die Anwendung dieser Funktion steuern.

Beim Speichern Zeilenumbruch am Ende der Datei einfügen
Der Editor fügt beim Speichern automatisch ein Zeilenvorschubzeichen am Ende der
Datei an, wenn noch keins vorhanden ist.

101

https://de.wikipedia.org/wiki/Byte_Order_Mark
https://de.wikipedia.org/wiki/Byte_Order_Mark

Das Handbuch zu KatePart

7.1.4.2 Erweitert

Sicherungskopie beim Speichern
Sicherungskopie beim Speichern weist KatePart an, vor dem Speichern von Dateien eine Si-
cherungskopie unter: <Präfix><Dateiname><Erweiterung>’ zu erstellen. Die Erweiterung
ist standardmäßig ~ und der Präfix ist standardmäßig leer.

Lokale Dateien
Wenn dieses Feld angekreuzt ist, werden von lokalen Dateien Sicherungskopien er-
stellt.

Dateien auf Fremdrechnern
Wenn dieses Feld angekreuzt ist, werden von auf Fremdrechnern bearbeiteten Datei-
en Sicherungskopien erstellt.

Präfix
Geben Sie hier den Präfix ein, der dem Dateinamen der Sicherungskopie vorangestellt
wird.

Erweiterung
Geben Sie hier die Erweiterung ein, die an den Dateinamen der Sicherungskopie an-
gehängt wird.

Swap-Dateieinstellungen
KatePart ist in der Lage, große Teile dessen, was seit der letzten Sicherung geschrieben
wurde, bei einem Absturz oder einem Stromausfall wiederherzustellen. Nach der ers-
ten Veränderung des aktuellen Dokumentes wird eine Swap-Datei (.swp.<filename>)
erzeugt. Wenn der Nutzer die Änderungen nicht speichert und KatePart abstürzt,
bleibt die Swap-Datei auf der Festplatte. Beim Öffnen eines Dokumentes prüft Kate-
Part, ob eine Swap-Datei zu diesem Dokument existiert und wenn das der Fall ist,
dann fragt KatePart, ob die verlorenen Änderungen wiederhergestellt werden sollen.
Dabei kann der Nutzer diese Änderungen ansehen. Die Swap-Datei wird bei jedem
Sichern und beim normalen Beenden von KatePart gelöscht.
KatePart gleicht die offenen Dateien mit den Swap-Dateien auf der Festplatte alle
15 Sekunden ab, aber nur wenn diese seit dem letzten Abgleich geändert wurden.
Der Nutzer kann diesen Abgleich durch Ankreuzen von Deaktivierenabschalten, das
kann aber zu Datenverlust führen.
Ist dies aktiviert, dann werden die Swap-Dateien im Ordner der Datei gespeichert.
Mit Alternativer Ordner können Sie einen bestimmten Ordner für die Swap-Dateien
angeben. Dies sollte bei Netzwerkwerk-Dateisystemen benutzt werden, um unnötige
Netzwerkbelastungen zu vermeiden.

7.1.4.3 Modi & Dateitypen

Diese Seite dient zur Einstellung von abweichenden Einstellungen für Dokumente bestimmter
MIME-Typen. Wenn ein Dokument in den Editor geladen wird, dann versucht dieser einen schon
festgelegten Datentyp zu finden, auf den die Merkmale eines MIME-Typs passen und verwen-
det dann die Variablen, die für diesen Datentyp festgelegt wurden. Wenn mehrere Datentypen
passend sind, dann wird der Typ verwendet, der die höchste Priorität besitzt.

Dateityp:
Der Dateityp mit der höchsten Priorität wird im ersten Auswahlfeld angezeigt. Wenn meh-
rere Dateitypen gefunden wurden, werden diese ebenfalls aufgelistet.

Neu
Dieser Knopf wird zum Erstellen eines neuen Dateityps benutzt. Wenn Sie diesen
Knopf drücken, werden die Inhalte aller Felder hierunter gelöscht und Sie können
die gewünschten Eigenschaften für den neuen Dateityp dort eintragen.

102

Das Handbuch zu KatePart

Löschen
Um einen existierenden Dateityp zu entfernen, klicken Sie auf den Knopf Löschen.

Eigenschaften des aktuellen Dateityps

Der Dateityp mit der höchsten Priorität wird im ersten Auswahlfeld angezeigt. Wenn meh-
rere Dateitypen gefunden wurden, werden diese ebenfalls aufgelistet.

Name:
Geben Sie hier einen aussagekräftigen Namen an, der dann im Menü Extras→
Dateityp erscheint.

Abschnitt:
Der Abschnittsname wird zum Organisieren der vielen Dateitypen in Menüs be-
nutzt. Geben Sie hier einen aussagekräftigen Namen an, der dann im Menü Extras
→Dateityp als Untermenü erscheint.

Variablen:
Dieser Eintrag erlaubt das Einstellen von KateParts Optionen für die Dateien dieses
MIME-Typs unter Benutzung der Variablen von KatePart. Sie können so fast alle Ein-
stellungen wie zum Beispiel Hervorhebungen, Einrückung usw. einstellen.
Drücken Sie auf das Symbol rechts neben dem Eingabefeld. dann wird eine Liste aller
vorhandenen Variablen und deren Beschreibung angezeigt. Klicken Sie auf das An-
kreuzfeld links, um eine bestimmte Variable zu aktivieren und stellen Sie dann rechts
den Wert der Variablen ein. Für einige Variablen gibt es Auswahlfelder mit zulässigen
Werten, für andere Variablen müssen Sie die Werte direkt eingeben.
Weitere Informationen zu diesen Variablen finden Sie unter Einstellungen mit Doku-
mentvariablen.

Hervorhebung:
Wenn Sie einen neuen Dateityp erstellen, können Sie in diesem Auswahlfeld einen
Dateityp für die Hervorhebung auswählen.

Einrückungsmodus:
In diesem Auswahlfeld kann der Einrückungsmodus für neue Dokumente eingestellt
werden.

Dateierweiterungen:
Das Feld Dateierweiterungen erlaubt das Auswählen von Dateien nach dem Datein-
amen. Ein typischer Eintrag hier besteht aus einem Stern und der Dateinamenserwei-
terung, zum Beispiel *.txt; *.text. Tragen Sie hier mehrere Typen ein, werden diese
Einträge durch Semikolons getrennt.

MIME-Typen:
Zeigt ein Dialogfeld an, in dem Sie einfach und schnell MIME-Typen auswählen kön-
nen.

Priorität:
Stellen Sie hier die Priorität für den Dateityp ein. Wenn auf ein Dokument mehrere
Dateitypen zutreffen, wird der Typ mit der höchsten Priorität benutzt.

7.2 Einstellungen mit Dokumentvariablen

KatePart Variablen sind KatePart Dokumentvariablen, ähnlich der Modelines in Emacs und Vi. In
Katepart haben die Dokumentvariablen das folgende Format: kate: VARIABLENAME VALUE
; [VARIABLENAME VALUE; ...]. Die Zeilen können natürlich auch in einem Kommentar
stehen, wenn das Format des Dokuments Kommentare beinhaltet. Variablennamen sind einzelne
Wörter ohne Zwischenräume und alles bis zum nächsten Semikolon sind Werte. Das Semikolon
ist vorgeschrieben.

Hier ein Beispiel für eine Variablenzeile, die die Einrückung für Quelltext in C++, Java™ oder
JavaScript einschaltet:

103

Das Handbuch zu KatePart

// kate: replace -tabs on; indent -width 4; indent -mode cstyle;

ANMERKUNG
Nur die ersten und letzten 10 Zeilen eines Dokuments werden nach Dokumentvariablen durchsucht.

Zusätzlich können Dokumentvariablen in eine Datei mit dem Namen .kateconfig in jedem be-
liebigen Ordner geschrieben werden. Die Einstellungen dieser Dokumentvariablen werden so
verwendet, als wenn sie als Modelines in jeder Datei im Ordner und allen Unterordnern einge-
fügt wären. Dokumentvariablen in .kateconfig verwenden die gleiche Syntax wie Modelines,
aber mit zusätzlichen Optionen.

Es gibt Variablen für fast alle Einstellungen in KatePart. Außerdem können Module Variablen
benutzen. In diesem Fall sind sie in der Dokumentation der Module dokumentiert.
KatePart kann Einstellungen aus .editorconfig-Dateien einlesen, wenn die Bibliothek editor-
config installiert ist. KatePart sucht immer automatisch nach einer Datei mit dem Namen .edito
rconfig, wenn Sie ein Dokument öffnen. Allerdings werden die Einstellungen aus .kateconfig-
Dateien zuerst benutzt.

7.2.1 Wie KatePart Variablen benutzt

Beim Einlesen der Einstellungen werden von katepart

• die globalen Einstellungen,

• optionale Daten zur aktuellen Sitzung,

• die Einstellungen zum „Dateityp”,

• Dokumentvariablen in .kateconfig,

• Variablen im Dokument selbst,

• Einstellungen während der aktuellen Sitzung über das Menü oder die Befehlszeile

in der angegebenen Reihenfolge gelesen und angewendet. Wie Sie sehen, werden Dokument-
variablen nur durch Änderungen zur Laufzeit überschrieben. Immer wenn ein Dokument ge-
speichert wird, werden die Dokumentvariablen neu eingelesen und überschreiben dann von der
Befehlszeile oder über das Menü vorgenommene Einstellungsänderungen.

Jede hier nicht beschriebene Variable ist im Dokument gespeichert und kann durch andere Ob-
jekte wie Erweiterungen abgefragt werden, die diese Variablen für ihre eigenen Zwecke setzen
können. Zum Beispiel nutzt der Modus für die Variablenbasierte-Einrückung Dokumentvaria-
blen zum Speichern der Einstellungen.

Die hier beschriebenen Variablen sind in KatePart Version 5.38 enthalten. Es werden in der Zu-
kunft sicher weitere Variablen hinzugefügt werden. Es gibt drei Typen von Variablen mit den
folgenden gültigen Werten:

• BOOL - on|off|true|false|1|0

• INTEGER - eine ganze Zahl

• STRING - alles andere

104

https://editorconfig.org/
https://editorconfig.org/

Das Handbuch zu KatePart

7.2.2 Verfügbare Variablen

auto-brackets [BOOL]
Automatischen Einfügen von Klammern aktivieren.

auto-center-lines [INT]
Setzt die Anzahl der automatisch zentrierten Zeilen.

background-color [STRING]
Setzt die Hintergrundfarbe des Dokuments. Der Wert muss als gültige Farbe ausgewertet
werden können, also z. B. #ff0000.

backspace-indents [BOOL]
Schaltet die Verringerung des Einrückens beim Drücken der Taste Rücktaste ein oder aus.

block-selection [BOOL]
Schaltet die Blockauswahl ein und aus.

bom | byte-order-mark | byte-order-marker [BOOL]

Schaltet die Markierung für die Bytereihenfolge (BOM) ein und aus, wenn Dokumente in
einem Unicodeformat (utf8, utf16, utf32) gespeichert werden.
Ab Version: Kate 3.9 (KDE 4.9)

bracket-highlight-color [STRING]
Setzt die Hintergrundfarbe für die Hervorhebung von Klammern. Der Wert muss als gülti-
ge Farbe ausgewertet werden können, also z. B. #ff0000.

current-line-color [STRING]
Setzt die Farbe für die aktuelle Zeile. Der Wert muss als gültige Farbe ausgewertet werden
können, also z. B. #ff0000.

default-dictionary [STRING]
Legt das Standardwörterbuch für die Rechtschreibprüfung fest.
Ab Version: Kate 3.9 (KDE 4.9)

dynamic-word-wrap [BOOL]
Schaltet den dynamischen Zeilenumbruch ein und aus.

eol | end-of-line [STRING]

Setzt das Format für das Zeilenende. Gültige Werte hierfür sind: „unix”, „mac” und „dos”.

folding-markers [BOOL]
Schaltet die Anzeige von Quelltextausblendungen ein und aus.

folding-preview [BOOL]
Vorschau der Text-Ausblendung am Editor-Rand anzeigen

font-size [INT]
Setzt die Schriftgröße des Dokuments.

font [STRING]
Setzt die Schriftart des Dokuments . Der Wert muss eine gültige Schriftart bezeichnen, also
z. B. courier.

hl | syntax [STRING]

Setzt den Hervorhebungsmodus. Es können alle Namen, die auch in den Menüs vorhanden
sind, verwendet werden. z.B für C++ benutzen Sie einfach C++.

105

Das Handbuch zu KatePart

icon-bar-color [STRING]
Setzt die Farbe des Symbolrandes. Der Wert muss als eine gültige Farbe übersetzt werden
können, also z. B. #ff0000.

icon-border [BOOL]
Schaltet die Anzeige des Symbolrandes ein und aus.

indent-mode [STRING]
Setzt den Modus für das automatische Einrücken. Die Einstellungen normal, cstyle, ha
skell, lilypond, lisp, python, ruby und xml sind möglich. Sehen Sie unter Automa-
tisches Einrücken benutzen für Einzelheiten nach.

indent-pasted-text [BOOL]
Aktiviert/deaktiviert die Anpassung der Einrückung von Text, der aus der Zwischenablage
eingefügt wird
Ab Version: Kate 3.11 (KDE 4.11)

indent-width [INT]
Setzt die Breite der Einrückung.

keep-extra-spaces [BOOL]
Legt fest, ob zusätzliche Leerzeichen bei der Berechnung der Einrückungweite beibehalten
werden.

line-numbers [BOOL]
Schaltet die Anzeige der Zeilennummern ein und aus.

newline-at-eof [BOOL]
Fügt beim Speichern des Dokuments eine leere Zeile am Ende der Datei (EOF) an.
Ab Version: Kate 3.9 (KDE 4.9)

overwrite-mode [BOOL]

Schaltet den Überschreibmodus ein und aus.

persistent-selection [BOOL]
Schaltet die durchgehende Auswahl ein und aus.

replace-tabs-save [BOOL]
Schaltet das Ersetzen von Tabulatoren durch Leerzeichen beim Speichern des Dokuments
ein und aus.

replace-tabs [BOOL]
Schaltet das sofortige Ersetzen von Tabulatoren durch Leerzeichen ein und aus.

remove-trailing-spaces [STRING]
Entfernt Leerzeichen am Zeilenende beim Speichern des Dokuments. Gültige Optionen
sind:

• none, - or 0: Leerzeichen am Zeilenende nie entfernen.
• modified, mod, + or 1: Leerzeichen am Zeilenende nur in geänderten Zeilen entfernen.

Diese geänderten Zeilen werden durch das Zeilenänderungssystem gekennzeichnet.
• all, * or 2: Leerzeichen am Zeilenende im gesamten Dokument entfernen.

scrollbar-minimap [BOOL]
Textgrafik auf Bildlaufleiste anzeigen

scrollbar-preview [BOOL]
Vorschau an Bildlaufleiste anzeigen.

106

Das Handbuch zu KatePart

scheme [ZEICHENFOLGE]
Setzt das Farbschema von Kate. Die Zeichenfolge muss ein gültiger Name für ein Farbsche-
ma sein, sonst wird diese Einstellung ignoriert.

selection-color [STRING]
Setzt die Farbe für ausgewählten Text. Der Wert muss als gültige Farbe ausgewertet werden
können, also z. B. #ff0000.

show-tabs [BOOL]
Schaltet die Anzeige von Tabulatorzeichen ein und aus.

smart-home [BOOL]
Schaltet die intelligente Funktion der Tasten Pos1 und Ende ein oder aus.

tab-indents [BOOL]
Schaltet das Einrücken mit der Tabtaste ein und aus.

tab-width [INT]
Setzt die angezeigte Weite für ein Tabulatorzeichen.

undo-steps [INT]
Setzt die Anzahl der gespeicherten Schritte für die Funktion Rückgängig.
Anmerkung: Ab Version Kate 3 in KDE4 wird diese Variable ignoriert. Die maximale An-
zahl von Schritten für Rückgängig ist unbegrenzt.

word-wrap-column [INT]
Setzt die Zeilenlänge für den Statischen Zeilenumbruch.

word-wrap-marker-color [STRING]
Setzt die Farbe für Zeilenumbruchmarkierungen. Der Wert muss als gültige Farbe ausge-
wertet werden können, also z. B. #ff0000.

word-wrap [BOOL]
Schaltet den statischen Zeilenumbruch ein und aus.

7.2.3 Zusätzliche Optionen in .kateconfig-Dateien

KatePart sucht nach einer .kateconfig-Datei nur in lokalen Dateien, nicht in Dateien auf anderen
Rechnern. Außerdem können Optionen für Platzhalter (Dateierweiterungen) wie folgt eingestellt
werden:

kate: tab-width 4; indent -width 4; replace -tabs on;
kate -wildcard(*.xml): indent -width 2;
kate -wildcard(Makefile): replace -tabs off;

In diesem Beispiel wird für alle Dateien eine Tabulatorweite von vier Leerzeichen, eine Ein-
rückungstiefe von vier Leerzeichen verwendet und Tabulatoren werden durch Leerzeichen er-
setzt. Bei allen *.xml-Dateien wird jedoch eine Einrückungstiefe von zwei Leerzeichen benutzt.,
außerdem in Make-Dateien nur Tabulatoren, d. h. sie werden nicht durch Leerzeichen ersetzt.

Platzhalter werden durch Semikolon getrennt, d. h. Sie können auch mehrere Erweiterungen wie
im nächsten Beispiel angeben:

kate -wildcard(*.json;*.xml): indent -width 2;

Weiterhin können Sie MIME-Typen auch zur Erkennung bestimmter Dateien benutzen. Um z. B.
alle Dateien mit C++-Quelltexten mit vier Leerzeichen ein zu rücken, verwenden Sie:

107

Das Handbuch zu KatePart

kate -mimetype(text/x-c++src): indent -width 4;

ANMERKUNG
Außer in .kateconfig-Dateien können Dokumentvariablen mit Platzhaltern und MIME-Typen auch in
Dateien direkt als Kommentare benutzt werden.

108

Das Handbuch zu KatePart

Kapitel 8

Danksagungen und Lizenz

KatePart und KWrite Copyright 2001-2021 das Kate-Team.

Basiert auf dem Original-KWrite, mit Copyright 2000 von Jochen Wilhelmy digisnap@cs.tu-
berlin.de
Mitarbeit:

• Christoph Cullmann cullmann@kde.org

• Michael Bartl michael.bartl1@chello.at

• Phlip phlip_cpp@my-deja.com

• Anders Lund anders@alweb.dk

• Matt Newell newellm@proaxis.com

• Joseph Wenninger kde@jowenn.at

• Jochen Wilhelmy digisnap@cs.tu-berlin.de

• Michael Koch koch@kde.org

• Christian Gebauer gebauer@kde.org

• Simon Hausmann hausmann@kde.org

• Glen Parker glenebob@nwlink.com

• Scott Manson sdmanson@altel.net

• John Firebaugh jfirebaugh@kde.org

• Nibaldo González nibgonz@gmail.com

Die Dokumentation zu KatePart basiert auf der Originaldokumentation zu KWrite angepasst für
alle Nutzer von KatePart.
Die Originaldokumentation für KWrite wurde von Thad McGinnis ctmcginnis@compuserve.com
verfasst, viele Änderungen stammen von Christian Tibirna tibirna@kde.org. Kontrollgelesen und
nach Docbook konvertiert wurde diese von Lauri Watts lauri@kde.org. Aktualisierungen kamen
von Anne-Marie Mahfouf annma@kde.org und Anders Lund anders@alweb.dk.

Die aktuelle Dokumentation für KatePart wird von T.C. Hollingsworth tchollings-
worth@gmail.com gepflegt. Bitte schicken Sie Kommentare oder Verbesserungsvorschläge
unter der Adresse kwrite-devel@kde.org an die Entwickler-Mailingliste von KatePart oder
eröffnen Sie ein Ticket im KDE Bugtracking System.

Übersetzungen von:

109

mailto:digisnap@cs.tu-berlin.de
mailto:digisnap@cs.tu-berlin.de
mailto:cullmann@kde.org
mailto:michael.bartl1@chello.at
mailto:phlip_cpp@my-deja.com
mailto:anders@alweb.dk
mailto:newellm@proaxis.com
mailto:kde@jowenn.at
mailto:digisnap@cs.tu-berlin.de
mailto:koch@kde.org
mailto:gebauer@kde.org
mailto:hausmann@kde.org
mailto:glenebob@nwlink.com
mailto:sdmanson@altel.net
mailto:jfirebaugh@kde.org
mailto:nibgonz@gmail.com
mailto:ctmcginnis@compuserve.com
mailto:tibirna@kde.org
mailto:lauri@kde.org
mailto:annma@kde.org
mailto:anders@alweb.dk
mailto:tchollingsworth@gmail.com
mailto:tchollingsworth@gmail.com
mailto:kwrite-devel@kde.org
https://bugs.kde.org/

Das Handbuch zu KatePart

• Thomas Diehl thd@kde.org, GUI-Übersetzung

• Matthias Schulzmatthias.schulz@kdemail.net, Übersetzung der Dokumentation

Diese Dokumentation ist unter den Bedingungen der GNU Free Documentation License veröf-
fentlicht.
Dieses Programm ist unter den Bedingungen der GNU General Public License veröffentlicht.

110

mailto:thd@kde.org
mailto:matthias.schulz@kdemail.net
fdl-translated.html
gpl-translated.html

Das Handbuch zu KatePart

Kapitel 9

Der VI-Eingabemodus

Erlend Hamberg
Übersetzung: Frederik Schwarzer

9.1 VI-Eingabemodus

Ziel des VI-Modus ist nicht, Vim zu ersetzen indem alle Vim-Funktionen unterstützt werden.
Das Ziel ist es, die „Vim-Art” der Textbearbeitung und somit die angelernten Gewohnheiten
in Programmen zur Verfügung zu stellen, die den KatePart-Texteditor als ihren internen Editor
verwenden.
Der VI-Modus hat zum Ziel, sich in die Programme zu integrieren und, wo sinnvoll, das Ver-
halten von Vim nachzubilden. Zum Beispiel öffnet :w in KateParts VI-Modus einen Dialog zum
Speichern.

Um den VI-Modus für alle neuen Ansichten zu aktivieren, gehen Sie auf Einstellungen→
KatePart einrichten ...+Bearbeitung→ VI-Eingabemodus. Auf dieser Karteikarte können Sie
den VI-Modus einrichten und die Tastenzuordnungen für diesen Modus anlegen und ändern.
Der VI-Modus kann auch mit dem Menüpunkt VI-Eingabemodus im Menü Bearbeiten ein-
bzw. ausgeschaltet werden. (Der Standardkurzbefehl ist Meta+Strg+V, wobei Meta normaler-
weise die Windows-Taste ist.)

ANMERKUNG
Viele Kurzbefehle im VI-Modus beachten die Groß- und Kleinschreibung, im Gegensatz zu den meis-
ten KDE-Kurzbefehlen. Das heißt, dass y und Y verschiedene Kurzbefehle sind. Um den Befehl y
(kopieren) einzugeben, überprüfen Sie dass die Feststelltaste nicht aktiviert ist und drücken Y auf der
Tastatur. Um den Befehl Y (kopieren bis zum Zeilenende) einzugeben, drücken Sie die Tastenkombi-
nation Umschalt+Y.
Die betrifft nicht die Kurzbefehle mit der Strg-Taste, die unabhängig vom Status der Feststelltaste
und ohne Drücken der Umschalt-Taste eingegeben werden können. Bei einige Befehle jedoch muss
bei einer Tasteneingabe nach der Tastenkombination mit der Strg-Taste die Groß-/Kleinschreibung
berücksichtigt werden. Um zum Beispiel den Befehl „Strg+W, h” (Wechsel zum rechten Fenster der
geteilten Ansicht) einzugeben, überprüfen Sie dass die Feststelltaste nicht aktiviert ist, drücken die
Tastenkombination Strg+W und dann H.

9.1.1 Inkompatibilitäten mit Vim

Es gibt ein paar Funktionen in KateParts VI-Modus, die mit Vim nicht kompatibel sind (abgese-
hen von den fehlenden Funktionen). Diese sind hier aufgelistet, einschließlich. der entsprechen-

111

Das Handbuch zu KatePart

den Begründungen.

• KatePart: U und Strg+R ist Wiederherstellen.

Vim: Strg+R ist normales Wiederherstellen; U macht alle Änderungen in einer Zeile rückgän-
gig.
Der Grund dafür, in KateParts VI-Modus U für die Wiederherstellen-Aktion zu verwenden, ist,
dass der Kurzbefehl Strg+R voreingestellt von KateParts Ersetzen-Funktion belegt ist (Suchen
und ersetzen). Der VI-Modus überschreibt keine KatePart-Kurzbefehle (dies kann in Einstel-
lungen→KatePart einrichten ...+Bearbeitung→Vi-Eingabemodus eingestellt werden), wes-
halb eine Wiederherstellen-Aktion auch über einen „normalen” Tastendruck verfügbar sein
muss. Davon abgesehen lässt sich die Funktionsweise des U-Befehls aus Vim nicht gut auf das
interne System zum Rückgängigmachen in KatePart abbilden, weshalb es nicht einfach wäre,
dies zu unterstützen.

• KatePart: der Befehl print öffnet den Dialog Drucken.
Vim: der Befehl print gibt die Zeilen des angegebenen Bereichs wie sein Vorläufer ed aus.
Befehle wie :print sind nicht nur im VI-Modus, sondern für alle KatePart-Benutzer verfüg-
bar. Daher öffnet der :print-Befehl den bekannten Dialog zum Drucken, anstatt das Verhal-
ten von Vim nachzubilden.

• KatePart: Y kopiert bis zum Ende der Zeile.
Vim: Y kopiert gesamte Zeile, genau wie yy.

Das Verhalten des Y-Befehls von VI kann als Fehlerhaft angesehen werden. Beim Ändern und
Löschen wirken sich cc/ dd auf die gesamte Zeile aus und C/D arbeiten von der aktuellen
Cursor-Position bis zum Zeilenende. Beide, yy und Y hingegen kopieren die gesamte Zeile.
In KateParts VI-Modus kopiert Y bis zum Zeilenende kopieren. Dieses Verhalten wird in der
Vim-Dokumentation als „logischer” beschrieben.

• KatePart: O und o öffnen [eine Anzahl] neuer Zeilen und wechseln in den Eingabemodus.
Vim: O und o öffnen eine neue Zeile und fügen den eingegebenen Text [so oft] ein, sobald
der Eingabemodus verlassen wird.
Diese unterscheiden sich hauptsächlich, weil sich viele Benutzer im Vim-IRC-Kanal (#vim auf
Libera Chat) verwirrt über die Funktionsweise geäußert haben.

9.1.2 Wechseln der Modi

• Im Normalen Modus können Sie Befehle zum Navigieren und Ändern eines Dokuments einge-
ben. Dieser Modus ist der Standardmodus. Sie können aus allen anderen Modi mit der Esc-
Taste in diesen Modus zurückkehren.

• Im Visuellen Modus können Sie Text in einem Dokument markieren. Die meisten Befehle aus
dem Normalen Modus sind auch in diesem Modus gültig. Zum zeichenweise auszuwählen,
wechseln in diesen Modus, indem Sie die Taste v drücken; für zeilenweise Auswahl, drücken
Sie V.

• Im Eingabemodus können Sie das Dokument direkt bearbeiten. Sie wechseln in diesen Modus,
indem Sie die Taste i oder einen der anderen, oben genannten Befehle drücken.

• Der Befehlsmodus ruft KateParts Befehlszeile auf. Hier können Sie viele in Vi implementierte
Befehle wie auch spezielle Befehle für KatePart aufrufen. Weitere Informationen über diese
Befehle finden Sie unter Abschnitt 5.2. Um diesen Modus zu benutzen, drücken Sie die Taste :,
geben den Befehl ein und drücken dann die Eingabetaste.

112

http://vimdoc.sourceforge.net/htmldoc/change.html#Y

Das Handbuch zu KatePart

9.1.3 Einbindung in Kate’s Funktionen

• Es wird automatisch in den Visuellen Modus gewechselt, wenn Text mit der Maus ausge-
wählt ist. Dieser Wechsel findet auch dann statt, wenn Funktion von Kate benutzt werden, die
Text auswählen, wie zum Beispiel Alles auswählen aus dem Menü oder mit dem Kurzbefehl
Strg+A.

• Marker in Vi und Lesezeichen in Kate sind integriert. Erstellen Sie einen Marker im Vi-Modus,
dann wird auch das zugehörige Lesezeichen für Kate erstellt und im Menü Lesezeichen an-
gezeigt. Umgekehrt wird mit einem Lesezeichen in Kate auch der zugehörige Marker in Vi an
Spalte Null der Zeile erzeugt.

9.1.4 Unterstützte Befehle im normalen/visuellen Modus

a
Wechselt zum Eingabemodus und fügt
hinter dem Cursor ein

A
Wechselt zum Eingabemodus und fügt
hinter der Zeile ein

i
Wechselt zum Eingabemodus und fügt vor
dem Cursor ein

Einfg Wechselt zum Eingabemodus und fügt vor
dem Cursor ein

I
Wechselt zum Einfügemodus und fügt vor
dem ersten nicht leeren Zeichen auf der
Zeile ein

gi
Wechselt zum Einfügemodus und fügt vor
der Stelle ein, an der der letzte
Einfügemodus verlassen wurde

v
Wechsel in den visuellen Modus; Auswahl
von Zeichen

V
Wechsel in den visuellen Modus; Auswahl
von Zeilen

Strg+v Wechselt in den visuellen Modus; Auswahl
von Blöcken

gb
Wechselt in den visuellen Modus und
aktiviert die letzte Auswahl erneut

o
Fügt unter der aktuellen Zeile eine neue
Zeile ein

O
Fügt über der aktuellen Zeile eine neue
Zeile ein

J Zeilen zusammenführen

c
Ändern: gefolgt von einer Richtungstaste;
löscht ein Zeichen und wechselt in den
Eingabemodus

C
Bis zum Zeilenende ändern: löscht bis zum
Zeilenende und wechselt in den
Eingabemodus

cc
Zeile ändern: Zeile löschen und in den
Eingabemodus wechseln

s Zeichen ersetzen
S Zeilen ersetzen
dd Zeile löschen

113

Das Handbuch zu KatePart

d
Gefolgt von einer Richtungstaste, um eine
Zeile zu löschen

D Löschen bis Zeilenende
x Zeichen rechts vom Cursor löschen
Entf Zeichen rechts vom Cursor löschen
X Zeichen links vom Cursor löschen

gu
Gefolgt von einer Richtungstaste, um ein
Zeichen in Kleinbuchstaben zu ändern

guu
Ändert die aktuelle Zeile in
Kleinschreibung

gU
Gefolgt von einer Richtungstaste, um ein
Zeichen in Großbuchstaben zu ändern

gUU
Ändert die aktuelle Zeile in
Großschreibung

y
Gefolgt von einer Richtungstaste, um eine
Zeile zu kopieren

yy Zeile kopieren
Y Zeile kopieren
p Hinter dem Cursor einfügen
P Vor dem Cursor einfügen

]p
Hinter dem Cursor mit Einrückung
einfügen

[p Vor dem Cursor mit Einrückung einfügen

r
Gefolgt von einem Zeichen, um das
Zeichen hinter dem Cursor zu ersetzen

R Zu Ersetzungsmodus wechseln
: Zu Befehlsmodus wechseln
/ Suchen
u Rückgängig
Strg+R Wiederherstellen
U Wiederherstellen

m
Marker setzen (kann später zum
Navigieren verwendet werden)

n Weitersuchen
N Frühere suchen
>> Zeile einrücken
<< Zeileneinrückung rückgängig
> Zeilen einrücken
< Einrückung mehrere Zeilen rückgängig
Strg+F Seite nach unten
Strg+B Seite nach oben
ga ASCII-Wert des Zeichens ausgeben
. Letzte Änderung wiederholen
== commandAlignLine
= commandAlignLines

~
Groß-/Kleinschreibung des aktuellen
Zeichens ändern

Strg+S Ansicht waagerecht teilen
Strg+V Ansicht senkrecht teilen

Strg+W, w Wechselt zum nächsten Fenster der
geteilten Ansicht

Strg+W, h
StrgW Pfeil links

Wechselt zum linken Fenster der geteilten
Ansicht

114

Das Handbuch zu KatePart

Strg+W, l
StrgW Pfeil rechts

Wechselt zum rechten Fenster der geteilten
Ansicht

Strg+W, k
StrgW Pfeil hoch

Wechselt zum oberen Fenster der geteilten
Ansicht

Strg+W, j
StrgW Pfeil runter

Wechselt zum unteren Fenster der geteilten
Ansicht

9.1.5 Unterstützte Richtungstasten

Diese können zum Bewegen in einem Dokument im Normalen und im Visuellen Modus oder im
Zusammenspiel mit einem der oben genannten Befehle verwendet werden. Es können Nummern
angehängt werden, um anzugeben, wie oft die entsprechende Bewegung ausgeführt werden soll.

h Links
Pfeil links Links
Rücktaste Links
j Nach unten
Pfeil runter Nach unten
k Nach oben
Pfeil hoch Nach oben
l Rechts
Pfeil rechts Rechts
Leertaste Rechts
$ Zum Zeilenende
Ende Zum Zeilenende
0 Zum ersten Zeichen der Zeile (Spalte 0)
Pos 1 Zum ersten Zeichen der Zeile

ˆ
Erstes Zeichen, das kein Leerzeichen ist, in
dieser Zeile

f
Gefolgt von einem Zeichen rechts vom
Cursor, zu dem der Cursor bewegt werden
soll

F
Gefolgt von einem Zeichen links vom
Cursor, zu dem der Cursor bewegt werden
soll

t
Gefolgt von einem Zeichen rechts vom
Cursor, vor das der Cursor bewegt werden
soll

T
Gefolgt von einem Zeichen links vom
Cursor, vor das der Cursor bewegt werden
soll

gg Zur ersten Zeile
G Zur letzten Zeile
w Nächstes Wort
W Nächstes Wort getrennt durch Leerzeichen
b Vorheriges Wort

B
Vorheriges Wort getrennt durch
Leerzeichen

e Wortende
E Ende des Worts getrennt durch Leerzeichen

115

Das Handbuch zu KatePart

ge Ende des vorheriges Wortes

gE
Ende des vorherigen Worts getrennt durch
Leerzeichen

|
Gefolgt von einer Spaltennummer, um in
die Spalte zu springen

%
Gefolgt von einem Element, um zu dem
Element zu springen

‘ Marker

‘
Erstes Zeichen, das kein Leerzeichen ist, in
der Zeile, in der sich der Marker befindet

[[Vorherige öffnende eckige Klammer
]] Nächste öffnende eckige Klammer
[] Vorherige schließende eckige Klammer
][Nächste schließende eckige Klammer
Strg+I Geht zur nächsten Adresse
Strg+O Geht zur vorherigen Adresse
H Geht zur ersten Zeile auf dem Bildschirm

M
Geht zur mittleren Zeile auf dem
Bildschirm

L Geht zur letzten Zeile auf dem Bildschirm

%Prozentsatz
Geht zum angegebenen Prozentsatz des
Dokuments

gk
Geht optisch eine Zeile aufwärts (bei
dynamischem Zeilenumbruch)

gj
Geht optisch eine Zeile abwärts (bei
dynamischem Zeilenumbruch)

Strg+Pfeil links Verschiebt ein Wort nach links
Strg+Pfeil rechts Verschiebt ein Wort nach rechts

9.1.6 Unterstützte Textobjekte

Diese können verwendet werden, um bestimmte Bereiche eines Dokuments auszuwählen.

iw Inneres Wort: Wort inklusive Leerzeichen
aw Ein Wort: Wort ohne Leerzeichen

i˝
Vorherige Anführungszeichen (˝) bis
nächste Anführungszeichen, inklusive der
Anführungszeichen

a”
Vorherige Anführungszeichen (˝) bis
nächste Anführungszeichen, ohne die
Anführungszeichen

i’
Vorherige einfache Anführungszeichen (˝)
bis nächste einfache Anführungszeichen,
inklusive der Anführungszeichen

a’
Vorherige einfache Anführungszeichen (˝)
bis nächste einfache Anführungszeichen,
ohne die Anführungszeichen

i(
Vorherige öffnende Klammer [(] bis
nächste schließende Klammer [)], inklusive
der Klammern

116

Das Handbuch zu KatePart

a(
Vorherige öffnende Klammer [(] bis
nächste schließende Klammer [)], ohne die
Klammern

i[
Vorherige öffnende eckige Klammer ([) bis
nächste schließende eckige Klammer (]),
inklusive der Klammern

a[
Vorherige öffnende eckige Klammer ([) bis
nächste schließende eckige Klammer (]),
ohne die Klammern

i{
Vorherige öffnende geschweifte Klammer
({) bis nächste schließende geschweifte
Klammer (}), inklusive der Klammern

a{
Vorherige öffnende geschweifte Klammer
({) bis nächste schließende geschweifte
Klammer (}), ohne die Klammern

i<
Vorherige öffnende spitze Klammer (<) bis
nächste schließende spitze Klammer (>),
inklusive der Klammern

a<
Vorherige öffnende spitze Klammer (<) bis
nächste schließende spitze Klammer (>),
ohne die Klammern

i‘
Vorheriges Backtick („rückwärts geneigtes
Hochkomma“) (˝) bis nächstes Backtick,
inklusive der Backticks

a‘
Vorheriges Backtick („rückwärts geneigtes
Hochkomma“) (˝) bis nächstes Backtick,
ohne die Backticks

9.1.7 Unterstützte Befehle im Eingabemodus

Strg+D Einrückung verringern
Strg+T Einrücken
Strg+E Von unten einfügen
Strg+Y Wort löschen
Strg+W Wort löschen
Strg+U Zeile löschen
Strg+J Neue Zeile
Strg+H Löscht Zeichen rückwärts
Strg+Pos 1 Geht zum ersten Zeichen im Dokument
Strg+R n Fügt den Inhalt des Registers n ein

Strg+O, Befehl Wechselt für einen Befehl zum normalen
Modus

Strg+A Verringert die aktuell gewählte Zahl
Strg+X Erhöht die aktuell gewählte Zahl

9.1.8 Das Komma-Textobjekt

Dieses Objekt fehlt in Vim. Das Komma-Text-Objekt vereinfacht das Ändern von Parameterlisten
in C-ähnlichen Sprachen und anderen durch Komma getrennte Listen. Dies ist der Bereich zwi-

117

Das Handbuch zu KatePart

schen zwei Kommas oder einem Komma und einer Klammer. In der Demonstrationszeile sind
die Bereiche, die dieses Text-Objekt umfassen kann, hervorgehoben.

Bereiche des Komma-Text-Objekts. Wenn sich der Cursor z. B. über arg2 befindet, bewirkt das
Drücken von ci(„inneres Komma ändern”), dass double arg2 gelöscht wird und der Cursor im
Eingabemodus zwischen die beiden Kommas platziert wird. Das ist ein sehr angenehme Art,

Funktionsparameter zu ändern.

9.1.9 Fehlende Funktionen

Wie bereits erwähnt, ist es nicht Ziel des VI-Modus in KatePart, die Funktionen von Vim zu 100
% zu unterstützen.

118

Das Handbuch zu KatePart

Anhang A

Reguläre Ausdrücke

Dieser Anhang enthält eine kurze, aber hoffentlich ausreichende Einführung in
die Welt der regulären Ausdrücke. Es werden reguläre Ausdrücke in der Form
dokumentiert, in der sie in KatePart anwendbar sind, die aber nicht kompatibel
z. B. zu der in Perl oder in grep verwendeten Form ist.

A.1 Einleitung

Reguläre Ausdrücke stellen eine Möglichkeit zur Verfügung, vielleicht zu suchende Teile von Text
in einer Form zu beschreiben, die von einer kleinen Software verstanden wird, sodass diese fest-
stellen kann, ob die Beschreibung zutrifft und sogar Text zur späteren Verwendung speichern
kann.
Ein Beispiel: Nehmen Sie an, Sie wollen eine Text nach Abschnitten durchsuchen, die mit einem
der Namen „Henrik” oder „Pernille” beginnen, gefolgt von einer Form des Verbs „say”.

Mit einer normalen Suche würden Sie anfangen, nach dem ersten Namen „Henrik” zu suchen,
vielleicht gefolgt von „sa”, also Henrik sa. Bei dieser Suche würden Sie alle Übereinstimmun-
gen überspringen müssen, die nicht am Anfang eines Abschnittes stehen und die, hinter denen
ein „sa” steht, aber kein „says”, „said” und so weiter. Dann natürlich das Ganze von vorn für
den nächsten Namen ...
Mit regulären Ausdrücken können Sie dies mit einer einzelnen Suche erreichen und das noch
genauer.

Um dies zu erreichen, definieren reguläre Ausdrücke Regeln zum Ausdrücken von Details einer
zu suchenden Zeichenfolge. Unser Beispiel, das wir wie folgt ausdrücken können: „Eine Zeile
mit „Henrik” oder „Pernille” beginnend (eventuell nach bis zu 4 Leerzeichen oder Tabulatoren)
gefolgt von einem Leerzeichen gefolgt von „sa” und dann entweder „ys” oder „id”” kann so als
regulärer Ausdruck geschrieben werden:

ˆ[\t]{0,4}(Henrik|Pernille) sa(ys|id)

Das oben angegebene Beispiel zeigt alle vier Hauptkonzepte von regulären Ausdrücke, speziell:

• Muster

• Behauptungen

• Quantifiers

• Rückwärtsreferenzen

119

Das Handbuch zu KatePart

Das Hochzeichen (ˆ) am Anfang des Ausdruckes kennzeichnet eine Behauptung, die nur dann
wahr ist, wenn sich der folgende Text am Anfang einer Zeile befindet.

Die Zeichenfolgen [\t] und (Henrik|Pernille) sa(ys|id) sind Muster. Das erste ist ein Zei-
chen das entweder auf ein Leerzeichen oder ein Tabulatorzeichen zutrifft, das andere enthält als
erstes ein Untermuster, das entweder auf Henrik oder Pernille zutrifft, dann ein Muster, das
exakt auf sa zutrifft und zum Schluss wieder ein Untermuster, das auf ys, oder id zutrifft.

Die Angabe {0,4} ist ein Quantifizierer, der sagt: „von 0 bis 4 mal das vorher spezifizierte”.

Weil Software für reguläre Ausdrücke, die das Konzept von Referenzen den gesamten zutref-
fenden Teil des Textes wie auch in Klammern eingeschlossene Untermuster sichert, können Sie
diese gefundenen Textstellen (diese sind nach dem Suchen mit einem regulären Ausdruck in ei-
nem Textdokument in einem Editor meistens ausgewählt) oder den gefundenen Namen oder den
letzten Teil des Verbs weiterverwenden, die Referenzen ermöglichen den Zugriff auf diese.

Zusammengefasst: die regulären Ausdrücke treffen zu, wo wir wollten, und nur dort.

Die folgenden Abschnitte beschreiben im einzelnen, wie Muster, Zeichenklassen, Behauptungen,
Quantifizierer und Rückwärtsreferenzen benutzt werden und der letzte Abschnitt gibt einige
nützliche Beispiele.

A.2 Muster

Muster bestehen aus Zeichenfolgen und Zeichenklassen. Muster können Untermuster enthalten,
diese sind in Klammern eingeschlossene Muster.

A.2.1 Steuerzeichen

In Mustern und in Zeichenklassen haben einige Zeichen spezielle Bedeutungen. Um diese Steu-
erzeichen zu finden, müssen sie als solche markiert werden.

Dies geschieht durch das Voranstellen eines Rückwärtsschrägstriches (\) vor das Zeichen.

Die Software ignoriert die Kennzeichnung als Steuerzeichen von Zeichen, die in dem betrach-
teten Zusammenhang keine Steuerzeichen sind. So ist z. B. die Angabe von (\j), also ein „j”
als Steuerzeichen markiert, kein Problem. Wenn Sie Zweifel haben, ob ein Zeichen eine spezielle
Bedeutung hat, können Sie dies ohne Bedenken als Steuerzeichen markieren.

Selbstverständlich können Sie auch den Rückwärtsschrägstrich als Steuerzeichen markieren, dies
geschieht durch \\.

A.2.2 Zeichenklassen und Abkürzungen

Eine Zeichenklasse ist ein Ausdruck, der auf einen bestimmten Satz von Zeichen zutrifft. Zei-
chenklassen werden in regulären Ausdrücken durch Setzen der zugelassenen Zeichen in eckige
Klammern [] oder durch Nutzen einer der im Folgenden beschriebenen abgekürzten Klassen
definiert.
Einfache Zeichenklassen enthalten nur ein oder mehrere Zeichen, z. B. [abc] (zutreffend auf
einen der Buchstaben „a”, „b” oder „c”) oder [0123456789] (zutreffend auf eine Zahl).

Da Buchstaben und Zahlen eine festgelegte Reihenfolge haben, können diese durch Angabe des
Bereiches :abgekürzt werden: [a-c] entspricht [abc] und [0-9] entspricht [0123456789].
Diese Angaben können auch kombiniert werden, zum Beispiel trifft [a-fynot1-38] auf die
folgenden Zeichen zu: „a”„,b”„,c”„,d”, „e”„,f”„,y”„,n”„,o”„,t”, „1”„,2”„,3” oder „8”.

Da Großbuchstaben von Kleinbuchstaben unterschieden werden, müssen Sie zur Angabe von
„a” oder „b” ohne Unterscheidung von Groß- und Kleinschreibung [aAbB] angeben.

120

Das Handbuch zu KatePart

Die Erzeugung von „negativen” Klassen, die auf „alles außer” zutreffen, erfolgt durch das Hoch-
Zeichen (ˆ) am Anfang der Klassendefinition:

[ˆabc] trifft auf alle Zeichen außer „a”, „b” oder „c” zu.

Zusätzlich zu den druckbaren Zeichen sind noch einige Abkürzungen definiert, um die Verwen-
dung ein wenig einfacher zu machen:

\a
Trifft auf das ASCII-Beep-Zeichen zu (BEL, 0x07).

\f
Trifft auf das ASCIISeitenvorschub-Zeichen zu (FF, 0x0C).

\n
Trifft auf das ASCII-Zeilenvorschub-Zeichen zu (LF, 0x0A, Unix newline).

\r
Trifft auf das ASCII-Wagenrücklauf-Zeichen zu (CR, 0x0D).

\t
Trifft auf das ASCII-Zeichen Horizontaltabulator zu (HT, 0x09).

\v
Trifft auf das ASCII-Zeichen Vertikaltabulator zu (VT, 0x0B).

\xhhhh
Dieser Ausdruck trifft auf das Unicodezeichen mit dem Code mit der Hexadezimalzahl
hhhh (zwischen 0x0000 und 0xFFFF) zu. \0ooo (d. h., \zero ooo) trifft auf das ASCII-/Latin-
1-Zeichen mit dem Code mit der Oktalzahl ooo (zwischen 0 und 0377) zu.

. (Punkt)
Trifft auf jedes Zeichen einschließlich Zeilenvorschub zu.

\d
Trifft auf eine Ziffer zu. Entspricht [0-9].

\D
Trifft auf ein Zeichen, das keine Ziffer ist, zu. Entspricht [ˆ0-9] oder [ˆ\d].

\s
Trifft auf ein Zeichen, das einen Zwischenraum angibt, zu. Praktisch entspricht dies [\t\
n\r].

\S
Trifft auf ein Zeichen, das keinen Zwischenraum angibt, zu. Praktisch entspricht dies [ˆ
\t\n\r] oder [ˆ\s].

\w
Trifft auf jedes „druckbares Zeichen” zu - in diesem Fall Buchstaben, Ziffern oder Unter-
strich. Entspricht [a-zA-Z0-9]

\W
Trifft auf alle nicht druckbaren Zeichen außer Buchstaben, Ziffern und Unterstrich zu. Ent-
spricht [ˆa-zA-Z0-9] oder [ˆ\w]

Die POSIX-Notation von Klassen, [:<class name>:] wird auch unterstützt. Zum Beispiel ent-
spricht [:digit:] \d und [:space:] \s. Die vollständige Liste der POSIX-Zeichenklassen
finden Sie hier.
Die abgekürzten Klassen können in selbstdefinierte Klassen eingefügt werden, z. B. kann für
die Klasse „druckbares Zeichen, Leerzeichen oder Punkt” der Ausdruck [\w \.] verwendet
werden.

121

https://www.regular-expressions.info/posixbrackets.html

Das Handbuch zu KatePart

A.2.2.1 Zeichen mit speziellen Bedeutungen (Steuerzeichen) innerhalb von Zeichenklassen

Die folgenden Zeichen haben spezielle Bedeutungen innerhalb des Ausdrucks in eckigen Klam-
mern „[]”, diese müssen als Steuerzeichen gekennzeichnet werden, damit sie als Zeichen in die
Klasse einbezogen werden:

]

Beendet die Definition der Zeichenklasse. Dieses Zeichen braucht nicht als Steuerzeichen
gekennzeichnet werden, wenn es das erste Zeichen in einer Zeichenklassendefinition (nach
dem Zeichen „[” oder „ˆ”) ist.

ˆ (Hoch-Zeichen)
Bezeichnet eine negative Klasse, wenn es das erste Zeichen in einer Zeichenklassendefini-
tion ist. Wenn es als druckbares Zeichen behandelt werden soll, muss es als Steuerzeichen
gekennzeichnet werden, wenn es das erste Zeichen in einer Zeichenklassendefinition ist.

- (Bindestrich)
Kennzeichnet einen logischen Bereich. Wenn es als Zeichen behandelt werden soll, muss es
als Steuerzeichen gekennzeichnet werden.

\ (Rückwärtsschrägstrich)

Das Zeichen zum Kennzeichnen eines Steuerzeichens. Dieses Zeichen muss immer als Steu-
erzeichen gekennzeichnet werden, wenn es als druckbares Zeichen behandelt werden soll.

A.2.3 Alternativen: trifft zu wenn „eins von”

Wenn ein erkanntes Muster von mehreren Mustern als zutreffend erkannt werden soll, dann
müssen Sie diese Muster durch einen senkrechten Strich | getrennt angeben.

Der Ausdruck John|Harry wird z. B. als zutreffend erkannt, wenn entweder „John” oder „Har-
ry” gefunden wird.

A.2.4 Untermuster

Untermuster sind in Klammern eingeschlossene Muster, die in regulären Ausdrücken viele Ver-
wendungen haben.

A.2.4.1 Angabe von Alternativen

Sie können Untermuster verwenden, um Gruppen von Alternativen in einem Muster anzugeben.
Die Alternativen werden durch den senkrechten Strich | getrennt.

Um eines der Worte „int”, „float” oder „double” zu erkennen, geben Sie int|float|double
an. Wenn eines der Worte nur dann erkannt werden soll, wenn nach dem Wort Zwischenraum
und dann Buchstaben folgen, dann verwenden Sie den folgenden Ausdruck mit den Worten im
Untermuster: (int|float|double)\s+\w+.

A.2.4.2 Speichern von gefundenem Text (Rückwärtsreferenzen)

Wenn Sie einen Rückverweis verwenden möchten, benutzen Sie ein Untermuster (PATTERN),
um den gewünschten Teil des Musters zu merken. Um zu verhindern, dass das Untermuster
gemerkt wird, verwenden Sie eine nicht speichernde Gruppe (?:PATTERN).

Wenn Sie z. B. das zweifache Auftreten des selben Wortes getrennt durch ein Komma und eventu-
ell Zwischenraum finden wollen, dann würden Sie (\w+),\s*\1 verwenden. Das Untermuster

122

Das Handbuch zu KatePart

\w+ findet ein Stück aus druckbaren Zeichen. Der gesamte Ausdruck trifft zu, wenn diese von
einem Komma und keinem oder mehreren Zwischenraumzeichen und dann von einem gleichen
Stück von Zeichen gefolgt werden. (Der Ausdruck \1 verweist auf das erste in Klammern angege-
bene Untermuster.)

ANMERKUNG
Um Mehrdeutigkeiten bei Ausdrücken wie \1 und einigen nachfolgenden Ziffern wie z. B. \12 - 12tes
Untermuster oder nur das erste Untermuster mit 2 zu vermeiden, wird die Syntax \{12} für Unter-
muster aus mehreren Ziffern verwendet.
Beispiele:

• \{12}1 bedeutet „Untermuster 12 benutzen”

• \123 bedeutet „1 ist das Suchmuster und 23 normaler Text”

A.2.4.3 Vorwärtsgerichtete Behauptungen

Eine vorwärtsgerichtete Behauptung ist ein Untermuster, das mit ?= oder ?! anfängt.

Der Ausdruck Bill(?! Gates) besagt, dass „Bill” gefunden wird, aber nur wenn nicht von „
Gates” gefolgt. Dies findet „Bill Clinton” oder „Billy the kid”, aber ignoriert stillschweigend die
andere Übereinstimmung.

Untermuster, die für Behauptungen benutzt werden, werden nicht gespeichert.

Sehen Sie auch unter Behauptungen nach.

A.2.4.4 Rückwärtsgerichtete Behauptungen

Eine rückwärtsgerichtete Behauptung ist ein Untermuster, das entweder mit ?<= oder mit ?<!
anfängt.

Eine Rückwärtsreferenz hat die gleiche Wirkung wie eine Vorwärtsreferenz, funktioniert aber
rückwärts. Um zum Beispiel die Zeichenfolge „fruit” zu finden, aber nur, wenn nicht „grape”
vorangestellt ist, könnten Sie diesen Ausdruck verwenden: (?<!grape)fruit.

Untermuster, die für Behauptungen benutzt werden, werden nicht gespeichert.

Sehen Sie auch unter Behauptungen nach.

A.2.5 Zeichen mit speziellen Bedeutungen (Steuerzeichen) innerhalb von
Mustern

Die folgenden Zeichen haben spezielle Bedeutungen innerhalb eines Musters, diese müssen als
Steuerzeichen gekennzeichnet werden, damit sie als Zeichen behandelt werden:

\ (Rückwärtsschrägstrich)

Das Escape-Zeichen.

ˆ (Hoch-Zeichen)
Kennzeichnet den Anfang der Zeichenfolge.

$

Kennzeichnet das Ende der Zeichenfolge.

() (linke und rechte Klammer)
Kennzeichnet Untermuster.

123

Das Handbuch zu KatePart

{} (linke und rechte geschweifte Klammer)

Kennzeichnet numerische Quantifizierer.

[] (linke und rechte eckige Klammer)

Kennzeichnet Zeichenklassen.

| (senkrechter Strich)

Logisches ODER. Trennt Alternativen.

+ (Pluszeichen)
Quantifizierer, steht für eins oder mehrere.

* (Stern)
Quantifizierer, steht für kein oder mehrere.

? (Fragezeichen)

Ein optionales Zeichen. Kann als Quantifizierer; 0- oder 1-mal gedeutet werden.

A.3 Quantifizierer

Quantifizierer gestatten dem regulären Ausdruck die Angabe einer Anzahl von entweder Zeichen,
Zeichenklassen oder Untermustern.
Quantifizierer werden in geschweifte Klammern ({ und }) eingeschlossen und haben die Form
{[minimale Anzahl][,[maximale Anzahl]]}

Die Benutzung ist am besten an Beispielen erklärt:

{1}

Genau einmaliges Auftreten

{0,1}

Kein oder einmaliges Auftreten

{,1}

Kein oder einmaliges Auftreten (Kurzform)

{5,10}

Mindestens 5- bis maximal 10-maliges Auftreten

{5,}

Mindestens 5-maliges Auftreten.

Zusätzlich gibt es einige Abkürzungen:

* (Stern)
entspricht {0,} findet jede Anzahl des Auftretens.

+ (Pluszeichen)
entspricht {1,} findet mindestens einmaliges Auftreten.

? (Fragezeichen)

entspricht {0,1} findet kein oder einmaliges Auftreten.

124

Das Handbuch zu KatePart

A.3.1 Gier

Wenn Quantifizierer ohne Maximum verwendet werden, dann findet der reguläre Ausdruck so
viel wie möglich vom Suchtext, dieses Verhalten wird auch als gierig bezeichnet.

Moderne Software für reguläre Ausdrücke stellt die Möglichkeit bereit, das „gierige Verhalten
auszuschalten”, aber in einer grafischen Umgebung ist es das Interface, das Ihnen Zugriff auf
diese Möglichkeit bereitstellen muss. Ein Dialogfenster zum Suchen kann z. B. eine Option mit
dem Namen „Minimales Finden” bereitstellen, es sollte auch anzeigen, ob „gieriges Verhalten”
Standard ist.

A.3.2 In Beispielen

Hier sind einige Beispiele der Verwendung von Quantifizierern:

ˆ\d{4,5}\s

Trifft auf die Zahlen in „1234 go” und „12345 now” zu, aber nicht die in für „567 eleven”
oder „223459 somewhere”.

\s+

Trifft auf ein oder mehrere Zwischenraumzeichen zu.

(bla){1,}

Trifft zu für alle in „blablabla” und das „bla” in „blackbird” oder „tabla”.

/?>

Trifft für das „/>” in „<closeditem/>” sowie auch für das „>” in „<openitem>” zu.

A.4 Behauptungen

Behauptungen erweitern den regulären Ausdruck so, dass er nur unter bestimmten Bedingungen
zutrifft.
Eine Behauptung braucht kein Zeichen um zuzutreffen, diese ermittelt vielmehr die Umgebung
einer eventuellen Übereinstimmung bevor dieser bestätigt wird. Die Behauptung Wortgrenze z. B.
versucht nicht, ein nichtdruckbares Zeichen neben einem druckbaren Zeichen zu finden, sondern
stellt fest, dass dort KEIN druckbares Zeichen ist. Das heißt, dass dieses z. B. auch am Ende einer
Zeichenfolge zutrifft.

Einige Behauptungen haben ein Muster das gefunden werden muss, aber der zutreffende Teil des
Suchtextes dieses Musters wird nicht Teil des Ergebnisses des gesamten regulären Ausdrucks.

Reguläre Ausdrücke wie hier beschrieben unterstützen die folgenden Behauptungen:

ˆ (Hochzeichen: Anfang der Zeichenfolge)

Trifft auf den Anfang des zu suchenden Textes zu.
Der Ausdruck ˆPeter trifft auf „Peter” im Text „Peter, hey!” zu, aber nicht auf „Hey, Pe-
ter!”.

$ (Ende der Zeichenfolge)

Trifft auf das Ende des Suchtextes zu.
Der Ausdruck you\?$ trifft auf das letzte „you” in „You didn‚t do that, did you?”
zu, aber nirgendwo in „You didn‘t do that, right?”.

125

Das Handbuch zu KatePart

\b (Wortgrenze)

Trifft zu, wenn ein druckbares Zeichen auf der einen Seite aber keines auf der anderen Seite
ist.
Dieser Ausdruck dient zum Finden von Wortenden, wenn nach beiden Enden gesucht
wird, zum Finden des ganzen (einzelnstehenden) Wortes. Der Ausdruck \bin\b trifft auf
das einzelnstehende „in” in „He came in through the window” zu, aber nicht auf das „in”
in „window”.

\B (keine Wortgrenze)

Trifft immer dort zu, wo „\b” nicht zutrifft.
Dieser Ausdruck dient zum Finden von Text innerhalb von Worten. Der Ausdruck \Bin\B
trifft z. B. auf das „in” im Wort „window” im Text „He came in through the window” zu,
aber nicht auf „integer” oder „I’m in love”.

(?=PATTERN) (Positive Vorwärtsreferenz)
Eine Vorwärtsreferenz prüft den Text, der dem eventuell zutreffenden Teil des Textes folgt.
Die Vorwärtsreferenz verhindert, dass der Text zutrifft, wenn der nachfolgende Text nicht
auf das MUSTER der Behauptung zutrifft. Wenn die Behauptung zutrifft, wird der Text,
der auf diese zutrifft, allerdings nicht Bestandteil des Ergebnisses.
Der Ausdruck handy(?=\w) trifft auf „handy” in „handyman” zu, aber nicht auf das in
„That came in handy!”

(?!PATTERN) (Negative Vorwärtsreferenz)

Eine negative Vorwärtsreferenz verhindert, dass der Text zutrifft, wenn der nachfolgende
Text auf das MUSTER zutrifft.
Der Ausdruck const \w+\b(?!\s*&) trifft auf „const char” im Text „const char* foo”,
aber nicht „const QString” in „const QString& bar” weil das „&” auf die negative Vorwärts-
referenz zutrifft.

(?=PATTERN) (Positive Rückwärtsreferenz)
Eine Rückwärtsreferenz hat die gleiche Wirkung wie eine Vorwärtsreferenz, funktioniert
aber rückwärts. Eine Rückwärtsreferenz sucht den Teil der Zeichenfolge vor einer mögliche
Übereinstimmung. Die positive Rückwärtsreferenz passt nur dann auf eine Zeichenfolge,
wenn PATTERN der Behauptung vorangestellt ist, aber der damit übereinstimmende Text
wird nicht in das Ergebnis aufgenommen.
Der Ausdruck (?<=cup)cake passt auf „cake”, wenn „cup” vorangestellt ist wie z. B. in
„cupcake” aber nicht in „cheesecake” oder in nur „cake”.

(?!PATTERN) (Negative Rückwärtsreferenz)

Eine negative Rückwärtsreferenz verhindert, dass der Text zutrifft, wenn der vorherige Text
auf das MUSTER zutrifft.
Der Ausdruck (?<![\w\.])[0-9]+ passt auf „123” in der Zeichenfolgen „=123” und „-
123”, aber nicht auf „123” in „.123” oder „word123”.

(PATTERN) (Gruppierung)

Das Untermuster innerhalb der Klammern wird gespeichert und gemerkt, so dass es in
Rückwärtsreferenzen verwendet werden kann. Der Ausdruck ("+)[ˆ"]*\1
passt zum Beispiel auf ˝˝˝˝text˝˝˝˝ und ˝text˝.
Weitere Informationen im Abschnitt Speichern von gefundenem Text (Rückwärtsreferen-
zen).

(?:PATTERN) (Nicht speichernde Gruppe)

Das Untermuster in den Klammern wird nicht gespeichert und gemerkt. Sie sollten im-
mer nicht speichernde Gruppen zu verwenden, wenn die Speicherungen nicht verwendet
werden.

126

Das Handbuch zu KatePart

Anhang B

Index

E
Ersetzen, sed-Stil

Suchen, sed-Stil, 36

K
Kommentar, 32
Kommentar entfernen, 32

127

	Einleitung
	Grundsätzliches
	Ziehen und Ablegen (Drag and Drop)
	Kurzbefehle

	Arbeiten mit dem Editor von KatePart
	Überblick
	Navigieren im Text
	Arbeiten mit der Auswahl
	Blockauswahl benutzen
	Benutzen von Auswahl überschreiben
	Benutzen von Durchgehende Auswahl

	Kopieren und Einfügen von Text
	Suchen und Ersetzen von Text
	Die Leisten für Suchen und Ersetzen
	Suchen von Text
	Ersetzen

	Lesezeichen benutzen
	Automatischer Zeilenumbruch
	Automatisches Einrücken benutzen
	Kennzeichnung von Änderungen in Textzeilen
	Die Textgrafik auf der Bildlaufleiste

	Die Menüeinträge
	Das Menü Datei
	Das Menü Bearbeiten
	Das Menü Ansicht
	Das Menü Lesezeichen
	Das Menü Extras
	Die Menüs ,,Einstellungen'' und ,,Hilfe''

	Weiterentwickelte Editierwerkzeuge
	Kommentar/Kommentar entfernen
	Die integrierte Befehlszeile im Editor
	Standardbefehle der Befehlszeile
	Befehle zum Einrichten des Editors
	Befehle zum Bearbeiten
	Befehle zur Bewegung im Dokument
	Befehle für die grundlegenden Editor-Funktionen. Diese hängen von der Anwendung ab, in der die Editorkomponente verwendet wird.

	Benutzen von Quelltextausblendung

	KatePart erweitern
	Einführung
	Arbeiten mit Syntaxhervorhebungen
	Überblick
	Das KatePart Syntaxhervorhebungssystem
	Wie es funktioniert
	Regeln
	Kontextstile und Schlüsselwörter
	Standardstile

	Die Hervorhebungsdefinition für das XML Format
	Überblick
	Die Abschnitte im Einzelnen
	Verfügbare Standardstile

	Hervorhebungs-Erkennungsregeln
	Die Regeln im Einzelnen:
	Tipps & Tricks

	Arbeiten mit Farbschemata
	Überblick
	Farbschemata für KSyntaxHighlighting
	Das JSON-Format der Farbschemata
	Überblick
	Dit JSON-Struktur
	Hauptabschnitte der JSON-Farbschemadateien
	Metadaten

	Farben im Detail:
	Editor-Farben
	Standardtextstile
	Benutzerdefinierte Textstile für Hervorhebungen

	Die GUI der Farbschemata
	Ein neues Schema erstellen
	JSON-Schemadateien importieren oder exportieren
	Bearbeitung von Farbschemata
	Farben
	Standardtextstile
	Textstile für Hervorhebungen

	Tipps & Tricks
	Kontrast von Textfarben
	Vorschläge zur Konsistenz bei der Syntaxhervorhebung

	Scripting mit JavaScript
	Einrückungsskripte
	Der Vorspann des Einrückungsskripts
	Der Quelltext des Einrückungsskripts

	Befehlszeilenskripte
	Der Vorspann des Befehlszeilenskripts
	Der Quelltext des Skripts
	Kurzbefehle festlegen

	Skript-API
	Cursor und Bereiche
	Der Cursor-Prototyp
	Der Bereich-Prototyp

	Globale Funktionen
	Lesen & Einfügen von Dateien
	Fehlersuche
	Übersetzung

	Die Programmschnittstelle zur Ansicht
	Die Programmschnittstelle zum Dokument
	Die Programmschnittstelle zum Editor

	Einrichten von KatePart
	Einstellungen für die Editor-Komponente
	Erscheinungsbild
	Schriftart
	Allgemein
	Randbereiche

	Farbschemata
	Bearbeitungseinstellungen
	Allgemein
	Textnavigation
	Einrückung
	Autovervollständigung
	Rechtschreibprüfung
	VI-Eingabemodus

	Öffnen/Speichern
	Allgemein
	Erweitert
	Modi & Dateitypen

	Einstellungen mit Dokumentvariablen
	Wie KatePart Variablen benutzt
	Verfügbare Variablen
	Zusätzliche Optionen in .kateconfig-Dateien

	Danksagungen und Lizenz
	Der VI-Eingabemodus
	VI-Eingabemodus
	Inkompatibilitäten mit Vim
	Wechseln der Modi
	Einbindung in Kate's Funktionen
	Unterstützte Befehle im normalen/visuellen Modus
	Unterstützte Richtungstasten
	Unterstützte Textobjekte
	Unterstützte Befehle im Eingabemodus
	Das Komma-Textobjekt
	Fehlende Funktionen

	Reguläre Ausdrücke
	Einleitung
	Muster
	Steuerzeichen
	Zeichenklassen und Abkürzungen
	Zeichen mit speziellen Bedeutungen (Steuerzeichen) innerhalb von Zeichenklassen

	Alternativen: trifft zu wenn ,,eins von''
	Untermuster
	Angabe von Alternativen
	Speichern von gefundenem Text (Rückwärtsreferenzen)
	Vorwärtsgerichtete Behauptungen
	Rückwärtsgerichtete Behauptungen

	Zeichen mit speziellen Bedeutungen (Steuerzeichen) innerhalb von Mustern

	Quantifizierer
	Gier
	In Beispielen

	Behauptungen

	Index

