
Introducció a l’escriptura de
connectors per al RKWard

Thomas Friedrichsmeier
Meik Michalke

Traductor: Josep M. Ferrer

Introducció a l’escriptura de connectors per al RKWard

2

Índex

1 Introducció 8

2 Preliminars: Què són els connectors en el RKWard? Com funcionen? 9

3 Creació d’entrades del menú 10
3.1 Control de l’ordre de les entrades del menú . 12

4 Definir la IGU 14
4.1 Definir un diàleg . 14

4.2 Afegir una interfície assistent . 17

4.3 Algunes consideracions sobre el disseny de la IGU 18

4.3.1 <radio>, <checkbox> i <dropdown> . 18

5 Generació de codi R a partir de la configuració de la IGU 20

5.1 Ús del JavaScript en els connectors del RKWard . 20

5.1.1 preprocess() . 20

5.1.2 calculate() . 21
5.1.3 printout() . 22

5.2 Convencions, polítiques i coneixement general . 22

5.2.1 Entendre l’entorn local() . 22
5.2.2 Format del codi . 23
5.2.3 Tractament amb opcions complexes . 23

5.3 Consells i trucs . 24

6 Escriure una pàgina d’ajuda 25

7 Interaccions lògiques entre elements de la IGU 28
7.1 Lògica de la IGU . 28

7.2 Lògica de la IGU amb scripts . 30

8 Incrustar connectors en connectors 32
8.1 Casos d’ús per a incrustar . 32

8.2 Incrustació dins d’un diàleg . 32

8.3 Generació de codi en incrustar . 33
8.4 Incrustació dins d’un assistent . 33
8.5 Incrustació menys incrustada: botó d’opcions addicionals 33

8.6 Incrustació/definició de connectors incomplets . 34

Introducció a l’escriptura de connectors per al RKWard

9 Tractament amb molts connectors similars 36
9.1 Vista general de diferents enfocaments . 36

9.2 Ús de la sentència «include» del JS . 36

9.3 Incloure els fitxers .xml . 37

9.4 Ús de <snippets> . 38

9.5 <include> i <snippets> vs. <embed> . 39

10 Conceptes per a utilitzar en connectors especialitzats 41

10.1 Connectors que produeixen un diagrama . 41

10.1.1 Dibuixar un diagrama a la finestra de sortida 41

10.1.2 Afegir la funcionalitat de vista prèvia . 41

10.1.3 Opcions genèriques de diagrama . 42

10.1.4 Un exemple canònic . 43

10.2 Vistes prèvies de dades, sortida i altres resultats . 44

10.2.1 Vistes prèvies de sortida (HTML) . 44

10.2.2 Vistes prèvies de dades (importades) . 45

10.2.3 Vistes prèvies personalitzades . 46

10.3 Connectors dependents de context . 46

10.3.1 Context de dispositiu X11 . 47

10.3.2 Importar el context de les dades . 47

10.4 Consultar l’R per a obtenir informació . 48

10.5 Referenciar l’objecte actual o el fitxer actual . 50

10.6 Repetir (un conjunt d’) opcions . 50

10.6.1 «Driven» «optionsets» . 52

10.6.2 Alternatives: quan no s’usen els «optionsets» 53

11 Gestió de dependències i problemes de compatibilitat 54

11.1 Compatibilitat de la versió del RKWard . 54

11.2 Compatibilitat de la versió de l’R . 55

11.3 Dependències de paquets de l’R . 56

11.4 Dependències d’altres RKWard.pluginmaps . 56

11.5 Un exemple . 57

12 Traduccions d’un connector 58
12.1 Consideracions generals . 58

12.2 «i18n» als fitxers «xml» del RKWard . 58
12.3 «i18n» als fitxers i seccions dels fitxers «js» del RKWard 59

12.3.1 «i18n» i cometes . 60
12.4 Manteniment d’una traducció . 61
12.5 Escriure traduccions d’un connector . 61

4

Introducció a l’escriptura de connectors per al RKWard

13 Autor, llicència i informació de la versió 62

14 Compartiu el vostre treball amb altres persones 64

14.1 Connectors externs . 64
14.2 Per què connectors externs? . 64

14.3 Estructura d’un paquet de connector . 65

14.3.1 Jerarquia de fitxers . 65

14.3.1.1 Components bàsics del connector 66

14.3.1.2 Informació addicional (opcional) 66

14.3.1.3 Proves automatitzades de connectors (opcional) 67

14.4 Construcció del paquet del connector . 67

15 Desenvolupament de connectors amb el paquet rkwarddev 68

15.1 Vista general . 68

15.2 Exemple pràctic . 68

15.2.1 Descripció de la IGU . 69

15.2.2 Codi JavaScript . 71

15.2.3 Mapa de connectors . 73

15.2.4 Pàgina d’ajuda . 73

15.2.5 Generació dels fitxers del connector . 73
15.2.6 L’script complet . 74

15.3 Afegir pàgines d’ajuda . 76

15.4 Connectors de traducció . 76

A Referència 78
A.1 Tipus de propietats/Modificadors . 78

A.2 Elements de propòsit general que s’utilitzaran en qualsevol fitxer XML (.xml,.rkh,
.pluginmap) . 80

A.3 Elements a utilitzar en la descripció XML del connector 80

A.3.1 Elements generals . 81

A.3.2 Definicions d’interfície . 81
A.3.3 Elements de disposició . 82

A.3.4 Elements actius . 83
A.3.5 Secció de lògica . 90

A.4 Propietats dels elements del connector . 93

A.5 Connectors incrustables distribuïts amb la versió oficial del RKWard 97
A.6 Elements que s’utilitzaran en els fitxers .pluginmap 99

A.7 Elements per a utilitzar en fitxers .rkh (ajuda) . 103

A.8 Funcions disponibles per a la creació de scripts de lògica de la IGU 104

B Resolució de problemes durant el desenvolupament del connector 107

C Llicència 108

5

Introducció a l’escriptura de connectors per al RKWard

Índex de taules

A.1 Connectors incrustables estàndards . 99

6

Resum

Aquesta és una guia a l’escriptura de connectors per al RKWard.

Introducció a l’escriptura de connectors per al RKWard

Capítol 1

Introducció

Aquest document descriu com escriure els vostres propis connectors. La documentació ha crescut
força amb el temps. No deixeu que això us espanti. Recomanem llegir els quatre passos bàsics
(en termes generals, a continuació), per a obtenir una idea bàsica de com funcionen les coses.
Després d’això, és possible que vulgueu fullejar la taula de continguts per a veure quins temes
avançats podrien ser rellevants per a vós.

Per a preguntes i comentaris, escriviu a la llista de correu de desenvolupament del RKWard.

No cal que ho llegiu per a utilitzar el RKWard. Aquest document tracta sobre l’ampliació del
RKWard. Està dirigit a usuaris avançats, o persones disposades a ajudar a millorar el RKWard.

Escriure un connector estàndard és bàsicament un procés de quatre passos:

• Col·locar una acció nova a la jerarquia del menú

• Descriure l’aparença i el comportament de la IGU del connector

• Definir com s’ha de generar el codi R a partir de la configuració que l’usuari fa a la IGU

• Afegir una pàgina d’ajuda al vostre connector

Aquests es tractaran per ordre.

Es poden utilitzar alguns conceptes avançats en aquests quatre passos, però es tracten en capítols
separats, per a mantenir les coses senzilles:

• Lògica de la IGU

• Incrustar connectors en connectors

• Conceptes útils per a crear moltes sèries de connectors similars

A més, cap dels capítols mostra totes les opcions, sinó només els conceptes bàsics. Es proporciona
per separat una referència completa d’opcions.

8

Introducció a l’escriptura de connectors per al RKWard

Capítol 2

Preliminars: Què són els connectors
en el RKWard? Com funcionen?

Per descomptat, la primera pregunta que us podríeu fer és: quines parts de la funcionalitat del
RKWard s’han realitzat utilitzant connectors? O: què poden fer els connectors?

Una manera de respondre-ho és: desseleccionar tots els fitxers del .pluginmap de l’Arranjament
→ Configura el RKWard→ Connectors, i veure què falta. Una resposta una mica més útil: la
majoria de les funcions estadístiques reals accessibles a través de la IGU es realitzen utilitzant
connectors. També podeu crear IGU bastant flexibles per a tota mena d’operacions utilitzant
connectors.
El paradigma bàsic darrere dels connectors del RKWard és el que us ensenyarem en aquest do-
cument: un fitxer XML descriu com es veu la IGU. S’utilitza un fitxer JavaScript addicional per
a generar la sintaxi de l’R des de la configuració de la IGU. És a dir, els connectors no han de
realitzar cap càlcul estadístic. Els connectors generen la sintaxi de l’R necessària per a executar
aquests càlculs. La sintaxi de l’R s’envia al dorsal de l’R per a l’avaluació, i normalment es mostra
un resultat a la finestra de sortida.
Llegiu en els capítols següents per a veure com es fa això.

9

Introducció a l’escriptura de connectors per al RKWard

Capítol 3

Creació d’entrades del menú

Quan creeu un connector nou, haureu de dir-li-ho al RKWard. Per tant, el primer que cal fer és
escriure un fitxer .pluginmap (o modificar-ne un d’existent). El format del .pluginmap és XML.
Us ensenyaré un exemple (també, per descomptat, assegureu-vos que el RKWard està configurat
per a carregar el .pluginmap: Arranjament→ Configura el RKWard→ Connectors):

SUGGERIMENT
Després de llegir aquest capítol, mireu també el paquet rkwarddev. Proporciona algunes funcions de
l’R per a crear la majoria de les etiquetes XML del RKWard.

<!DOCTYPE rkpluginmap >

El «doctype» no s’interpreta realment, però de totes maneres es defineix com a ˝rkpluginmap˝ .

<document base_prefix="" namespace="myplugins" id="mypluginmap">

Es pot utilitzar l’atribut base_prefix, si tots els connectors resideixen en un directori comú. Bà-
sicament, aleshores podeu ometre aquest directori dels noms de fitxers especificats a continuació.
És segur deixar això com a ˝˝ .

Com podeu veure a continuació, tots els connectors tenen un identificador únic, id. El namespac
e és una manera d’organitzar aquests ID, i fer que sigui menys probable crear accidentalment un
identificador duplicat. Internament, s’anteposa l’espai de noms i després un «::» a tots els identi-
ficadors que especifiqueu en aquest .pluginmap. En general, si teniu la intenció de distribuir els
connectors en un paquet R, és una bona idea utilitzar el nom del paquet com a paràmetre namesp
ace. Els connectors enviats amb la distribució oficial del RKWard tenen el namespace=˝rkward˝ .

L’atribut id és opcional, però especificar un identificador per al vostre .pluginmap fa possible
que altres persones facin que el seu .pluginmap carreguin automàticament el vostre .pluginmap
(vegeu la secció sobre dependències).

<components >

Components? No estem parlant de connectors? Sí, però en el futur, els connectors no seran més
que una classe especial de components. El que fem aquí, és registrar tots els components/con-
nectors en el RKWard. Vegem una entrada d’exemple:

<component type="standard" id="t_test_two_vars" file="t_test_two_vars.xml" ←↩
label="Two Variable t-Test" />

10

Introducció a l’escriptura de connectors per al RKWard

Primer l’atribut type: deixeu-ho com a ˝standard˝ per ara. Encara no s’han implementat altres
tipus. L’id que ja hem indicat. A cada component se li ha de donar un identificador únic (en el seu
espai de noms). Trieu-ne un que sigui fàcilment reconeixible. Eviteu espais i qualsevol caràcter
especial. Fins ara no estan prohibits, però podrien tenir significats especials. Amb l’atribut file,
especifiqueu on es troba la descripció del connector real. Això és relatiu al directori on es troba
el fitxer .pluginmap, i el base_prefix anterior. Finalment, doneu una etiqueta al component.
Aquesta etiqueta es mostrarà on es col·loqui el connector al menú (o en el futur potser també en
altres llocs).

Normalment, un fitxer de .pluginmap contindrà diversos components, de manera que aquí en
trobareu alguns més:

<component type="standard" id="unimplemented_test" file="means/ ←↩
unimplemented.xml" />

<component type="standard" id="fictional_t_test" file=" ←↩
means/ttests/fictional.xml" label="This is a fictional t ←↩
-test" />

<component type="standard" id="descriptive" file=" ←↩
descriptive.xml" label="Descriptive Statistics" />

<component type="standard" id="corr_matrix" file=" ←↩
corr_matrix.xml" label="Correlation Matrix" />

<component type="standard" id="simple_anova" file=" ←↩
simple_anova.xml" label="Simple Anova" />

</components >

D’acord, aquest ha estat el primer pas. Ara el RKWard coneix que aquests connectors existeixen.
Però com invocar-los? S’han de col·locar en una jerarquia de menús:

<hierarchy >
<menu id="analysis" label="Analysis">

Just a sota de l’etiqueta <hierarchy>, comenceu a descriure, en quin <menu> haurien d’anar
els vostres connectors. Amb la línia anterior, bàsicament dieu que el vostre connector hauria
d’estar en el menú Analysis (no necessàriament directament allà, sinó en un submenú). El menú
Analysis és estàndard en el RKWard, de manera que en realitat no s’ha de crear des de zero.
Tanmateix, si encara no existís, utilitzant l’atribut label li donaríeu el seu nom. Finalment, l’id
identifica de nou aquest <menu>. Això és necessari, de manera que diversos fitxers del .plug
inmap poden col·locar els seus connectors en els mateixos menús. Ho fan buscant un <menu>
amb l’id donat. Si l’ID encara no existeix, es crearà un menú nou. En cas contrari, les entrades
s’afegiran al menú existent.

<menu id="means" label="Means">

Bàsicament, aquí és el mateix: ara definim un submenú al menú Analysis. Es diu Means).

<menu id="ttests" label="t-Tests">

I un nivell final en la jerarquia del menú: un submenú del submenú Means.

<entry component="t_test_two_vars" />

Ara, finalment, aquest és el menú en què volem col·locar el connector. L’etiqueta <entry> indica
que aquesta és realment la cosa real, en lloc d’un altre submenú. L’atribut component es refereix
a l’id que heu donat al connector/component anterior.

<entry component="fictional_t_test" />
</menu >
<entry component="fictional_t_test" />

</menu >
<menu id="frequency" label="Frequency" index="2"/>

11

Introducció a l’escriptura de connectors per al RKWard

En el cas que us hàgiu perdut: aquest és un altre submenú al menú Analysis. Vegeu la captura
de pantalla següent. S’ometran algunes de les coses que no són visibles, marcades amb [...].

[...]
</menu >
<entry component="corr_matrix"/>
<entry component="descriptive"/>
<entry component="simple_anova"/>

</menu >

Aquestes són les entrades finals visibles en les captures de pantalla de sota.

<menu id="plots" label="Plots">
[...]

</menu >

Per descomptat, també podeu col·locar els vostres connectors en menús diferents d’Analysis.

<menu id="file" label="File">
[...]

</menu >

Fins i tot en menús estàndard com Fitxer. Tot el que necessiteu és l’id correcte.

</hierarchy >
</document >

Així és com es fa. I aquesta captura de pantalla mostra el resultat:

És confús? La manera més fàcil d’iniciar-se és probablement prenent alguns dels fitxers existents
del .pluginmap enviats amb la distribució, i modificant-los segons les vostres necessitats. A més,
si necessiteu ajuda, no dubteu a escriure a la llista de correu de desenvolupament.

3.1 Control de l’ordre de les entrades del menú

De manera predeterminada, tots els elements (entrades/submenús) dins d’un menú s’ordenaran
alfabèticament, automàticament. En alguns casos, és possible que vulgueu més control. En aquest
cas podeu agrupar elements de la manera següent:

• Podeu definir grups dins de qualsevol menú com aquest. Tots els elements que pertanyin al
mateix grup s’agruparan junts:

12

Introducció a l’escriptura de connectors per al RKWard

<group id="somegroup"/>

• Si voleu que el grup estigui visualment separat d’altres entrades, utilitzeu:

<group id="somegroup" separated="true"/>

• Les entrades, menús i grups es poden afegir a un grup especificat, utilitzant:

<entry component ="..." group="somegroup"/>

• De fet, també és possible definir grups (sense línies de separació) implícitament:

<entry component="first" group="a"/>
<entry component="third"/>
<entry component="second" group="a"/>

• Els noms dels grups són específics de cada menú. El grup «a» al menú «Data» no entra en
conflicte amb el grup «a» del menú «Analysis», per exemple.

• El cas d’ús més comú és definir grups a la part superior, o a la part inferior d’un menú. Per
això, hi ha grups predefinits ˝top˝ i ˝bottom˝ a cada menú.

• Les entrades dins de cada grup estan ordenades alfabèticament. Els grups apareixen en l’ordre
de declaració (llevat que s’afegeixi a un altre grup, per descomptat).

• Els menús i les entrades sense especificació de grup formen lògicament un grup (˝˝).

13

Introducció a l’escriptura de connectors per al RKWard

Capítol 4

Definir la IGU

4.1 Definir un diàleg

En el capítol anterior heu vist com registrar un connector amb el RKWard. L’ingredient més im-
portant era especificar el camí a un fitxer XML amb una descripció de l’aspecte real del connector.
En aquest capítol aprendreu a crear aquest fitxer XML.

SUGGERIMENT
Després de llegir aquest capítol, mireu també el paquet rkwarddev. Proporciona algunes funcions de
l’R per a crear la majoria de les etiquetes XML del RKWard.

Una vegada més, us ensenyarem amb un exemple. L’exemple és una versió (lleugerament sim-
plificada) de la «prova t» de dues variables.

<!DOCTYPE rkplugin >

El «doctype» realment encara no s’interpreta. Poseu-lo a rkplugin, de totes maneres.

<document >
<code file="t_test_two_vars.js"/>

Tots els connectors generen codi. Actualment, l’única manera de fer-ho és utilitzant JS tal com es
detalla al capítol següent. Això defineix on cercar el codi JS. El nom del fitxer és relatiu al directori
on es troba el connector XML.

<help file="t_test_two_vars.rkh"/>

Normalment, és una bona idea proporcionar també una pàgina d’ajuda per al vostre connector.
El nom del fitxer d’aquesta pàgina d’ajuda es dona, aquí, en relació amb el directori, a on està
l’XML del connector. L’escriptura de pàgines d’ajuda està documentada aquí. Si no proporcioneu
un fitxer d’ajuda, ometeu aquesta línia.

<dialog label="Two Variable t-Test">

Com ja sabeu, els connectors poden tenir un diàleg o una interfície assistent o ambdós. Aquí
comencem a definir una interfície de diàleg. L’atribut label especifica la llegenda del diàleg.

<tabbook >
<tab label="Basic settings">

14

Introducció a l’escriptura de connectors per al RKWard

Els elements de la IGU es poden organitzar utilitzant un «tabbook». Aquí definim un «tabbook»
com el primer element del diàleg. Utilitzeu <tabbook>[...]</tabbook> per a definir el «tabbook»
i després per a cada pàgina del «tabbook» utilitzeu <tab>[...]</tab>. L’atribut label a l’element
<tab> us permet especificar una llegenda per a aquesta pàgina del «tabbook».

<row id="main_settings_row">

Les etiquetes <row> i <column> especifiquen la disposició dels elements de la IGU. Aquí diu
que vol col·locar alguns elements un al costat de l’altre (d’esquerra a dreta). L’atribut id no és
estrictament necessari, però l’utilitzarem més endavant, quan afegiu una interfície assistent al
nostre connector. El primer element a col·locar a la fila és:

<varselector id="vars"/>

Amb aquesta etiqueta simple creareu una llista des de la qual l’usuari podrà seleccionar variables.
Heu d’especificar un id per a aquest element, de manera que el RKWard sàpiga com trobar-lo.

AVÍS
NO podeu utilitzar un punt (.) a la cadena id.

<column >

A continuació, imbriquem un <column> dins la fila. Aquests són els elements següents que es
col·locaran sobre dels altres (de dalt a baix), i tots estaran a la dreta del <varselector>.

<varslot types="number" id="x" source="vars" required="true" label="compare ←↩
"/>

<varslot types="number" id ←↩
="y" source="vars" ←↩
required="true" label=" ←↩
against" i18n_context=" ←↩
compare against"/>

Aquests elements són l’equivalent a <varselector>. Representen «ranures» en les quals l’usuari
pot posar variables. Observeu que source s’estableix al mateix valor que la id de <varselector>.
Això vol dir que els <varslot> prendran cadascuna de les seves variables del «varselector». Tam-
bé cal donar als <varslot> un id. Poden tenir una label, i es poden establir a required. Això
vol dir que el botó Submit no estarà habilitat fins que el <varslot> tingui un valor vàlid. Final-
ment, l’atribut type encara no s’ha interpretat, però s’utilitzarà per a tenir en compte que només
es permeten els tipus correctes de variables a <varslot>.

En cas que us pregunteu sobre l’atribut i18n_context: aquest és per a proporcionar context per
a ajudar a la traducció correcta de la paraula ˝against˝, utilitzada com a etiqueta de <varslot>,
però no afecta directament la funcionalitat del connector. Més sobre això en un capítol separat.

<radio id="hypothesis" label="using test hypothesis">
<option value="two. ←↩

sided" label=" ←↩
Two-sided"/>

<option value=" ←↩
greater" label=" ←↩
First is greater ←↩
"/>

<option value="less ←↩
" label="Second ←↩
is greater"/>

</radio >

15

Introducció a l’escriptura de connectors per al RKWard

Aquí, definiu un grup de botons exclusius <radio>. El grup té una label i un id. Cada <option>
(botó) té una label i se li assigna un value. Aquest és el valor que l’element <radio> retornarà
quan se seleccioni l’opció.

</column >
</row>

</tab>

Cal tancar cada etiqueta. Hem posat tots els elements que volíem (els dos <varslots> i el <radio>)
a la <column>). Posem tots els elements que volíem (el <varselector> i el <column> amb aquests
elements) en la <row>. I hem posat tots els elements que volíem a la primera pàgina del <tab-
book>. Encara no hem acabat de definir el <tabbook> (vindran més pàgines), i per descomptat
hi ha més en el <dialog>, també. Però aquesta captura de pantalla és bàsicament el que hem fet
fins ara:

Tingueu en compte que no s’han especificat els botons Submit, Close, etc. o la vista de codi.
Aquests elements es generen automàticament. Però, per descomptat, encara hem de definir la
segona pàgina del <tabbook>:

<tab label="Options">
<checkbox id="varequal" label="assume equal ←↩

variances" value=", var.equal=TRUE"/>

De manera predeterminada els elements es col·locaran de dalt a baix com en una <column>.
Com que això és el que volem aquí, no hem d’indicar explícitament una disposició <row> ni
<column>. El primer element que definim és una casella de selecció. Igual que <radio><option>,
la casella de selecció té una label i un value. El value és el que es retorna, si la casella de selecció
està marcada. Per descomptat, la casella de selecció també necessita un id.

<frame label="Confidence Interval" id="frame_conf_int">

Aquí hi ha un altre element de la disposició: per a indicar que els dos elements següents estan
junts, dibuixem un <frame> (quadre). Aquest marc pot tenir una label (llegenda). Com que el
marc només és un element de disposició passiva, no necessita un id, tot i que en definim un aquí,
com que hi farem referència més tard, quan definim una interfície assistent addicional.

<checkbox id="confint" label="print confidence interval" value="1" checked ←↩
="true"/>

16

Introducció a l’escriptura de connectors per al RKWard

<spinbox type="real" id="conflevel" ←↩
label="confidence level" min ←↩

="0" max="1" initial="0.95"/>
</frame >

Dins del <frame> col·loquem un altre <checkbox> (usant checked=˝true˝ , senyalem que la ca-
sella de selecció s’ha de marcar de manera predeterminada), i un <spinbox>. El botó de selecció
de valors permet a l’usuari seleccionar un valor entre ˝min˝ i ˝max˝ amb el valor per defec-
te/inicial ˝0,95˝ . Establir el type a ˝real˝ indica que s’accepten els nombres reals en lloc de
type=˝integer˝ que només acceptaria enters.

NOTA
També és possible, i sovint preferible, fer que el <frame> es pugui marcar, en lloc d’afegir una <check-
box> a l’interior. Vegeu la referència per a més detalls. Això no es fa aquí, amb finalitats il·lustratives.

</tab>
</tabbook >

</dialog >

Això és tot en la segona pàgina del <tabbook>, totes les pàgines del <tabbook> i tots els elements
en el <dialog>. Hem acabat de definir l’aspecte del diàleg.

</document >

Finalment tanquem l’etiqueta <document>, i ja està. La IGU està definida. Ara podeu desar el
fitxer. Però com es genera la sintaxi de l’R a partir de la configuració de la IGU? Ho tractarem
en el capítol següent. En primer lloc, però, mirarem d’afegir una interfície assistent i algunes
consideracions generals.

4.2 Afegir una interfície assistent

En realitat no cal definir una interfície addicional <wizard>, però així és com es faria. Per a afegir
una interfície assistent, afegiu una etiqueta <wizard> al mateix nivell que l’etiqueta <dialog>:

<wizard label="Two Variable t-Test">
<page id="firstpage">

<text >As a first step , select the two ←↩
variables you want to compare against

each other. And specify , which one ←↩
you theorize to be greater. ←↩
Select two-sided ,

if your theory does not tell you, ←↩
which variable is greater.</text ←↩
>

<copy id="main_settings_row"/>
</page >

Algunes d’aquestes coses s’expliquen per si mateixes: afegim una etiqueta <wizard> amb una
label per a l’assistent. Com que un assistent pot contenir diverses pàgines que es mostren una
després de l’altra, a continuació definim la primera nota <page>, i hi posem una nota explicativa
<text>. Llavors utilitzem una etiqueta <copy>. El que fa això, és que realment ens estalvia haver
de definir de nou el que ja escrivim per al <dialog>: l’etiqueta copy cerca una altra etiqueta amb
el mateix id abans en l’XML. Això es defineix en la secció <dialog>, i és un <row> en el qual
hi ha el <varselector>, <varslots> i el control <radio> de la «hipòtesi». Tot això es copia 1:1 i
s’insereix just a l’element <copy>.

Ara la segona pàgina:

17

Introducció a l’escriptura de connectors per al RKWard

<page id="secondpage">
<text >Below are some advanced options. It ←↩

is generally safe not to assume the
variables have equal variances. An ←↩

appropriate correction will be ←↩
applied then.

Choosing "assume equal variances" ←↩
may increase test -strength , ←↩
however.</text >

<copy id="varequal"/>
<text >Sometimes it is helpful to get an ←↩

estimate of the confidence interval of
the difference in means. Below you ←↩

can specify whether one should ←↩
be shown , and

which confidence -level should be ←↩
applied (95% corresponds to a 5% ←↩
level of

significance).</text >
<copy id="frame_conf_int"/>

</page >
</wizard >

Aquí ocorre el mateix. S’afegeixen alguns textos, i entre ells hi ha la <copy> d’altres seccions de
la interfície de diàleg.

Per descomptat, podeu fer que la interfície de l’assistent sembli molt diferent del diàleg, i no uti-
litzar l’etiqueta <copy> en absolut. Assegureu-vos, però, d’assignar els elements corresponents
el mateix id en ambdues interfícies. Això no només s’utilitza per a transferir la configuració des
de la interfície de diàleg a la interfície assistent i al revés, quan l’usuari canvia d’interfície (això
encara no succeeix a la versió actual del RKWard), sinó que també simplifica l’escriptura de la
plantilla de codi (vegeu a sota).

4.3 Algunes consideracions sobre el disseny de la IGU

Aquesta secció conté algunes consideracions generals sobre quins elements de la IGU s’utilitza-
ran i a on. Si aquest és el primer intent de crear un connector, no dubteu a ometre aquesta secció,
ja que no és rellevant per a aconseguir que una IGU bàsica funcioni. Torneu aquí, més tard, per a
veure si podeu refinar la IGU del connector d’alguna manera o d’altra.

4.3.1 <radio>, <checkbox> i <dropdown>

Els tres elements <radio>, <checkbox>, <dropdown>, tots tenen una funció similar: per a se-
leccionar una de diverses opcions. Òbviament, una casella de selecció només permet triar entre
dues opcions: marcada o no, de manera que no la podeu utilitzar si hi ha més de dues opcions
per a triar. Però quan utilitzar quin dels elements? Algunes regles generals:

Si esteu creant un <radio> o <dropdown> amb només dues opcions, pregunteu-vos si la pregun-
ta és essencialment un tipus de pregunta sí/no. Per exemple, una tria entre «ajusta els resultats»
i «no ajusta els resultats», o entre «elimina els valors que manquen» i «mantén els valors que
manquen». En aquest cas una <checkbox> és la millor opció: utilitza poc espai, tindrà menys
paraules d’etiquetes i és més fàcil de llegir per l’usuari. Hi ha molt poques situacions en què
hauríeu de triar un <radio> sobre una <checkbox> quan només hi ha dues opcions. Un exem-
ple d’això podria ser: «Mètode de càlcul: ’pearson’/’spearman’». Aquí, podrien pensar-se més
mètodes, i en realitat no formen un parell de contraris.

18

Introducció a l’escriptura de connectors per al RKWard

Triar entre <radio> i <dropdown> és principalment una qüestió d’espai. El <dropdown> té
l’avantatge d’utilitzar poc espai, fins i tot si hi ha moltes opcions per a triar. D’altra banda, un
<radio> té l’avantatge de fer visibles alhora totes les opcions possibles per a l’usuari, sense fer
clic a la fletxa desplegable. Generalment, si hi ha sis o més opcions per a triar, és preferible un
<dropdown>. Si hi ha cinc o menys opcions, un <radio> és la millor opció.

19

Introducció a l’escriptura de connectors per al RKWard

Capítol 5

Generació de codi R a partir de la
configuració de la IGU

5.1 Ús del JavaScript en els connectors del RKWard

Ara tenim una IGU definida, però encara necessitem generar codi R a partir d’això. Per tant,
necessitem un altre fitxer de text, code.js, ubicat al mateix directori que el description.xml.
Podeu estar o no familiaritzats amb el JavaScript (o, per a ser tècnicament precís: ECMA-script).
La documentació sobre JS es pot trobar en abundància, tant en forma impresa, com a Internet (p.
ex.: https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide). Però per a la majoria de les
finalitats no necessitareu saber gaire sobre JS, ja que només utilitzarem algunes característiques
molt bàsiques.

SUGGERIMENT
Després de llegir aquest capítol, també doneu un cop d’ull al paquet rkwarddev. Proporciona algunes
funcions de l’R per a crear codi JavaScript utilitzat habitualment en el RKWard. També pot detectar
automàticament les variables utilitzades en un fitxer XML de connector i crear codi bàsic JavaScript a
partir d’aquest per a començar.

NOTA
S’assumeix que els fitxers .js del connector estan codificats en UTF-8. Assegureu-vos de comprovar
la codificació de l’editor, si utilitzeu qualsevol caràcter no ASCII.

Per a la prova t de dues variables, el fitxer code.js es mostra de la manera següent (amb comen-
taris entremig):

5.1.1 preprocess()

function preprocess () {
}

El fitxer JS està organitzat en tres funcions separades: preprocess(), calculate(), i printout().
Això es deu al fet que no es necessita tot el codi en totes les etapes. Actualment, la funció de
preprocessament no s’utilitza realment en molts llocs (normalment l’ometreu).

20

https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide

Introducció a l’escriptura de connectors per al RKWard

5.1.2 calculate()

function calculate () {
echo (’res <- t.test (x=’ + getString ("x") + ’, y=’ + getString (" ←↩

y") + ’, hypothesis="’ + getString ("hypothesis") + ’"’ + ←↩
getString ("varequal"));

var conflevel = getString ("conflevel");
if (conflevel != "0.95") echo (’, conf.level=’ + conflevel);
echo (’)\n’);

}

Aquesta funció genera la sintaxi real de l’R que s’executarà des de la configuració de la IGU.
Mirem això en detall: el codi que s’utilitza es genera utilitzant la sentència echo(). Mirant la
sentència echo() pas a pas, la primera part d’aquesta és

res <- t.test (

com a text net. A continuació cal omplir el valor que l’usuari ha seleccionat com a primera vari-
able. Ho obtenim utilitzant getString (˝x˝), i l’afegeix a la cadena per a ser «reproduït». Això
mostra el valor de l’element de la IGU amb id=˝x˝ : la nostra primera <checkbox>. A continua-
ció, afegim una «, » i fem el mateix per a obtenir el valor de l’element ˝y˝ , la segona <checkbox>.
Per a la hipòtesi (el grup <radio>), i les variàncies iguals <checkbox>, el procediment és molt
similar.

NOTA
En lloc de concatenar cadenes utilitzant l’operador +, també podeu utilitzar un «literal de plantilla»,
com aquest (cal tenir en compte que la cadena està inclosa entre accents greus (‘)):

echo(‘res <- t.test (x=${ getString("x") }, y=${ getString("y") }, ←↩
hypothesis="${ getString("hypothesis") }"‘); // etc.

Tingueu en compte que en lloc de concatenar els fragments de sortida amb «+», també podeu
utilitzar diverses sentències echo(). Tot s’imprimeix en una sola línia. Per a produir un salt de
línia en el codi generat, inseriu una ˝\n˝ en la cadena reproduïda. En teoria, fins i tot podeu
produir moltes línies amb una única sentència d’eco, però manteniu-la en una (o menys) línia de
codi generat per echo().

NOTA
A més de getString(), també hi ha funcions getBoolean(), que intentaran retornar el valor com
un element binari (apropiat per a utilitzar en una sentència if()), i getList(), que intentarà retornar
dades semblants a una llista en un JS Array(). Més tard mostrarem exemples d’això.
En mirar els connectors existents, també trobareu molts connectors que utilitzen getValue(), en
lloc de getString(), i de fet els dos són gairebé idèntics. No obstant això, utilitzar getString(),
getBoolean() i getList() és la pràctica recomanada des de la versió 0.6.1.

Es torna una mica més complicat per al nivell de confiança. Per raons d’estètica, no volem especi-
ficar explícitament el nivell de confiança a utilitzar, si correspon al valor predeterminat. Per tant,
en lloc d’imprimir el valor incondicionalment, primer el recuperarem en una variable. Després
comprovem si aquesta variable difereix de ˝0,95˝ i, si és així, imprimeix un argument addicio-
nal. Finalment, reproduïm un parèntesi de tancament i un salt de línia: ˝)\n˝ . Això és tot per a
la funció de càlcul.

21

Introducció a l’escriptura de connectors per al RKWard

5.1.3 printout()

function printout () {
echo (’rk.header (’ + i18n ("Two Variable t-Test") + ’)\n’);
echo (’rk.print (res)\n’);

}

I això era tot el que hi ha a la funció d’impressió en la majoria dels casos. rk.header() imprimeix
un titular estàndard del resultat. Tingueu en compte que en els fitxers .js haureu de marcar totes
les cadenes traduïbles a mà, utilitzant i18n(), o altres ordres alternatives. Més informació en el
capítol sobre internacionalització. També podeu afegir més informació a això, si voleu, p. ex.:

function printout () {
new Header (i18n ("Two Variable t-Test"))

.addFromUI ("varequal")

.add (i18n ("Confidence level"), getString ("conflevel")) ←↩
// Note: written like this for illustration purposes ←↩

. More automatic:
// .addFromUI ("conflevel")

.print ();
echo (’rk.print (res)\n’);
}

rk.print() utilitza el paquet R2HTML per a proporcionar una sortida amb format HTML. Una
altra funció útil és rk.results(), que també pot generar tipus diferents de taules de resultats.
No obstant això, si hi ha dubtes, només cal utilitzar rk.print(), i amb això és suficient. La classe
JS Header és un ajudant de nivell JS per a generar una crida a rk.header() (només cal donar un
cop d’ull al codi R generat). En alguns casos, és possible que vulgueu cridar echo («rk.header
(...)») directament per a imprimir una capçalera per la sortida.

Tingueu en compte que internament la sortida és només un document HTML normal en aquest
moment. Per tant, podeu estar temptats d’afegir HTML personalitzat utilitzant rk.cat.output().
Encara que això funcionarà, no ho feu. El format de sortida pot canviar (p. ex., a ODF) en el futur,
de manera que és millor no introduir codi HTML específic. Més aviat, manteniu-ho senzill amb
rk.header(), rk.print(), rk.results(), i si cal, rk.print.literal(). Si això no sembla satisfer
les vostres necessitats de format, contacteu amb nosaltres a la llista de correu per a obtenir ajuda.

Felicitats! Heu creat el vostre primer connector. Llegiu en els capítols següents quant a conceptes
més avançats.

5.2 Convencions, polítiques i coneixement general

Hi ha moltes maneres d’escriure codi R per a una determinada tasca, i hi ha encara més maneres
de generar aquest codi R a partir de JS. Com ho feu exactament, és cosa vostra. Encara hi ha una
sèrie de consideracions que hauríeu de seguir, i la informació de base que hauríeu d’entendre.

5.2.1 Entendre l’entorn local()

Amb freqüència haureu de crear un o més objectes R temporals en el codi generat pel connector.
Normalment, no voleu que es col·loquin a l’espai de treball de l’usuari, fins i tot sobreescrivint
les variables d’usuari. Per tant, tot el codi generat pel connector s’executa en un entorn local()
(vegeu la pàgina d’ajuda de la funció local() de l’R). Això vol dir que totes les variables que
creeu són temporals i no es desaran permanentment.

Si l’usuari demana explícitament que es desi una variable, haureu d’assignar a aquest objecte uti-
litzant .GlobalEnv$objectname <- value. En general, no utilitzeu l’operador <<. No s’assignarà
necessàriament a .GlobalEnv.

22

Introducció a l’escriptura de connectors per al RKWard

Un escull important és utilitzar eval(). Aquí, haureu de tenir en compte que «eval» utilitzarà
de manera predeterminada l’entorn actual per a l’avaluació, és a dir, el local. Això funcionarà bé
la majoria de les vegades, però no sempre. Per tant, si necessiteu utilitzar eval(), probablement
voldreu especificar el paràmetre envir: eval(..., envir=globalenv()).

5.2.2 Format del codi

El més important és que el codi R generat funcioni, però també hauria de ser fàcil de llegir. Per
tant, vigileu també el format. Algunes consideracions:

S’han d’alinear a l’esquerra les sentències R normals de nivell superior.

Les sentències d’un bloc inferior s’han de sagnar amb una tabulació (vegeu l’exemple a continu-
ació).

Si feu càlculs molt complexos, afegiu un comentari aquí i allà, especialment per a marcar les
seccions lògiques. Tingueu en compte que hi ha una funció dedicada comment() per a inserir
comentaris traduïbles en el codi generat.

Per exemple, el codi generat podria tenir aquest aspecte. El mateix codi sense sagnat o comentaris
seria bastant difícil de llegir, malgrat la seva modesta complexitat:

primer determina el balanceig i la rotació
my.wobble <- wobble (x, y)
my.rotation <- wobble.rotation (my.wobble , z)

cal triar el mètode de balanceig segons la rotació
if (my.rotation > wobble.rotation.limit (x)) {

method <- "foo"
result <- boggle.foo (my.wobble , my.rotation)

} else {
method <- "bar"
result <- boggle.bar (my.wobble , my.rotation)

}

5.2.3 Tractament amb opcions complexes

Molts connectors poden fer més d’una cosa. Per exemple, el connector «Estadístiques descrip-
tives» pot calcular la mitjana, l’interval, la suma, el producte, la mediana, la longitud, etc. No
obstant això, normalment l’usuari només triarà fer alguns d’aquests càlculs. En aquest cas, inten-
teu mantenir el codi generat el més senzill possible. Només hauria de contenir porcions rellevants
per a les opcions realment seleccionades. Per a aconseguir-ho, aquí hi ha un exemple d’un pa-
tró de disseny comú tal com l’utilitzaríeu (en JS; aquí, ˝domean˝, ˝domedian˝ i ˝dosd˝ serien
elements de <checkbox>):

function calculate () {
echo (’x <- <’ + getString ("x") + ’)\n’);
echo (’results <- list ()\n’);

if (getBoolean ("domean.state")) echo ("results$" + i18n ("Mean ←↩
value") + " <- mean (x)\n");

if (getBoolean ("domedian.state")) echo ("results$" + i18n ("Median ←↩
") + " <- median (x)\n");

if (getBoolean ("dosd.state")) echo ("results$" + i18n ("Standard ←↩
deviation") + " <- sd (x)\n");

//...
}

23

Introducció a l’escriptura de connectors per al RKWard

5.3 Consells i trucs

Aquí hi ha alguns trucs diversos que poden fer que l’escriptura de connectors sigui menys tedi-
osa:
Si necessiteu el valor d’un paràmetre de la IGU en diversos llocs en el codi del connector, con-
sidereu assignar-la a una variable en JS, i utilitzant-la en lloc de recuperar-la una vegada i una
altra amb getString()/getBoolean()/getList(). Això és més ràpid, més llegible i amb menys
tecleig, tot alhora:

function calculate () {
var narm = ""; // na.rm=FALSE is the default in all ←↩

functions below
if (getBoolean ("remove_nas")) {

$narm = ", na.rm=TRUE";
}
// ...
echo ("results$foo <- foo (x" + narm + ")\n");
echo ("results$bar <- bar (x" + narm + ")\n");
echo ("results$foobar <- foobar (x" + narm "\n");
// ...

}

La simple funció d’ajuda makeOption() pot facilitar l’omissió dels paràmetres que tenen el seu
valor predeterminat, en molts casos:

function calculate () {
var options
//...
// This will do nothing , if VALUE is 0.95 (the default). Otherwise ←↩

it will append ’, conf.int=VALUE ’ to options.
options += makeOption ("conf.int", getString ("confint"), "0.95");
//...

}

24

Introducció a l’escriptura de connectors per al RKWard

Capítol 6

Escriure una pàgina d’ajuda

Quan el vostre connector funciona bàsicament, ha arribat el moment de proporcionar una pàgina
d’ajuda. Encara que normalment no voldreu explicar tots els conceptes subjacents en profunditat,
és possible que vulgueu afegir alguna explicació més per a alguna de les opcions, i enllaçar amb
connectors relacionats i funcions de l’R.

SUGGERIMENT
Després de llegir aquest capítol, doneu també un cop d’ull al paquet rkwarddev. Proporciona algunes
funcions de l’R per a crear la majoria de les etiquetes XML del RKWard. També és capaç de crear
esquelets bàsics de fitxers d’ajuda a partir dels fitxers XML existents per a començar.

Potser recordareu posar això dins del connector XML (si no l’heu posat, feu-ho ara):

<document >
[...]
<help file="filename.rkh" />
[...]

</document >

On, òbviament, substituireu filename per un nom més apropiat. Ara és el moment de crear
aquest fitxer .rkh. Aquest és un exemple autodescriptiu:

<!DOCTYPE rkhelp >
<document >

<summary >
En aquesta secció , posareu informació breu i molt bàsica sobre què fa el ←↩

connector.
Aquesta secció sempre es mostrarà a la part superior de la pàgina d’ajuda.

</summary >

<usage >
La secció d’ús pot contenir una mica més d’informació pràctica. Però
no explica tots els paràmetres en detall (això es fa a la secció «settings» ←↩

).

Per a iniciar un paràgraf nou, inseriu una línia buida , com es mostra a ←↩
dalt.

Aquesta línia , en canvi , serà al mateix paràgraf.

En totes les seccions podeu inserir codi HTML senzill , com ara el text ←↩
bold o <i>italic </i>. No obstant això , manteniu el format al mínim ←↩
necessari.

25

Introducció a l’escriptura de connectors per al RKWard

La secció d’ús és sempre la segona secció que es mostra en una pàgina d’ ←↩
ajuda.

</usage >

<section id="sectionid" title="Secció genèrica" short_title=" ←↩
Genèrica">

Si cal, podeu afegir seccions addicionals entre les seccions d’ús i de ←↩
configuració.

No obstant això , normalment no ho necessitareu mentre documenteu els ←↩
connectors.

L’atribut «id» proporciona un punt d’ancoratge per a saltar a aquesta ←↩
secció

des del menú de navegació. L’atribut «short_title» proporciona un títol ←↩
curt per a utilitzar a la barra de navegació.

Això és opcional , per defecte el "títol" principal s’utilitzarà tant com a ←↩
encapçalament de la secció , com a nom de l’enllaç a la barra de ←↩
navegació.

En qualsevol secció podeu inserir enllaços per a més informació. Ho feu ←↩
afegint

<link href="URL">link name </link >

A on URL pot ser un enllaç extern com https://rkward.kde.org .
Es permeten diversos URL especials a les pàgines d’ajuda:

<link href="rkward://page/path/page_id"/>

Això enllaça a una pàgina d’ajuda de nivell superior del RKWard (no per a ←↩
un connector).

<link href="rkward://component/[namespace/]component_id"/>

Això enllaça a la pàgina d’ajuda d’un altre connector. La part [namespace/] ←↩
es pot ometre

(en aquest cas, s’assumeix el RKWard com a espai de noms estàndard , p. ex.:
<link href="rkward://component/import_spss"/> o
<link href="rkward://component/rkward/import_spss"/> són equivalents).
El «component_id» és el mateix que heu especificat en el .pluginmap.

<link href="rkward://rhelp/rfunction"/>

Enllaça a la pàgina d’ajuda "rfunction" de l’R .

Tingueu en compte que els noms dels enllaços es generaran automàticament ←↩
per a aquests tipus d’enllaços.

</section >

<settings >
<caption id="id_of_tab_or_frame"/>
<setting id="id_of_element">

Descripció de l’element de la IGU identificat per l’id indicat
</setting >
<setting id="id_of_elementb" title="descripció">

Normalment el títol de l’element de la IGU s’extraurà a partir de la
definició XML del connector , automàticament. Tanmateix ,
per a alguns elements de la IGU aquesta descripció pot no ser suficient per ←↩

26

Introducció a l’escriptura de connectors per al RKWard

a identificar -los amb fiabilitat.
En aquest cas podeu afegir un títol explícit usant l’atribut "title".

</setting >
<setting id="id_of_elementc">

Descripció de l’element de la IGU identificat per "id_of_elementc"
</setting >
[...]

</settings >

<related >
La secció de relacions normalment conté diversos enllaços , com ara:

<link href="rkward://rhelp/mean"/>
<link href="rkward://rhelp/median"/>
<link href="rkward://component/related_component"/>

</related >

<technical >
La secció tècnica (opcional , sempre l’última) pot contenir alguns detalls ←↩

tècnics de la implementació del connector ,
que només són d’interès per als desenvolupadors del RKWard. Això és ←↩

particularment rellevant
per als connectors que estan dissenyats per a ser incrustats en molts ←↩

altres connectors ,
i podria detallar quines opcions estan disponibles per a personalitzar el ←↩

connector incrustat ,
i quines seccions de codi contenen quin codi R.

</technical >
</document >

27

Introducció a l’escriptura de connectors per al RKWard

Capítol 7

Interaccions lògiques entre elements
de la IGU

7.1 Lògica de la IGU

Tots els conceptes bàsics de crear un connector per al RKWard s’han descrit en els capítols ante-
riors. Aquests conceptes bàsics haurien de ser suficients per a molts casos, si no la majoria. No
obstant això, de vegades voleu més control sobre com es comporta la IGU del connector.

Per exemple, suposem que voleu ampliar l’exemple de la prova t utilitzat en aquesta documen-
tació per a permetre: comparar una variable amb una altra variable (com es mostra), així com
comparar una variable amb un valor constant. Ara, una manera de fer-ho seria afegir un control
d’opcions que canviï entre els dos modes, i afegir un botó de selecció de valors per a introduir el
valor constant amb el qual comparar. Considereu aquest exemple simplificat:

<!DOCTYPE rkplugin >
<document >

<code file="code.js"/>

<dialog label="T-Test">
<row>

<varselector id="vars"/>
<column >

<varslot id="x" types="number" source="vars ←↩
" required="true" label="compare"/>

<radio id="mode" label="Compare against">
<option value="variable" checked=" ←↩

true" label="another variable (←↩
select below)"/>

<option value="constant" label="a ←↩
constant value (set below)"/>

</radio >
<varslot id="y" types="number" source="vars ←↩

" required="true" label="variable" ←↩
i18n_context="Noun; a variable"/>

<spinbox id="constant" initial="0" label=" ←↩
constant" i18n_context="Noun; a constant ←↩
"/>

</column >
</row>

</dialog >

28

Introducció a l’escriptura de connectors per al RKWard

</document >

Fins ara està bé, però hi ha una sèrie de problemes amb aquesta IGU. En primer lloc, sempre es
mostren tant el «varslot» com el «spinbox», mentre que realment només s’utilitza un dels dos.
Pitjor encara, el «varslot» sempre requereix una selecció vàlida, fins i tot si es compara amb una
constant. Òbviament, si creem una IGU multiús com aquesta, volem més flexibilitat. Introduïu:
la secció <logic> (inserida al mateix nivell que <code>, <dialog>, o <wizard>).

[...]
<code file="code.js"/>

<logic >
<convert id="varmode" mode="equals" sources="mode.string" ←↩

standard="variable" />

<connect client="y.visible" governor="varmode" />
<connect client="constant.visible" governor="varmode.not" ←↩

/>
</logic >

<dialog label="T-Test">
[...]

La primera línia dins de la secció «logic» és una etiqueta <convert>. Bàsicament, això propor-
ciona una propietat booleana nova (activada o desactivada, certa o falsa), que es pot utilitzar
més endavant. Aquesta propietat (˝varmode˝) és certa, sempre que se seleccioni el botó d’opció
superior, i fals quan se seleccioni el botó d’opció inferior. Com es fa això?

En primer lloc, sota sources, s’enumeren les propietats de les fonts («sources») en les quals
treballar (en aquest cas només una cadascuna; es podrien llistar com a sources=˝mode.strin
g;somethingelse˝ , llavors ˝varmode˝ només seria cert, si tant ˝mode.string˝ com ˝someth
ingelse˝ són iguals a la cadena ˝variable˝). Tingueu en compte que en aquest cas no només
escrivim ˝mode˝ (com ho faríem a getString(˝mode˝)), sinó ˝mode.string˝ . En realitat, aquesta
és la manera interna en què funciona un control d’opcions: té una propietat «string», que té el
seu valor de cadena. getString(˝mode˝) és només una abreviatura, i equival a getString(˝mod
e.string˝). Vegeu la referència per a totes les propietats dels diferents elements de la IGU.

En segon lloc, hem establert el mode de conversió a mode=˝equals˝ . Això vol dir que volem com-
provar si la/es font/s és/són igual/s que un valor determinat. Finalment «standard» és el valor
contra el qual comparar, de manera que amb standard=˝variable˝ , es comprova si la propietat
˝mode.string˝ és igual que la cadena ˝variable˝ (el valor de l’opció del botó superior). Si és
igual, llavors la propietat «varmode» és certa, altrament és falsa.

Passem a les coses reals: <connect> la propietat ˝varmode˝ a «y.visible», que controla si es mostra
o no la gràfica ˝y˝ . Tingueu en compte que qualsevol element que es fa invisible és implícitament
no obligatori. Per tant, si se selecciona l’opció del botó superior, es requereix el «varslot» ˝y˝ , i és
visible. Si no, no és necessari ni ocult.

Per al botó de selecció de valors, volem exactament el contrari. Afortunadament, no necessitem
un altre <convert> per a això: les propietats booleanes es poden negar molt fàcilment afegint
el modificador ˝no˝ , així que <connect> ˝varmode.not˝ a la propietat de visibilitat del botó de
selecció de valors. En efecte, es mostra i es requereix el «varslot», o es mostra el botó de selecció
de valors i es requereix (depenent de quina opció està seleccionada en el control d’opcions). La
IGU està canviant segons l’opció del botó. Proveu l’exemple, si voleu.

Per a obtenir una llista completa de propietats, consulteu la referència. Una propietat més, però,
és especial perquè tots els elements de la IGU la tenen: «enabled». Això és una mica menys
dràstic que «visible». No mostra/oculta l’element de la IGU, però només l’activa/desactiva. Els
elements desactivats es mostren normalment en gris i no reaccionen a l’entrada de l’usuari.

29

Introducció a l’escriptura de connectors per al RKWard

NOTA
A més de <convert> i <connect>, hi ha diversos elements més per a utilitzar a la secció <logic>. Per
exemple, les construccions condicionals també es poden implementar utilitzant l’element <switch>.
Consulteu la referència sobre elements lògics per a més detalls.

7.2 Lògica de la IGU amb scripts

Sovint és suficient connectar les propietats tal com es descriu anteriorment, però de vegades és
més flexible o més pràctic utilitzar JS per a crear scripts en la lògica de la IGU. D’aquesta manera,
l’exemple anterior es podria reescriure com:

[...]
<code file="code.js"/>

’
<logic >

<script ><![CDATA[
// [...] any code at the top level is called only ←↩

once
gui.addChangeCommand("mode.string", function() {

// while this anonymous function will be ←↩
called , whenever "mode.string" changes

var varmode = (gui.getString("mode.string") ←↩
== "variable");

gui.setValue("y.enabled", varmode);
gui.setValue("constant.enabled", !varmode);

});
]]></script >

</logic >

<dialog label="T-Test">
[...]

Això registra una funció anònima que es cridarà, sempre que canviï el valor del quadre de botons
d’opció id=˝mode˝ . Dins d’aquesta funció, definim una variable d’ajuda ˝varmode˝ que és certa
quan el mode és ˝variable˝ , falsa quan és ˝constant˝ . Després utilitzem gui.setValue() per
a establir les propietats «enabled» de ˝y˝ i ˝constant˝ , de la mateixa manera que abans vam fer
servir sentències <connect>.

NOTA
Si s’ha d’invocar la mateixa funció per a canvis en diversos elements, també podeu pas-
sar una matriu dels id= respectius a gui.addChangeCommmand(). A més, per comoditat,
gui.addChangeCommmand() retorna el seu segon paràmetre, que és útil si voleu fer referència a
aquesta funció a un altre lloc (p. ex. cridar-la una vegada durant la inicialització). P. ex.:

let update = gui.addChangeCommand(["mode.string", "y.available"], ←↩
function() {

// fa alguna cosa en cada canvi de mode.string o y. ←↩
available

});
update(); // fa el mateix un cop durant la inicialització

L’enfocament amb scripts a la lògica de la IGU esdevé particularment útil quan voleu canviar
l’opció disponible segons el tipus d’objecte que l’usuari ha seleccionat. Vegeu la referència per a
les funcions disponibles.

30

Introducció a l’escriptura de connectors per al RKWard

Tingueu en compte que l’enfocament amb scripts a la lògica de la IGU es pot barrejar amb sen-
tències <connect> i <convert> si voleu. Tingueu en compte també que l’etiqueta <script> permet
especificar un nom de fitxer de script a més o com a alternativa a la inclusió del codi de script.
Normalment la inclusió del codi de script tal com es mostra a dalt és més pràctic.

31

Introducció a l’escriptura de connectors per al RKWard

Capítol 8

Incrustar connectors en connectors

8.1 Casos d’ús per a incrustar

En escriure connectors, sovint trobareu que esteu creant una sèrie de connectors que només di-
fereixen en alguns aspectes, però tenen molt més en comú. Per exemple, per al traçat, hi ha
una sèrie d’opcions R genèriques que es poden utilitzar amb la majoria de tipus de diagrames.
Hauríeu de crear una IGU i una plantilla JS per a aquests una vegada i una altra?

Evidentment, això seria una molèstia. Afortunadament, no cal que ho feu. Més aviat creareu la
funcionalitat comuna una vegada, i més tard podreu incrustar-la en diversos connectors. De fet,
és possible incrustar qualsevol connector en qualsevol altre connector, fins i tot si l’autor original
del connector incrustat mai ho va pensar, algú voldria incrustar el seu connector en un altre.

8.2 Incrustació dins d’un diàleg

D’acord, ja hem parlat prou. Com funciona? És senzill: utilitzeu l’etiqueta <embed>. Aquest és
un exemple retallat:

<dialog >
<tabbook >

<tab [...]>
[...]

</tab>
<tab label="Plot Options" i18n_context="Options concerning ←↩

the plot">
<embed id="plotoptions" component="rkward:: ←↩

plot_options"/>
</tab>
<tab [...]>

[...]
</tab>

</tabbook >
</dialog >

El que passa aquí, és que tota la IGU o el connector d’opcions del diagrama (excepte per des-
comptat per als elements estàndard com el botó Submit, etc.) s’incrusta directament en el vostre
connector (proveu-ho!).

32

Introducció a l’escriptura de connectors per al RKWard

Com podeu veure la sintaxi de l’etiqueta <embed> és força senzilla. Pren un id com la ma-
joria d’elements. El component del paràmetre especifica quin connector incrustar, com es defi-
neix al fitxer .pluginmap (˝rkward::plot_options˝ és el resultat de concatenar l’espai de noms
«rkward», un separador «::», i el nom del component «plot_options»).

8.3 Generació de codi en incrustar

Fins ara tot bé, però què passa amb el codi generat? Com es fusiona el codi del connector incrus-
tador i l’incrustat? En el codi JS del connector incrustador escriviu quelcom com això:

function printout () {
// ...
echo ("myplotfunction ([...]" + getString ("plotoptions.code. ←↩

printout"); + ")\n");
// ...

}

Bàsicament, estem recuperant el codi generat pel connector incrustat igual que estem recuperant
qualsevol altra opció de la IGU. Aquí la cadena ˝plotoptions.code.printout˝ es pot desenvo-
lupar com «La secció d’impressió del codi generat de l’element amb plotoptions d’identificador
id» («plotoptions» és l’ID que hem donat a l’etiqueta <embed> anterior). I sí, si voleu un con-
trol avançat, fins i tot podreu recuperar els valors dels elements individuals de la IGU dins del
connector incrustat (però no a l’inrevés, ja que el connector incrustat no coneix res sobre el seu
entorn).

8.4 Incrustació dins d’un assistent

Si el vostre connector proporciona una IGU d’assistent, la incrustació funciona bàsicament de la
mateixa manera. Generalment utilitzareu:

<wizard [...]>
[...]
<page id="page12">

[...]
</page >
<embed id="plotoptions" component="rkward::plot_options"/>
<page id="page13">

[...]
</page >
[...]

</wizard >

Si el connector incrustat proporciona una interfície assistent, les seves pàgines s’inseriran entre
˝page12˝ i ˝page13˝ del vostre connector. Si el connector incrustat només proporciona una inter-
fície de diàleg, s’afegirà una única pàgina nova entre les pàgines ˝page12˝ i ˝page13˝ . L’usuari
no se n’adonarà mai.

8.5 Incrustació menys incrustada: botó d’opcions addicionals

Encara que la incrustació és genial, cal anar amb compte de no excedir-se. Massa funcions dins
d’una IGU només fa que sigui difícil trobar les opcions rellevants. Per descomptat, a vegades
és possible que vulgueu incrustar una gran quantitat d’opcions (com totes les opcions a plot()),
però com que són realment opcionals, no les voldreu de manera prominent a la IGU.

33

Introducció a l’escriptura de connectors per al RKWard

Una alternativa és incrustar aquestes opcions «com a un botó»:

<dialog >
<tabbook >

[...]
<tab label="Options">

[...]
<embed id="plotoptions" component="rkward:: ←↩

plot_options" as_button="true" label="Specify ←↩
plotting options"/>

</tab>
[...]

</tabbook >
</dialog >

En aquest cas, s’afegirà un únic botó de prémer al connector, etiquetat Especifica les opcions
de traçat. Quan premeu aquest botó, apareixerà un diàleg separat, amb totes les opcions del
connector incrustat. Fins i tot si aquesta IGU incrustada no és visible la majoria de les vegades,
podeu obtenir la seva configuració tal com es descriu a dalt.

ATENCIÓ
Probablement el «botó» d’aproximació només s’hauria d’utilitzar per als connectors que mai poden no
ser vàlids (per configuració que manca/no vàlida). En cas contrari, l’usuari no podria enviar el codi,
però podria tenir dificultats per a esbrinar-ho, el motiu està amagat darrere d’algun botó.

8.6 Incrustació/definició de connectors incomplets

Alguns connectors, i de fet, el «plot_options» utilitzat a l’exemple anterior és un d’ells, no es
completen per si sols. Simplement no tenen els elements de la IGU per a seleccionar alguns
valors importants. Estan destinats només a ser incrustat en altres connectors.

Fins a quin punt està incomplet el connector «plot_options»? Bé, per algunes opcions de confi-
guració, necessita conèixer el nom dels objectes/expressions dels eixos x i y (de fet, funcionarà
bé si només en té un, però necessita almenys un per a funcionar correctament). No obstant això,
no té un mecanisme per a seleccionar aquests objectes, ni introduir-los d’una altra manera. Com
sap d’ells?

A la secció lògica del connector «plot_options» hi ha dues línies addicionals, encara no explica-
des:

<logic >
<external id="xvar" />
<external id="yvar" />

[...]
</logic >

Això defineix dues propietats addicionals al connector «plot_options», l’únic propòsit de les
quals és connectar-se a algunes propietats (encara desconegudes) del connector incrustat. Al
connector «plot_options» aquestes dues propietats s’utilitzen simplement com qualsevol altra, i
per exemple hi ha crides a getString(˝xvar˝) en la plantilla JS «plot_options».

Ara, per al connector incomplet no hi ha manera de saber on s’incrustarà, i quina serà la configu-
ració rellevant en el connector incrustant. Per tant, també cal afegir dues línies addicionals a la
secció lògica del connector incrustant:

34

Introducció a l’escriptura de connectors per al RKWard

<logic >
[...]

<connect client="plotoptions.xvar" governor="xvarslot. ←↩
available" />

<connect client="plotoptions.yvar" governor="yvarslot. ←↩
available" />

</logic >

Això no és res nou en principi, hem explicat les sentències <connect> en el capítol de lògica de
la IGU. Simplement connecteu els valors en dos «varlots» (anomenats ˝xvarslot˝ i ˝yvarslot˝
en aquest exemple) a les propietats «external» rebudes del connector incrustat. Això és tot. Tota
la resta es prepara automàticament.

35

Introducció a l’escriptura de connectors per al RKWard

Capítol 9

Tractament amb molts connectors
similars

9.1 Vista general de diferents enfocaments

De vegades, és possible que vulgueu desenvolupar connectors per a una sèrie de funcions simi-
lars. Per exemple, considereu els diagrames de distribució. Aquests generen codi força similar, i
per descomptat és desitjable fer que les interfícies gràfiques s’assemblin entre si. Finalment, grans
seccions dels fitxers d’ajuda poden ser idèntiques. Només uns quants paràmetres són diferents
en cada connector.
L’enfocament ingenu d’això és desenvolupar un connector, després bàsicament copiar i engan-
xar tot el contingut dels fitxers .js, .xml, i .rkh, després canviar les poques porcions que són
diferents. No obstant això, i si algun temps després trobeu un error ortogràfic que s’ha copiat i
enganxat a tots els connectors? I si voleu afegir suport per a una característica nova? Hauríeu de
tornar a visitar tots els connectors i canviar-ho a cadascun. Un procés pesat i tediós.

Un segon enfocament seria utilitzar incrustacions. Tanmateix, en alguns casos això no es presta bé
al problema que tenim entre mans, principalment perquè els «fragments» que podeu incrustar
són de vegades massa grans per a ser útils, i posa algunes restriccions en la disposició. Per a
aquests casos, els conceptes incloent fitxers .js, incloent fitxers .xml i fragments poden ser molt
útils (però vegeu els pensaments sobre quan és preferible utilitzar la incrustació).

Algunes paraules a tenir en compte abans de començar a llegir: aquests conceptes poden ajudar a
simplificar la gestió de molts connectors similars, i poden millorar el manteniment i la llegibilitat
d’aquests connectors. No obstant això, l’excés pot conduir fàcilment a l’efecte invers. Utilitzeu-ho
amb cura.

9.2 Ús de la sentència «include» del JS

Podeu incloure fàcilment un fitxer de script en un altre en els connectors del RKWard. El valor
d’això esdevé immediatament obvi si algunes seccions del codi JS són similars entre els connec-
tors. Podeu definir aquestes seccions en un fitxer .js separat, i incloure’l en tots els fitxers .js
del connector. Per exemple, com a:

// this is a file called "common_functions.js"

function doCommonStuff () {
// perhaps fetch some options , etc.
// ...

36

Introducció a l’escriptura de connectors per al RKWard

comment ("This is R code you want in several different plugins\n");
// ...

}

// this is one of your regular plugin .js files

// include the common functions
include ("common_functions.js");

function calculate () {
// do something
// ...

// insert the common code
doCommonStuff ();

}

Tingueu en compte que de vegades és encara més útil invertir això, i definir l’«esquelet» de les
funcions preprocess(), calculate(), i printout() en un fitxer comú, i fer que aquestes crides
tornin per a aquelles parts que són diferents entre els connectors. P. ex.:

// this is a file called "common_functions.js"

function calculate () {
// do some things which are the same in all plugins
// ...

// add in something that is different across plugins
getSpecifics ();

// ...
}

// this is one of your regular plugin .js files

// include the common functions
include ("common_functions.js");

// note: no calculate() function is defined in here.
// it in the common_functions.js, instead.

function getSpecifics () {
// print some R code

}

Un problema que hauríeu de tenir en compte quan utilitzeu aquesta tècnica és l’àmbit de les
variables. Vegeu el manual del JS sobre els àmbits de les variables.

Aquesta tècnica s’utilitza molt en els connectors de traçat de distribució i de traçat de TLC, de
manera que és possible que vulgueu cercar-hi exemples.

9.3 Incloure els fitxers .xml

Bàsicament, la mateixa característica d’incloure fitxers també està disponible per al seu ús en
els fitxers .xml, .pluginmap i .rkh. En qualsevol lloc d’aquests fitxers podeu posar una etiqueta
<include> com es mostra a continuació. L’efecte és que tot el contingut d’aquest fitxer XML (per

37

Introducció a l’escriptura de connectors per al RKWard

a ser precisos: tot dins de l’etiqueta <document> d’aquest fitxer) s’inclou literalment en aquest
punt en el fitxer. Recordeu que només podeu incloure un altre fitxer XML.

<document >
[...]
<include file="another_xml_file.xml"/>
[...]

</document >

L’atribut file és el nom del fitxer relatiu al directori on es troba el fitxer actual.

9.4 Ús de <snippets>

Si bé incloure fitxers com es mostra a la secció anterior és bastant potent, es torna més útil quan
s’utilitza en combinació amb <snippets>. Els «snippets» (fragments) són seccions més petites
que podeu inserir en un altre punt del fitxer. Un exemple il·lustra millor això:

<document >
<snippets >

<snippet id="note">
<frame >

<text >
This will be inserted at two places in the GUI

</text >
</frame >

</snippet >
</snippets >
<dialog label="test">

<column >
<insert snippet="note"/>
[...]
<insert snippet="note"/>

</column >
</dialog >

</document >

Per tant, definiu el fragment en un lloc a la part superior del fitxer XML, i després feu una inserció
amb <insert> en qualsevol lloc/s que desitgeu.

Si bé aquest exemple no és massa útil en si mateix, penseu a combinar-lo amb un fitxer <include>
.xml. Tingueu en compte que també podeu col·locar fragments per al fitxer .rkh al mateix fitxer.
Simplement hauríeu de fer-hi <include> també del fitxer, i <insert> el fragment rellevant:

<!-- This is a file called "common_snippets.xml" -->
<document >

<snippet id="common_options">
<spinbox id="something" [...]/>
[...]

</snippet >
<snippet id="common_note">

<text >An important note for this type of plugin </text >
</snippet >

<snippet id="common_help">
<setting id="something">This does something </setting >
[...]

</snippet >
</document >

38

Introducció a l’escriptura de connectors per al RKWard

<!-- This is the .xml file of the plugin -->
<document >

<snippets >
<!-- Import the common snippets -->
<include file="common_snippets.xml"/>

</snippets >

<dialog label="test2">
<insert snippet="common_note"/>
<spinbox id="something_plugin_specific" [...] />
<insert snippet="common_options"/>

</dialog >
</document >

Similar a la inclusió en JS, l’enfocament invers és sovint encara més útil:

<!-- This is a file called "common_layout.xml" -->
<document >

<column >
<insert snippet="note">
[...]
<insert snippet="plugin_parameters">

</column >
[...]

</document >

<!-- This is the .xml file of the plugin -->
<document >

<snippets >
<snippet id="note">

<text >The note used for this specific plugin </text >
</snippet >

<snippet id="plugin_parameters">
<frame label="Parameters specific to this plugin">

[...]
</frame >

</snippet >
</snippets >

<dialog label="test3">
<include file="common_layout.xml"/>

</dialog >
</document >

Finalment, també és possible <insert> fragments en altres fragments, sempre que: a) només hi
hagi un nivell d’imbricació, i b) la secció <snippets> es col·loca a la part superior del fitxer (abans
que s’insereixi un fragment niat); això és perquè les sentències <insert> es resolen de dalt a baix.

9.5 <include> i <snippets> vs. <embed>

A primera vista, <include> i <snippets> proporcionen una funcionalitat bastant similar a in-
crustar: permet reutilitzar algunes porcions de codi entre els connectors. Llavors, quina és la
diferència entre aquests enfocaments i quan s’ha d’utilitzar quin?

39

Introducció a l’escriptura de connectors per al RKWard

La diferència clau entre aquests conceptes és que els connectors incrustables són paquets més
petits. Combinen una IGU completa, codi per a generar codi R a partir d’això, i una pàgina
d’ajuda. Per contra, incloure i inserir permet un control molt més fi de la granularitat, però a
costa de menys modularitat.

És a dir, un connector que incrusta un altre connector no necessitarà saber gaire sobre els de-
talls interns del connector incrustat. Un exemple principal és el connector «plot_options». Els
connectors que vulguin incrustar això no necessàriament necessiten conèixer totes les opcions
proporcionades, o com es proporcionen. Això és una cosa bona, ja que en cas contrari un canvi
en el connector «plot_options» podria fer necessari ajustar tots els connectors que incrusten això
(molts). Per contra, incloure i inserir realment exposa tots els detalls interns, i els connectors que
utilitzen això, per exemple, necessitaran conèixer els ID exactes i potser fins i tot el tipus dels
elements utilitzats.
Per tant, la regla general és la següent: incloure i inserir són adequats si les opcions rellevants
només són necessàries per a un grup clarament limitat de connectors. Els connectors incrustats
són millors si el grup de connectors als quals poden ser útils no està clarament definit, i si la
funcionalitat es pot fer modular fàcilment. Una altra regla general: si podeu posar les porcions
comunes en un sol «fragment», llavors feu-ho i utilitzeu la incrustació. Si necessiteu molts frag-
ments petits per a definir les porcions comunes, llavors utilitzeu <snippets>. Una manera final
de veure-ho: si tots els connectors proporcionen funcionalitats molt similars, les inclusions i les
insercions són probablement una bona idea. Si simplement comparteixen un o dos «mòduls»,
probablement la incrustació és millor.

40

Introducció a l’escriptura de connectors per al RKWard

Capítol 10

Conceptes per a utilitzar en
connectors especialitzats

Aquest capítol conté informació sobre alguns temes que només són útils per a certes classes de
connectors.

10.1 Connectors que produeixen un diagrama

Crear un diagrama des d’un connector és fàcil de fer. No obstant això, hi ha alguns paranys
subtils que cal evitar, i també algunes funcionalitats genèriques que cal tenir en compte. Aques-
ta secció mostra els conceptes bàsics i conclou amb un exemple canònic que haureu de seguir
sempre que creeu connectors de diagrama.

10.1.1 Dibuixar un diagrama a la finestra de sortida

Per a dibuixar un diagrama a la finestra de sortida, utilitzeu rk.graph.on() directament abans
de crear el diagrama, i rk.graph.off(), directament després. Això és similar, p. ex., cridar post
script() i dev.off() en una sessió normal de l’R.

Tanmateix, és important que sempre es cridi rk.graph.off() després de cridar rk.graph.on(). En
cas contrari, el fitxer de sortida es deixarà en un estat trencat. Per a assegurar-vos que rk.graph.
off() realment sigui cridat, haureu d’ajustar totes les ordres R entre les dues crides en l’expressió
try(). Mai ho havíeu escoltat? No us preocupeu, és fàcil. Tot el que heu de fer és seguir el patró
mostrat a l’exemple a continuació.

10.1.2 Afegir la funcionalitat de vista prèvia

NOTA
Aquesta secció analitza l’addició de funcionalitats de vista prèvia als connectors que produeixen dia-
grames. Hi ha seccions separades sobre previsualitzacions de sortida (HTML), previsualitzacions de
dades (importades), i previsualitzacions personalitzades. No obstant això, es recomana llegir primer
aquesta secció, ja que l’enfocament és similar en cada cas.

41

Introducció a l’escriptura de connectors per al RKWard

Una característica molt útil per a tots els connectors que generen un diagrama/gràfic és pro-
porcionar una previsualització d’actualització automàtica. Per a fer-ho, necessitareu dues coses:
Afegir una casella de selecció <preview> a la definició de la IGU, i ajustar el codi generat per a la
vista prèvia.

Afegir una casella de selecció de <preview> és senzill. Col·loqueu el següent en algun lloc de
la IGU. S’encarregarà de tota la màgia entre bastidors de crear un dispositiu de vista prèvia,
actualitzar la vista prèvia sempre que la configuració hagi canviat, etc. Exemple:

NOTA
Des de la versió 0.6.5 del RKWard els elements de vista prèvia <preview> són casos especials en els
diàlegs dels connectors (no assistents): es col·locaran a la columna de botons, independentment d’on
estiguin exactament definits a la interfície d’usuari. Continua sent una bona idea definir-les en un lloc
assenyat de la disposició, per a la compatibilitat cap endarrere.

<document >
[...]
<dialog [...]>

[...]
<preview id="preview"/>
[...]

</dialog >
[...]

</document >

I això és per la definició de la IGU.

Ajustar la plantilla JS és només una mica més de feina, aquí haureu d’assegurar-vos que només es
genera el diagrama en si, i es mostra en un dispositiu en pantalla, en lloc d’anar dirigit a la sortida.
És a dir, sense impressió de capçaleres, rk.graphics.on(), o crides similars. Per a ajudar-vos en
això, el RKWard cridarà les funcions preprocess(), calculate() i printout() amb un paràmetre
addicional que s’estableix a true en generar codi per a una vista prèvia. (El paràmetre s’omet en
generar el codi final. En el javascript això avaluarà false quan s’utilitzi dins d’una sentència if.)
Vegeu l’exemple a continuació per al patró típic que utilitzareu.

Alternativament, si necessiteu més control que aquest, podeu afegir una funció nova anomenada
preview() a la plantilla JS, i generar el codi requerit per a una vista prèvia, allà (probablement,
almenys en part, de nou cridant calculate(), etc.).

10.1.3 Opcions genèriques de diagrama

Us haureu adonat que la majoria dels connectors de traçat al RKWard proporcionen una àmplia
varietat d’opcions genèriques, p. ex., per a personalitzar els títols dels eixos o els marges de les
xifres. Afegir aquestes opcions al vostre connector és fàcil. Són proporcionats per un connector
incrustable anomenat rkward::plot_options. Incrusteu això a la interfície d’usuari del connector
com aquí:

<document >
[...]
<logic [...]>

<connect client="plotoptions.xvar" governor="x. ←↩
available"/>

<set id="plotoptions.allow_type" to="true"/>
<set id="plotoptions.allow_ylim" to="true"/>
<set id="plotoptions.allow_xlim" to="false"/>
<set id="plotoptions.allow_log" to="false"/>
<set id="plotoptions.allow_grid" to="true"/>

42

Introducció a l’escriptura de connectors per al RKWard

</logic >
<dialog [...]>

[...]
<embed id="plotoptions" component="rkward:: ←↩

plot_options" as_button="true" label="Plot ←↩
Options"/>

[...]
</dialog >
[...]

</document >

Això afegirà un botó a la interfície d’usuari per a obrir una finestra amb les opcions del diagrama.
La secció lògica és només un exemple. Permet un cert control sobre el connector d’opcions del
diagrama. Llegiu-ne més a la pàgina d’ajuda del connector «plot_options» (enllaçada des de la
pàgina d’ajuda de qualsevol connector que proporcioni les opcions genèriques).

A continuació, haureu d’assegurar-vos que el codi corresponent a les opcions del diagrama s’a-
fegeix al codi generat per al diagrama. Per a fer-ho, obteniu les propietats code.preprocess, co-
de.printout, i code.calculate des del connector incrustat d’opcions del diagrama i inseriu-les al
codi tal com es mostra a l’exemple a continuació.

10.1.4 Un exemple canònic

Aquest és un exemple de fitxer .JS que hauríeu d’utilitzar com a plantilla, sempre que creeu un
connector de traçat:

function preprocess () {
// the "somepackage" is needed to create the plot
echo ("require (somepackage)\n");

}

function printout (is_preview) {
// If "is_preview" is set to false/undefined , it generates the full ←↩

code , including headers.
// If "is_preview" is set to true , only the essentials will be ←↩

generated.

if (!is_preview) {
echo (’rk.header (’ + i18n ("An example plot") + ’)\n\n’);
echo (’rk.graph.on ()\n’);

}
// only the following section will be generated for is_preview==true

// remember: everything between rk.graph.on() and rk.graph.off() should ←↩
be wrapped inside a try() statement:

echo (’try ({\n’);
// insert any option -setting code that should be run before the actual ←↩

plotting commands.
// The code itself is provided by the embedded plot options plugin. ←↩

printIndentedUnlessEmpty() takes care of pretty formatting.
printIndentedUnlessEmpty (’\t’, getString ("plotoptions.code.preprocess ←↩

"), ’’, ’\n’);

// create the actual plot. plotoptions.code.printout provides the part ←↩
of the generic plot options

// that have to be added to the plotting call , itself.
echo (’plot (5, 5’ + getString ("plotoptions.code.printout") + ’)\n’);

43

Introducció a l’escriptura de connectors per al RKWard

// insert any option -setting code that should be run after the actual ←↩
plot.

printIndentedUnlessEmpty (’\t’, getString ("plotoptions.code.calculate ←↩
"), ’\n’);

echo (’})’\n); // the closure of the try() statement

if (!is_preview) {
echo (’rk.graph.off ()\n’);

}
}

10.2 Vistes prèvies de dades, sortida i altres resultats

10.2.1 Vistes prèvies de sortida (HTML)

NOTA
Aquesta secció tracta d’afegir funcionalitats de vista prèvia als connectors que creen impressions de
sortida/HTML. Es recomana que llegiu la secció separada de les previsualitzacions de diagrama abans
d’aquesta secció.

Crear una vista prèvia de la sortida HTML és gairebé el mateix procediment que crear una vis-
ta prèvia del gràfic. En aquest cas, simplement assegureu-vos que preview() genera les ordres
rk.print()/rk.results() pertinents. No obstant això, en general és una bona idea ometre les sentèn-
cies de capçalera en la previsualització. Aquí hi ha un exemple reduït:

<!-- In the plugin ’s XML file -->>
<dialog label="Import CSV data" >

<browser id="file" type="file" label="File name"/>
<!-- [...] -->>
<preview id="preview" mode="output"/>

</dialog >
>

Tingueu en compte l’especificació del mode=˝output˝ en l’element <preview>.

// In the plugin ’s JS file
function preview () {

// generates the code used for preview
printout (true);

}

function printout (is_preview) {
// only generates a header if is_preview==false
if (!is_preview) {

new Header ("This is a caption").print ();
}
echo (’rk.print (result)’);

}

44

Introducció a l’escriptura de connectors per al RKWard

10.2.2 Vistes prèvies de dades (importades)

NOTA
Aquesta secció analitza l’addició de funcionalitats de vista prèvia als connectors que creen (impor-
ten) dades. Es recomana que llegiu la secció separada a les previsualitzacions de diagrama, abans
d’aquesta secció.

Crear una vista prèvia de les dades importades (qualsevol tipus de dades que rk.edit() pot ges-
tionar), és molt similar a crear una vista prèvia de diagrama. L’exemple reduït següent hauria
d’ajudar a il·lustrar com crear una vista prèvia de dades:

<!-- In the plugin ’s XML file -->>
<dialog label="Import CSV data" >

<browser id="file" type="file" label="File name"/>
<!-- [...] -->>
<preview id="preview" active="true" mode="data"/>

</dialog >
>

Tingueu en compte que l’element <preview> especifica mode=˝data˝ aquesta vegada. active=˝
true˝ simplement activa la vista prèvia predeterminada.

// In the plugin ’s JS file
function preview () {

// generates the code used for preview
calculate (true);

}

function calculate (is_preview) {
echo (’imported <- read.csv (file="’ + getString ("file") ←↩

/* [+ options] */);
if (is_preview) {

echo (’preview_data <- imported\n’);
} else {

echo (’.GlobalEnv$ ’ + getString ("name") + ’ >- ←↩
imported\n’);

}
}

function printout () {
// [...]

}

De nou, la funció preview() genera gairebé el mateix codi R que la funció calculate(), de
manera que creem una funció auxiliar doCalcuate() per a factoritzar les parts comunes. El
més important a tenir en compte és que haureu d’assignar les dades importades a un objec-
te anomenat preview_data (dins de l’entorn actual: local). Tota la resta passarà automàticament
(aproximadament, el RKWard cridarà rk.edit(preview_data), embolcallat dins d’una crida a
.rk.with.window.hints()).

45

Introducció a l’escriptura de connectors per al RKWard

NOTA
Mentre que les vistes prèvies són una característica bona, consumeixen recursos. En el cas de les
previsualitzacions de dades pot haver-hi casos on les previsualitzacions poden causar problemes de
rendiment significatius. Això podria ser per a la importació de conjunts de dades enormes (que són
massa grans per a ser oberts per a l’edició a la finestra de l’editor del RKWard), però també es
podrien importar conjunts de dades ˝normals˝, creant un gran nombre de files o columnes. És molt
recomanable que limiteu les preview_data a una dimensió que proporciona una vista prèvia útil, sense
el perill de crear problemes de rendiment notables (p. ex., 50 files per 50 columnes haurien de ser
més que suficients en la majoria dels casos).

10.2.3 Vistes prèvies personalitzades

L’element <preview> es pot utilitzar per a crear vistes prèvies per a qualsevol tipus de finestra de
˝document˝ que es pot adjuntar al lloc de treball del RKWard. A més de diagrames i finestres de
dades, això inclou fitxers HTML, scripts R i finestres de resum d’objectes. Per a aquests últims,
haureu d’utilitzar <preview mode=˝custom˝>.

Si heu llegit les seccions que descriuen la vista prèvia del diagrama i les vistes prèvies de les
dades, hauríeu de tenir una idea general sobre el procediment, però les vistes prèvies «persona-
litzades» requereixen una mica més de treball manual entre bastidors. La funció R més important
que cal mirar és rk.assign.preview.data(), aquí. El llistat curt següent mostra com podria ser el
codi R generat (previsualització) per a un connector que creï una sortida de fitxer de text:

Per a ser generat en la secció de codi preview() d’un connector
pdata <- rk.get.preview.data("SOMEID")
if (is.null (pdata)) {

outfile <- rk.get.tempfile.name(prefix="preview", extension ←↩
=".txt")

pdata <- list(filename=outfile , on.delete=function (id) {
unlink(rk.get.preview.data(id)$filename)

})
rk.assign.preview.data("SOMEID", pdata)

}
try ({

cat ("This is a test", pdata$filename)
rk.edit.files(file=pdata$filename)

})

Aquí hauríeu d’obtenir el valor SOMEID a partir de la propietat id de l’element <preview>. P. ex.,
s’utilitza getString (˝preview.id˝) al fitxer .js del connector.

10.3 Connectors dependents de context

Fins ara hem assumit que tots els connectors sempre tenen sentit, i tots es col·loquen al menú
principal. No obstant això, alguns connectors només tenen sentit (o addicionalment) en un con-
text determinat. P. ex., un connector per a exportar el contingut d’un dispositiu gràfic X11 de l’R
és òbviament el més útil quan es col·loca en el menú d’un dispositiu X11, no a la barra de menús
principal. A més, aquest connector hauria de conèixer el número de dispositiu en què hauria
d’operar, sense haver de preguntar-ho a l’usuari.

Anomenem aquests connectors dependents del context. Per tant, en el fitxer .pluginmap no es
col·loquen (o no només) en el <hierarchy> principal, sinó en un element <context>. Fins ara
només s’admeten dos contextos diferents (després en vindran més): x11 i importació de fitxers.
Ens ocuparem d’ells. Fins i tot si només esteu interessat en el context d’importació, llegiu també
la secció sobre el context x11, ja que aquest és una mica més elaborat.

46

Introducció a l’escriptura de connectors per al RKWard

10.3.1 Context de dispositiu X11

Per a utilitzar un connector en el context d’un dispositiu x11, que se situï a la barra de menús de
la finestra que obteniu quan crideu x11() a la consola, primer declareu-lo com de costum al fitxer
.pluginmap:

<document [...]>
<components >

[...]
<component id="my_x11_plugin" file="my_x11_plugin.xml" ←↩

label="An X11 context plugin"/>
[...]

</components >

No obstant això, no cal que el definiu a la jerarquia (podeu, si també té sentit com a connector de
nivell superior):

<hierarchy >
[...]

</hierarchy >

En lloc d’això, afegiu una definició del context «x11», i afegiu-la als menús:

<context id="x11">
[...]
<menu id="edit">

[...]
<entry id="my_x11_plugin"/>

</menu >
</context >

</document >

A la secció lògica de l’XML del connector, ara podeu declarar dues propietats <external>: devnu
m i context. El context (si es declara) s’establirà a ˝x11˝ quan s’invoqui el connector en aquest
context. devnum s’establirà al número del dispositiu gràfic on operar. I això és tot.

10.3.2 Importar el context de les dades

Abans de llegir aquesta secció, assegureu-vos de llegir la secció context del dispositiu X11, ja que
explica els conceptes bàsics.

El context ˝import˝ s’utilitza per a declarar els connectors del filtre de fitxers d’importació. Sim-
plement col·loqueu-los en un context amb id=˝import˝ al fitxer .pluginmap. No obstant això, hi
ha un aspecte addicional en declarar aquests connectors: per tal d’oferir un diàleg de selecció de
fitxers unificat per a tots els tipus de fitxers admesos, cal declarar un bit addicional d’informació
sobre el component:

<document [...]>
<components >

[...]
<component id="my_xyz_import_plugin" file=" ←↩

my_xyz_import_plugin.xml" label="Import XYZ files">
<attribute id="format" value="*.xyz *.zyx" label=" ←↩

XYZ data files"/>
</component >
[...]

</components >
<hierarchy >

47

Introducció a l’escriptura de connectors per al RKWard

[...]
</hierarchy >
<context id="import">

[...]
<menu id="import">

[...]
<entry id="my_xyz_import_plugin"/>

</menu >
</context >
[...]

</document >

La línia d’atribut simplement diu que les extensions associades del nom de fitxer per als fitxers
XYZ són *.xyz o *.zyx, i que el filtre s’ha d’etiquetar amb «fitxers de dades XYZ» en el diàleg de
selecció de fitxers.
Podeu declarar dues propietats <external> al connector. filename establirà al nom de fitxer
seleccionat, i context s’establirà com ˝import˝ .

10.4 Consultar l’R per a obtenir informació

En alguns casos, és possible que vulgueu obtenir més informació de l’R, que es presentarà a la
interfície d’usuari del vostre connector. Per exemple, podeu oferir una selecció dels nivells d’un
factor que l’usuari ha seleccionat per a l’anàlisi. Des de la versió 0.6.2 del RKWard és possible
fer-ho. Abans de començar, és important que tingueu present algunes advertències:

El codi R que s’executa des de dins de la lògica de la interfície d’usuari del connector s’avalua en
el bucle d’esdeveniments de l’R, el que significa que es poden executar mentre s’estan executant
altres càlculs. Això és per a assegurar-vos que la interfície d’usuari del vostre connector es pugui
utilitzar, fins i tot mentre l’R estigui ocupat fent altres coses. Tanmateix, això fa que sigui molt
important que el seu codi no tingui efectes secundaris. En particular:

• No fa cap assignació a «.GlobalEnv» o qualsevol altre entorn no local.

• No imprimeix res al fitxer de sortida.

• No traça res en la pantalla.

• En general, no faci res que tingui efectes secundaris. El vostre codi pot llegir informació, no «fer»
altres coses.

Amb això en ment, aquí està el patró general. Ho utilitzareu dins d’una secció lògica IU amb
scripts:

<script ><![CDATA[
let update = gui.addChangeCommand (" ←↩

variable", function () {
gui.setValue ("selector.enabled", ←↩

0);
variable = gui.getValue ("variable ←↩

");
if (variable == "") return;

new RCommand(’levels (’ + variable ←↩
+ ’)’, "myid").then(result =

> {
gui.setValue ("selector. ←↩

enabled", 1);

48

Introducció a l’escriptura de connectors per al RKWard

gui.setListValue ("selector ←↩
.available", result);

}).catch(msg =
> {

if (msg === "outdated") ←↩
return; // command was ←↩
canceled , because new ←↩
one is about to arrive ←↩
-> benign

// possibly other error ←↩
handling , msg carries ←↩
the warnings and error ←↩
messages produced ,

// if the command failed e. ←↩
g.:

gui.setListValue ("selector ←↩
.available", Array (" ←↩
ERROR:", msg));

});
});

]]></script >

Aquí, variable és una propietat que conté un nom d’objecte (p. ex., dins d’un <varslot>). Sem-
pre que això canviï, voldreu actualitzar la visualització dels nivells dins del <valueselector>,
anomenat selector. La funció clau aquí és new RCommand(), que pren com a primer paràme-
tre la cadena de l’ordre a executar. Tingueu en compte que l’ordre s’està executant asíncronament,
i això fa les coses una mica més complexes. Per a una cosa que voleu estar segur, el <valuese-
lector> roman desactivat, mentre que no contingui informació actualitzada. En segon lloc, com
que l’usuari pot fer canvis ràpidament, pot haver-se generat més d’una ordre, abans de rebre cap
resultat. Per tant, haureu d’assegurar-vos d’actuar només amb l’ordre més recent.

Per a tractar l’asincronisme, el que es retorna aquí és un objecte Promise. Es pot trobar més in-
formació sobre aquesta funció javascript potent a Internet. L’important que cal saber aquí, és que
l’addició d’una declaració .then() permet especificar què passarà quan l’ordre s’hagi completat, i
una declaració .catch() es pot utilitzar per a gestionar qualsevol error. De nou, tingueu en compte
que el bloc .then() no s’executa immediatament. Per a entendre les implicacions d’això, pot ser
útil, durant el desenvolupament, inserir un Sys.sleep(1); a l’ordre R, per a veure immediatament
què passa quan una ordre no es completa.

Finalment, per a tractar amb ordres diverses que s’estan generant, podeu especificar un segon
argument a new RCommand(), (˝myid˝, en aquest exemple). Qualsevol ordre amb el mateix
identificador (escollit lliurement) s’entendrà que pertany a la mateixa cua. Llavors l’RKWard
s’assegurarà que en realitat només l’última ordre activarà el bloc .then(), mentre que qualsevol
ordre obsoleta arribarà al bloc .catch(). Aquí, es poden identificar ordres obsoletes, ja que es
passa la cadena «outdated» com el seu valor, mentre que per a qualsevol altre possible error, avís
o missatge d’error es passa directament.

Cal tenir en compte que aquest exemple és una mica simplificat. En realitat, haureu de prendre
precaucions addicionals, p. ex., per a evitar posar una quantitat extrema de nivells al selector.
La bona notícia és que probablement no cal fer tot això vós mateix. L’exemple anterior es pren
del connector rkward::level_select, per exemple, que simplement podeu incrustar en el vostre
propi connector. Fins i tot us permet especificar una expressió diferent per a executar en lloc de
levels().

NOTA
En versions anteriors del RKWard, les ordres R s’executaven utilitzant una funció una mica més com-
plexa doRCommand(). Encara podeu veure-ho en alguns connectors, però no es recomana utilitzar-la
en el codi nou.

49

https://javascript.info/async

Introducció a l’escriptura de connectors per al RKWard

10.5 Referenciar l’objecte actual o el fitxer actual

Per a molts connectors és desitjable treballar en l’objecte «actual». Per exemple, un connector
«d’ordenació» podria preseleccionar el «data.frame» que s’està editant actualment per a l’orde-
nació. El nom de l’objecte actual està disponible per als connectors com una propietat predefinida
anomenada current_object. Podeu connectar-vos a aquesta propietat de la manera habitual. Si
no hi ha cap objecte actual, la propietat equival a una cadena buida. De la mateixa manera, l’URL
del fitxer de script actual és accessible com una propietat predefinida anomenada current_fil
ename. Aquesta propietat està buida si no s’està editant cap fitxer de script, o el fitxer de script
encara no s’ha desat.
Actualment, el current_object només pot ser de classe data.frame, però no confieu en això, ja
que això s’ampliarà a altres tipus de dades en el futur. Si només teniu interès en els objectes data
.frame, connecteu amb la propietat current_dataframe en el seu lloc. Alternativament, podeu
forçar els requisits de tipus utilitzant restriccions apropiades a <varslot>, o utilitzant la creació
de scripts lògics d’IGU.

10.6 Repetir (un conjunt d’) opcions

A vegades voleu repetir un conjunt d’opcions per a un nombre arbitrari d’elements. Per exem-
ple, suposeu que voleu implementar un connector per a ordenar un «data.frame». És possible
que vulgueu permetre l’ordenació per un nombre arbitrari de columnes (en cas d’enllaços entre
les primeres columnes). Això es podria realitzar simplement permetent a l’usuari seleccionar di-
verses variables en un <varslot> amb multi=˝true˝ . Però si voleu ampliar-ho, p. ex., permetent
a l’usuari especificar per a cada variable si s’ha de convertir a caràcter/numèric, o si l’ordenació
ha de ser ascendent o descendent, necessitareu més flexibilitat. Altres exemples serien dibuixar
diverses línies en un diagrama (permetent seleccionar objecte, estil de línia, color de línia, etc.
per a cada línia), o especificar un mapatge per a la recodificació des d’un conjunt de valors antics
a valors nous.
Introduïu l’<optionset>. Mirem un exemple senzill, primer:

<dialog [...]>
[...]
<optionset id="set" min_rows="1">

<content >
<row>

<input id="firstname" label="Given name(s)" ←↩
size="small">

<input id="lastname" label="Family name" ←↩
size="small">

<radio id="gender" label="Gender">
<optioncolumn label="Male" value="m ←↩

"/>
<optioncolumn label="Female" value ←↩

="f"/>
</radio >

</row>
</content >

<optioncolumn id="firstnames" label="Given name(s)" connect ←↩
="firstname.text">

<optioncolumn id="lastnames" label="Family name" connect=" ←↩
lastname.text">

<optioncolumn id="gender" connect="gender.string">
</optionset >
[...]

50

Introducció a l’escriptura de connectors per al RKWard

</dialog >

Aquí, hem creat una interfície d’usuari per a especificar un nombre de persones (p. ex., autors).
La interfície d’usuari requereix almenys una entrada (min_rows=˝1˝). Dins de l’element <op-
tionset>, comencem especificant el <content>, és a dir, els elements que pertanyen al conjunt
d’opcions. Estareu familiaritzat amb la majoria d’elements dins del <content>.

A continuació, especifiqueu les variables d’interès que voldrem llegir des de l’opció establerta al
nostre fitxer JS. Com que ens ocuparem d’un nombre arbitrari d’articles, no podem llegir només
getString (˝firstname˝) en JS. Més aviat, per a cada valor d’interès, especifiqueu un <option-
column>. Per a la primera «optioncolumn» a l’exemple, <connect=˝firstname.text˝> significa
que el contingut de l’element <input> ˝firstname˝ es llegeix per a cada element. Les <optionco-
lumn> per a la qual es proporciona una label, es mostrarà a la pantalla, en una columna amb
aquesta etiqueta. Al JS, ara podem obtenir els noms de tots els autors utilitzant getList(˝se
t.firstname˝), getList(˝set.lastnames˝) pels cognoms, i getList(˝set.gender˝) per a una
matriu de cadenes ˝m˝/˝f˝.

Tingueu en compte que no hi ha restriccions sobre el que podeu col·locar dins d’un <optionset>.
Fins i tot podeu utilitzar components incrustats. Igual que amb qualsevol altre element, tot el
que heu de fer és recollir les variables de sortida d’interès en una especificació <optioncolumn>.
En el cas dels connectors incrustats, aquesta és sovint una secció de la propietat ˝code˝. P. ex.:

<dialog [...]>
[...]
<optionset id="set" min_rows="1">

<content >
[...]
<embed id="color" component="rkward::color_chooser" ←↩

label="Color"/>
</content >

[...]
<optioncolumn id="color_params" connect="color.code. ←↩

printout">
</optionset >
[...]

</dialog >

Per descomptat, també podeu utilitzar la lògica UI dins d’un «optionset». Hi ha dues opcions
per a fer això: podeu fer-ho fent la connexió (o creació de scripts) a la secció principal <logic>
del connector, com és habitual. No obstant això, accedireu als elements de la IU a la regió de
continguts com (p. ex.) «set.contents.firstname.XYZ». Tingueu en compte el prefix ˝set˝ (l’i
d que heu assignat al conjunt i ˝contents˝). Alternativament, podeu afegir una secció <logic>
separada com a element fill de l’<optionset>. En aquest cas, els id s’adreçaran en relació amb
la regió de continguts, p. ex., ˝firstname.XYZ˝. Només l’element <script> no està permès a la
secció lògica d’un «optionset». Si voleu utilitzar la creació de scripts, haureu d’utilitzar la secció
principal <logic> del connector.

NOTA
Quan la lògica de creació de scripts en un «optionset», tot el que podeu fer és accedir a la regió
de contingut actual. Per tant, normalment, només té sentit connectar elements dins de la regió de
contingut entre ells. Connectar una propietat fora de l’<optionset> a una propietat dins de la regió de
contingut, pot ser útil per a la inicialització. No obstant això, modificar la regió de contingut després
de la inicialització no s’aplicarà als elements que l’usuari ja ha definit. Només a l’element seleccionat
actualment en el conjunt.

51

Introducció a l’escriptura de connectors per al RKWard

10.6.1 «Driven» «optionsets»

Fins ara hem considerat un <optionset> que proporciona botons per a afegir/eliminar elements.
No obstant això, en alguns casos, és molt més natural seleccionar elements fora de l’<optionset>,
i proporcionar només opcions per a personalitzar alguns aspectes de cada element en un <opti-
onset>. Per exemple, suposeu que voleu permetre a l’usuari traçar diversos objectes dins d’un
diagrama. Per a cada objecte, l’usuari hauria de poder especificar el color de la línia. Podeu
resoldre-ho col·locant un <varselector> i <varslot> dins de l’àrea <content>, permetent a l’usua-
ri seleccionar un element alhora. Tanmateix, significarà menys clics per a l’usuari, si en el seu lloc
utilitzeu un <varslot multi=˝true˝> fora de l’<optionset>. A continuació, connectareu aquesta
selecció d’objectes a un «optionset» anomenat «driven». Així és com es fa:

<dialog [...]>
<logic >

<connect client="set.vars" governor="vars.available"/>
<connect client="set.varnames" governor="vars.available. ←↩

shortname"/>
</logic >
[...]
<varselector id="varsel"/>
<varslot id="vars" label="Objects to plot"/>
<optionset id="set" keycolumn="var">

<content >
[...]
<embed id="color" component="rkward::color_chooser" ←↩

label="Line color"/>
</content >

[...]
<optioncolumn id="vars" external="true">
<optioncolumn id="varnames" external="true" label="Variable ←↩

">
<optioncolumn id="color_params" connect="color.code. ←↩

printout">
</optionset >
[...]

</dialog >

Començarem a veure l’exemple a la part inferior. Tindreu en compte que dues especificacions de
<optioncolumn> tenen external=˝true˝ . Això li indica al RKWard que estan controlats des de
fora de l’<optionset>. Aquí, l’únic motiu de l’opció «optioncolumn» «varnames» és proporcionar
etiquetes fàcils de llegir a la pantalla de l’«optionset» (està connectat al modificador «shortname»
de la propietat que conté els objectes seleccionats). El motiu de «optioncolumn» «vars» és servir
com a columna «key», tal com especifica <optionset keycolumn=˝vars˝...>. Això vol dir que
per a cada entrada en aquesta llista, el conjunt oferirà un conjunt d’opcions, i les opcions estan
lligades lògicament a aquestes entrades. Aquesta columna està connectada a la propietat que
conté els objectes seleccionats a <varslot>. Això és per a cada objecte que hi ha seleccionat,
l’<optionset> permetrà especificar el color de la línia.

NOTA
La columna externa també pot ser connectada amb connect a les propietats dins de la regió <con-
tent>. No obstant això, és important tenir en compte que les «optioncolumn» declarades externa-
l=˝true˝ mai no s’han de modificar des de dins de l’<optionset>, i les «optioncolumn» declarades
external=˝false˝ (predeterminat) mai no s’han de modificar des de fora de l’<optionset>.

52

Introducció a l’escriptura de connectors per al RKWard

10.6.2 Alternatives: quan no s’usen els «optionsets»

Els «optionset» són una eina potent, però de vegades poden fer més mal que bé, ja que afegeixen
una complexitat considerable, tant des de la perspectiva d’un desenvolupador de connectors,
com des de la perspectiva d’un usuari. Per tant, penseu dues vegades, quan les utilitzeu. Aquí
teniu un consell:

• Per alguns casos simples, l’element <matrix> pot proporcionar una alternativa útil més senzi-
lla.

• No feu que la vostra extensió faci massa. Hem donat l’exemple d’utilitzar un «optionset» per
a un connector per a dibuixar diverses línies dins d’un diagrama. Però en general no és una
bona idea crear un connector que produeixi diagrames individuals per a cada element en un
«optionset». Més aviat, feu que el connector produeixi un diagrama, i l’usuari el pot cridar
diverses vegades.

• Si no espereu més de dos o tres elements en un conjunt, considereu repetir les opcions manu-
alment.

53

Introducció a l’escriptura de connectors per al RKWard

Capítol 11

Gestió de dependències i problemes
de compatibilitat

11.1 Compatibilitat de la versió del RKWard

Fem tot el possible per a assegurar-nos que els connectors desenvolupats per a una versió anti-
ga del RKWard romandran funcionals en versions posteriors del RKWard. No obstant això, el
contrari no sempre és cert, ja que s’han afegit característiques noves. Com que no tots els usu-
aris estan executant l’última versió del RKWard, això vol dir que el vostre connector podria no
funcionar per a tothom.

Quan tingueu coneixement d’aquests problemes de compatibilitat, haureu d’assegurar-vos de
documentar aquest fet en el fitxer .pluginmap, utilitzant l’element <dependencies>. Les <de-
pendencies> es poden especificar com un fill directe de l’element <document> del .pluginmap, o
com a element fill de definicions de <component> individual. En el primer cas, les dependències
s’apliquen a tots els connectors del mapa. En l’últim cas només per al <component> individu-
al. També podeu barrejar dependències ˝global˝ i ˝specific˝. En aquest cas, les dependències
˝globals˝ s’afegeixen a les del component individual.

Mirem un petit exemple:

<document ...>
<dependencies rkward_min_version ="0.5.0c" />
<components ...>

<component id="myplugin" file="reduced_version_of_myplugin. ←↩
xml" ...>

<dependencies rkward_max_version ="0.6.0z" />
</component >
<component id="myplugin" file="fancy_version_of_myplugin. ←↩

xml" ...>
<dependencies rkward_min_version ="0.6.1" />

</component >
...

x </components ...>
</document >

En aquest exemple, se sap que tots els connectors requereixen almenys la versió 0.5.0c del
RKWard. Un connector, amb id=˝myplugin˝ es proporciona en dues variants alternatives. La
primera versió, reduïda, s’utilitzarà per a les versions del RKWard abans de la 0.6.1. L’últim uti-
litza característiques que són noves en el RKWard 0.6.1, i només s’utilitzaran a partir del RKWard
0.6.1 i posteriors.

54

Introducció a l’escriptura de connectors per al RKWard

Proporcionar variants alternatives com aquesta és una manera molt fàcil d’usar per a fer ús de
característiques noves, tot i que encara manté el suport per a versions anteriors del RKWard. Les
versions alternatives haurien de compartir el mateix id (en cas contrari es produiran avisos), i
només es poden definir dins del mateix fitxer .pluginmap.

El connector que no és compatible amb la versió en execució del RKWard, i que no ve amb una
versió alternativa s’ignorarà amb un avís.

NOTA
En realitat, el RKWard 0.6.1 és la primera versió per a interpretar les dependències i per a informar dels
errors de dependències. Per tant, contràriament al que l’exemple pot suggerir, especificar versions
anteriors en les dependències no tindrà cap efecte directe (però pot ser una bona idea per a propòsits
de documentació).

De vegades fins i tot serà possible gestionar els problemes d’incompatibilitat de versions dins d’un
únic fitxer .pluginmap, utilitzant l’element <dependency_check>, descrit a la secció següent.

11.2 Compatibilitat de la versió de l’R

Similar a rkward_min_version i rkward_max_version, l’element <dependencies> permet l’es-
pecificació dels atributs R_min_version i R_max_version. No obstant això, hi ha les diferències
següents:

• Els connectors que no compleixen el requisit de la versió de l’R no s’ometen actualment en llegir
un fitxer .pluginmap. L’usuari encara pot cridar al connector, i no veurà cap avís immediat (en
versions futures, probablement es mostrarà un missatge d’avís)

• En conseqüència, no és possible definir versions alternatives d’un connector depenent de la
versió en execució de l’R.

• No obstant això, sovint és fàcil aconseguir compatibilitat cap enrere com es mostra a continu-
ació. Si esteu al corrent dels problemes de compatibilitat de l’R, considereu utilitzar aquest
mètode, en lloc de definir una dependència d’una versió particular de l’R.

En molts casos, és possible proporcionar fàcilment una funcionalitat reduïda, si una característica
determinada no està disponible en la versió en execució de l’R. Considereu l’exemple curt següent
d’un fitxer .xml:

<dialog [...]>
<logic >

<dependency_check id="ris210" R_min_version ="2.10.0"/>
<connect client="compression.xz.enabled" governor="ris210 ←↩

"/>
</logic >
[...]
<radio id="compression" label="Compression method">

<option label="None" value="">
<option label="gzip" value="gzip">
<option id="xz" label="xz" value="xz">

</radio >
[...]

</dialog >

En aquest exemple, l’opció de compressió ˝xz˝ simplement es desactivarà quan la versió R en
temps d’execució sigui anterior a 2.10.0 (que no admet la compressió «xz»). L’element <depen-
dency_check> admet els mateixos atributs que l’element <dependencies> en fitxers .pluginmap.
Crea una propietat booleana, el qual és cert, si es compleixen les dependències especificades, fals
en cas contrari.

55

Introducció a l’escriptura de connectors per al RKWard

11.3 Dependències de paquets de l’R

Es poden definir dependències en paquets específics de l’R, però a partir del RKWard 0.6.1, aques-
tes dependències no es marquen, ni s’instal·len/es carreguen automàticament. No obstant això,
es mostren en els fitxers d’ajuda del connector. Aquesta és una definició d’exemple:

<dependencies >
<package

name="heisenberg"
min_version ="0.11-2"
repository="http://rforge.r-project.org"

/>
</dependencies >

NOTA
Assegureu-vos sempre d’afegir les crides require() apropiades, si el connector necessita que es
carreguin determinats paquets.

NOTA
Si distribuïu el vostre .pluginmap com un paquet R, i tots els connectors depenen d’un paquet en
particular, aleshores hauríeu de definir aquesta dependència a nivell del paquet R. Definir les depen-
dències als paquets de l’R a nivell del mapa de connectors del RKWard és molt útil, si només alguns
dels vostres connectors necessiten la dependència, la dependència no està disponible al CRAN, o el
vostre .pluginmap no es distribueix com un paquet de l’R.

11.4 Dependències d’altres RKWard.pluginmaps

Si els vostres connectors depenen dels connectors definits en un altre .pluginmap (és a dir, no són
part del paquet) podreu definir aquesta dependència així:

<dependencies >
<pluginmap

name="heisenberg_plugins"
url="http://eternalwondermaths.example.org/hsb"

/>
</dependencies >

Actualment, no carregarà, ni instal·larà, ni tan sols avisarà sobre els .pluginmap que manquen,
però almenys es mostrarà informació sobre les dependències (i on obtenir-les) a la pàgina d’a-
juda del connector. No cal (i no hauríeu de) declarar dependències en els .pluginmap que es
distribueixen amb la distribució oficial del RKWard, o en els .pluginmap que es troben dins del
vostre propi paquet. A més, si el .pluginmap requerit és distribuït com un paquet R, declareu una
dependència del paquet (com es mostra a la secció anterior), en lloc del mapa.

Per a assegurar-vos que els connectors requerits es carreguen realment, utilitzeu l’etiqueta <re-
quire> (vegeu la referència per a més detalls).

56

Introducció a l’escriptura de connectors per al RKWard

11.5 Un exemple

Per a aclarir com es poden barrejar les definicions de dependències, aquí hi ha un exemple com-
binat:

<document ...>
<dependencies rkward_min_version ="0.5.0c">

<package
name="heisenberg"
min_version ="0.11-2"
repository="http://rforge.r-project.org"

/>
<package

name="DreamsOfPi"
min_version ="0.2"

/>
<pluginmap

name="heisenberg_plugins"
url="http://eternalwondermaths.example.org/hsb"

/>
<dependencies >

<require map="heisenberg::heisenberg_plugins"/>

<components ...>
<component id="myplugin" file="reduced_version_of_myplugin. ←↩

xml" ...>
<dependencies rkward_max_version ="0.6.0z" />

</component >
<component id="myplugin" file="fancy_version_of_myplugin. ←↩

xml" ...>
<dependencies rkward_min_version ="0.6.1" />

</component >
...

x </components ...>
</document >

57

Introducció a l’escriptura de connectors per al RKWard

Capítol 12

Traduccions d’un connector

Fins ara hem utilitzat alguns conceptes relatius a les traduccions o «i18n» (abreviatura
d’«internacionalització», que té 18 caràcters entre la i i la n) de passada. En aquest capítol do-
narem una explicació més en profunditat del funcionalment de l’«i18n» per als connectors del
RKWard. Per a la majoria, no necessitareu tot això als connectors. No obstant això, pot ser una
bona idea llegir aquest capítol íntegrament, ja que entendre aquests conceptes hauria d’ajudar-
vos a crear connectors que siguin completament traduïbles, i que permetin una alta qualitat de
les traduccions.

12.1 Consideracions generals

Un punt important per a entendre les traduccions de programari, en contrast amb les traduccions
d’altres materials de text, és que els traductors sovint tindran un temps força llarg per a fer-se una
imatge completa de què estan traduint. Les traduccions de programari es basen necessàriament
en fragments de text força curts: cada etiqueta que doneu a una <option> en un <radio>, cada
cadena que marqueu per a la traducció en una crida de funció i18n(), formarà una «unitat de
traducció» separada. En essència, cada fragment es presentarà al traductor de forma aïllada. Bé,
no un aïllament complet, ja que intentem proporcionar al traductor tant context significatiu com
es pugui extreure automàticament. Però en alguns punts els traductors necessitaran un context
addicional per a donar sentit a una cadena, especialment quan les cadenes siguin curtes.

12.2 «i18n» als fitxers «xml» del RKWard

L’«i18n» funcionarà per als fitxers XML del RKWard. Si esteu escrivint el vostre propi .pluginmap
(p. ex., per a un connector extern), haureu d’especificar un po_id al costat del id del «plugin-
map». Això defineix el ˝catàleg de missatges˝ a utilitzar. En general, això s’ha d’establir igual
que el id del vostre .pluginmap, però si proporcioneu diversos .pluginmap relacionats en un
sol paquet, probablement voldreu especificar un po_id comú als vostres mapes. El fitxer po_id
d’un fitxer .pluginmap és heretat per tots els connectors declarats en ell, llevat que això declari
un altre po_id.
Per a connectors i pàgines d’ajuda, no cal que li indiqueu al RKWard quines cadenes s’han de
traduir, perquè generalment això és evident a partir del seu ús. No obstant això, tal com s’ha
explicat anteriorment, cal tenir en compte les cadenes que poden ser ambigües o necessiten al-
guna explicació per a ser traduïdes correctament. Per a les cadenes que poden tenir significats
diferents, proporcioneu un i18n_context com aquest:

<checkbox id="scale" label="Scale" i18n_context="Show the scale"/>
<checkbox id="scale" label="Scale" i18n_context="Scale the plot"/>

58

Introducció a l’escriptura de connectors per al RKWard

Proporcionar un i18n_context farà que les dues cadenes es tradueixin per separat. En cas con-
trari, compartirien una única traducció. A més, el context es mostra al traductor. L’atribut i18n_
context és compatible amb tots els elements que poden tenir cadenes traduïbles, en algun lloc,
inclosos els elements que contenen text dins d’ells (p. ex. els elements <text>).

En altres casos, la cadena a traduir té un significat únic no-ambigu, però encara pot necessitar al-
guna explicació. En aquest cas podeu afegir un comentari que es mostrarà als traductors. Alguns
exemples poden incloure:

<!-- i18n: No, this is not a typo for screen plot! -->
<component id="scree_plot" label="Scree plot"/>

<!-- i18n: If you can, please make this string short. Having more than some ←↩
15 chars

looks really ugly at this point , and the meaning should be mostly self - ←↩
evident to the

user (selection from a list of values shown next to this element) -->
<valueslot id="selected" label="Pick one"/>

Tingueu en compte que aquests comentaris han de precedir l’element al qual s’apliquen, i han de
començar amb ˝i18n:˝ o ˝TRANSLATORS:˝.

Finalment, en casos rars, és possible que vulgueu excloure determinades cadenes de la traducció.
Això pot tenir sentit, per exemple, si oferiu una elecció entre diversos noms de funcions R en
un control <radio>. Llavors no voleu que es tradueixin, però depenent del context, hauríeu de
considerar donar una etiqueta descriptiva, en el seu lloc:

<radio id="transformation" label="R function to apply">
<option id="as.list" noi18n_label="as.list()"/>
<option id="as.vector" noi18n_label="as.vector()"/>
[...]

</radio >

Tingueu en compte que ometreu l’atribut label, llavors, i especifiqueu noi18n_label, en el seu
lloc. A més, cal tenir en compte que en contrast amb i18n_context i els comentaris, utilitzant
noi18n_label el vostre connector serà incompatible amb les versions del RKWard anteriors a la
0.6.3.

12.3 «i18n» als fitxers i seccions dels fitxers «js» del RKWard

A diferència dels fitxers .xml, fer que els fitxers .js d’un connector siguin traduïbles requereix
més feina personalitzada. La diferència clau, aquí, és que no hi ha cap manera decent automàtica
de saber, si una cadena està pensada per a ser mostrada com una cadena llegible per humans,
o un tros de codi. Així que heu de marcar-ho vós mateix. Ja hem donat exemples d’això, tot el
temps. Aquí hi ha una descripció més completa de les funcions «i18n» disponibles en el codi js, i
alguns consells per a casos més complexos:

i18n (msgid, [...])

La funció més important. Marca la cadena a traduir. La cadena (traduïda o no) es retorna
entre cometes amb cometes dobles («»). Es pot utilitzar un nombre arbitrari de variables de
substitució a la cadena com es mostra a continuació. L’ús d’aquestes variables de substitu-
ció en lloc de concatenar petites subcadenes és molt més fàcil per als traductors:

i18n ("Compare objects %1 and %2", getString (’x’), getString (’y’));

59

Introducció a l’escriptura de connectors per al RKWard

i18nc (msgctxt, msgid, [...])

Igual que i18n(), però a més proporciona un context de missatge:

i18nc ("proper name , not state of mind", "Mood test");

i18np (msgid_singular, msgid_plural, n, [...])

Igual que i18n(), però per a missatges que poden ser diferents en forma singular o plural
(i alguns idiomes tenen encara més formes numèriques diferenciades). Tingueu en compte
que igual que amb i18n(), podeu utilitzar un nombre arbitrari de reemplaçaments, però es
requereix el primer («%1»), i ha de ser un enter.

i18np ("Comparing a single pair", "Comparing %1 distinct pairs", ←↩
n_pairs);

i18ncp (msgctxt, msgid_singular, msgid_plural, n, [...])

i18np() amb context de missatge afegit.

comment (comentari, [sagnat])

Fa un comentari de codi, marcat per a la traducció. A diferència de les altres funcions i18n(),
això no està entre cometes, però s’afegeix un «#» a cada línia del comentari.

comment ("Transpose the matrix");
echo (’x <- t (x)\n’);

Per a afegir comentaris als traductors (vegeu a dalt un debat de les diferències entre el comentari
i el context), afegeix un comentari que comenci per ˝i18n:˝ o ˝translators:˝ directament per sobre
de la crida i18n() a comentar. P. ex.:

// i18n: Spelling is correct: Scree plot.
echo (’rk.header (’ + i18n ("Scree plot") + ’)\n’);

12.3.1 «i18n» i cometes

En gran part, no us haureu de preocupar pel comportament de l’i18n() respecte a les cometes.
Com que, normalment, les cadenes traduïbles són literals de cadenes, citar-les és el correcte i
estalvia una mica d’escriptura. A més, en funcions com makeHeaderCode()/Header() que solen
citar els seus arguments, les cadenes i18n() estan protegides de cites duplicades. Essencialment,
això funciona, enviant primer la cadena traduïda a través de quote() (per a fer-la citada), després
a través de noquote() (per a protegir-la de les cites addicionals). Si necessiteu una cadena traduï-
ble que no estigui entre cometes, utilitzeu i18n(noquote (˝El meu missatge˝)). Si necessiteu una
cadena traduïble per a ser citada, una segona vegada, envieu-la a través de quote(), dues vegades.

Dit això, generalment no és una bona idea fer parts com els noms de funcions o els noms de vari-
ables siguin traduïbles. Per una cosa, R, el llenguatge de programació, és inherent en anglès, i no
hi ha internacionalització del llenguatge en si. Els comentaris de codi són un tema diferent, però
hauríeu d’utilitzar la funció comment() per a aquests. En segon lloc, fer que les parts sintàctica-
ment rellevants del codi generat siguin traduïbles significa que les traduccions podrien trencar el
vostre connector. Per exemple, si un traductor confiat tradueix una cadena que vol dir un nom
de variable en dues paraules diferents amb un espai entremig.

60

Introducció a l’escriptura de connectors per al RKWard

12.4 Manteniment d’una traducció

Ara que heu fet que el vostre connector sigui traduïble, com la traduïu realment? En general,
només us heu de preocupar d’això quan desenvolupeu un connector extern. Per als connectors
en el repositori principal del RKWard, es fa tota la màgia. Aquest és el flux de treball bàsic per a
connectors externs. Tingueu en compte que necessiteu les eines «gettext» instal·lades:

• Marqueu totes les cadenes, proporcionant el context i els comentaris segons sigui necessari

• Executeu python3 scripts/update_plugin_messages.py --extract-only /path/-
to/my.pluginmap. scripts/update_plugin_messages.py actualment no forma part de les
versions de codi font, però es pot trobar en una extracció del repositori de codi font.

• Distribuïu el fitxer rkward__POID.pot als vostres traductors. Per a connectors externs, es reco-
mana col·locar-lo en una subcarpeta ˝po˝ a inst/rkward.

• El traductor obre el fitxer en una eina de traducció com el lokalize. En realitat, encara que
no prepareu cap traducció, cal provar aquest pas per vós mateix. Navegueu per les cadenes
extretes buscant problemes/ambigüitats.

• El traductor desa la traducció com a rkward__POID.xx.po (on xx és el codi de llengua), i us
l’envia de retorn.

• Copieu rkward__POID.xx.po al vostre codi font, al costat de rkward__POID.pot. Exe-
cuteu python3 scripts/update_plugin_messages.py /path/to/my.pluginmap (Nota: aques-
ta vegada sense --extract-only). Això fusionarà la traducció amb qualsevol can-
vi de cadena provisional, compilarà la traducció i l’instal·larà a DIR_OF_PLUGINMAP/po/x
x/LC_MESSAGES/rkward__POID.mo (on xx és el codi de llengua, de nou).

• També hauríeu d’incloure la traducció no compilada (és a dir, rkward__POID.xx.po) a la vostra
distribució, al subdirectori «po».

• Per a qualsevol actualització del connector, executeu python3 scripts/upda-
te_plugin_messages.py /path/to/my.pluginmap per a actualitzar el fitxer .pot, però també els
fitxers .po existents i els catàlegs de missatges compilats.

12.5 Escriure traduccions d’un connector

Suposem que coneixeu el vostre ofici com a traductor, o que esteu disposat a estudiar-lo en altres
llocs. Unes poques paraules específicament sobre les traduccions dels connectors del RKWard,
però:

• Els connectors del RKWard no es poden traduir fins a la versió 0.6.3, i abans no s’havien escrit
pensant en l’«i18n». Per tant, trobareu cadenes força ambigües i altres problemes d’«i18n» res-
pecte a altres projectes madurs. No treballeu en silenci per a solucionar-ho, però feu-nos-ho
saber (o als mantenidors dels connectors), de manera que puguem solucionar aquests proble-
mes.

• Molts connectors del RKWard es refereixen a termes molt especialitzats, des de la gestió de
dades i estadístiques, però també d’altres camps de la ciència. En molts casos, una bona tra-
ducció requerirà almenys un coneixement bàsic d’aquests camps. En alguns casos, no hi ha una
traducció bona per a un terme tècnic, i la millor opció pot ser deixar el terme sense traduir, o
incloure el terme anglès entre parèntesis. No us centreu massa a arribar al 100% de les cadenes
traduïdes, centreu-vos a proporcionar una bona traducció, fins i tot si això significa ometre
algunes cadenes (o fins i tot ometre alguns catàlegs de missatges en el seu conjunt). Altres
usuaris poden omplir qualsevol buit en els termes tècnics.

61

Introducció a l’escriptura de connectors per al RKWard

Capítol 13

Autor, llicència i informació de la
versió

Així que heu escrit un conjunt de connectors, i us esteu preparant per a compartir el vostre treball.
Per a assegurar-vos que els usuaris sàpiguen de què tracta el vostre treball, amb quins termes
poden utilitzar-lo i distribuir-lo, i a qui han de contactar sobre problemes o idees, heu d’afegir
informació sobre els vostres connectors. Això es pot fer utilitzant l’element <about>. Es pot
utilitzar en el .pluginmap o en els fitxers .xml d’un connector individual (en ambdós casos com
a fill directe de l’etiqueta «document»). Quan s’especifica en el .pluginmap s’aplicarà a tots els
connectors. Si s’especifica <about> en ambdós llocs, la informació <about> del fitxer .xml del
connector substituirà la del fitxer .pluginmap. També podeu afegir un element <about> a les
pàgines .rkh, que no estan connectades a cap connector, si cal.

Aquest és un exemple del fitxer .pluginmap amb només algunes explicacions, a continuació. En
cas de dubte, es pot disposar de més informació a la referència.

<document
namespace="rkward"
id="SquaretheCircle_rkward"

>
<about

name="Square the Circle"
shortinfo="Squares the circle using Heisenberg compensation ←↩

."
version="0.1-3"
releasedate ="2011-09-19"
url="http://eternalwondermaths.example.org/23/stc.html"
license="GPL"
category="Geometry"

>
<author

given="E.A."
family="Dölle"
email="doelle@eternalwondermaths.example.org"
role="aut"

/>
<author

given="A."
family="Assistant"
email="alterego@eternalwondermaths.example.org"
role="cre, ctb"

/>
</about >

62

Introducció a l’escriptura de connectors per al RKWard

<dependencies >
...

</dependencies >
<components >

...
</components >
<hierarchy >

...
</hierarchy >

</document >

La majoria d’això s’explica per si mateix, de manera que no debatrem cada element de l’etiqueta.
Però mirem alguns detalls que probablement necessiten un comentari per a una comprensió més
fàcil.
L’element category a <about> es pot definir de forma bastant lliure, però hauria de ser signi-
ficatiu, ja que es creu que s’utilitza per a ordenar connectors en grups. Tots els altres atributs
d’aquesta etiqueta d’obertura són obligatoris i s’han d’omplir amb contingut raonable.

També s’ha d’indicar almenys un <author> amb una adreça de correu electrònic vàlida i també
s’ha de donar el rol «aut» («author»). En cas que el vostre connector causi problemes o algú
vulgui compartir la seva gratitud amb vosaltres, hauria de ser fàcil contactar algú que hi estigui
implicat. Per a més informació sobre altres rols vàlids, com «ctb» per als col·laboradors de codi o
«cre» per al manteniment de paquets, consulteu la documentació de l’R sobre person().

NOTA
Recordeu que podeu utilitzar <include> i <insert> per a repetir informació a través de diversos fitxers
.xml (p. ex., informació sobre un autor que estava implicat en diversos connectors). Més informació.

SUGGERIMENT
No heu d’escriure aquest codi XML a mà. Si utilitzeu la funció rk.plugin.skeleton() des del
paquet rkwarddev i proporcioneu tota la informació necessària a través de l’opció about, es crearà
automàticament un fitxer .pluginmap amb una secció <about> funcional.

63

http://stat.ethz.ch/R-manual/R-patched/library/utils/html/person.html

Introducció a l’escriptura de connectors per al RKWard

Capítol 14

Compartiu el vostre treball amb
altres persones

14.1 Connectors externs

A partir de la versió 0.5.5, el RKWard proporciona una manera còmoda d’instal·lar connectors
addicionals de tercers que no pertanyen al paquet principal. Anomenem aquests «connectors
externs». Venen en forma d’un paquet R i es poden gestionar directament a través de les caracte-
rístiques habituals de gestió de paquets de l’R o el RKWard.

Aquesta secció de la documentació descriu com s’han d’empaquetar els connectors externs de
manera que el RKWard els pugui utilitzar. La creació del connector en si és idèntica a les seccions
anteriors. És a dir, probablement hauríeu d’escriure primer un connector funcional i després
tornar aquí per a aprendre a distribuir-lo.

Com que els connectors externs són una característica relativament jove, els detalls d’això pro-
bablement canviaran en futures versions. Us convidem a contribuir amb les vostres idees per a
millorar el procés.

SUGGERIMENT
Aquests documents expliquen els detalls dels connectors externs perquè pugueu aprendre com fun-
cionen. A més a més d’això, cal mirar el paquet rkwarddev, dissenyat per a automatitzar gran part del
procés d’escriptura.

14.2 Per què connectors externs?

El nombre de paquets per a ampliar la funcionalitat de l’R ja és immens, i està pujant. D’una
banda, volem animar-vos a escriure connectors fins i tot per a les tasques més especialitzades que
necessiteu resoldre. D’altra banda, l’usuari mitjà no hauria de perdre’s en grans arbres de menús
plens de termes estadístics desconeguts. Per tant, també semblava raonable mantenir la gestió
dels connectors en el RKWard bastant modular. L’equip del RKWard manté el seu repositori
propi de paquets públics a https://files.kde.org/rkward/R/ , designat per a allotjar els vostres
connectors externs.
Com a regla general, els connectors que semblen servir a un propòsit àmpliament utilitzat (p.
ex., t-Tests) haurien de formar part del paquet central, mentre que els que serveixen a un grup
bastant limitat de persones amb interessos especials haurien de proporcionar-se com un paquet
opcional. Per a vós, com a autor d’un connector, la millor pràctica és començar amb un connector
extern.

64

https://files.kde.org/rkward/R/

Introducció a l’escriptura de connectors per al RKWard

14.3 Estructura d’un paquet de connector

Perquè els connectors externs s’instal·lin i funcionin correctament han de seguir algunes direc-
trius estructurals pel que fa a la seva jerarquia de fitxers.

14.3.1 Jerarquia de fitxers

Donem un cop d’ull a la jerarquia de fitxers prototípica d’un arxiu de connectors elaborat. No
heu d’incloure tots aquests directoris i/o fitxers perquè funcioni un connector (llegiu per a saber
què és absolutament necessari), considereu això un exemple de «millor pràctica»:

plugin_name/
inst/

rkward/
plugins/

plugin_name.xml
plugin_name.js
plugin_name.rkh
...

po/
ll/

LC_MESSAGES/
rkward__plugin_name_rkward ←↩

.mo
rkward__plugin_name_rkward.ll.po
rkward__plugin_name_rkward.pot

tests/
testsuite_name/

RKTestStandards. ←↩
sometest_name.rkcommands ←↩
.R

RKTestStandards. ←↩
sometest_name.rkout

...
testsuite.R

plugin_name.pluginmap
...

ChangeLog
README
AUTHORS
LICENSE
DESCRIPTION

NOTA
En aquest exemple, tots els casos de plugin_name, testsuite_name i sometest_name s’han de subs-
tituir pels seus noms correctes, d’acord amb això. A més, ll és un marcador de posició per a una
abreviatura de l’idioma (p. ex., «de», «en» o «es»).

SUGGERIMENT
No heu de crear aquesta jerarquia de fitxers a mà. Si utilitzeu la funció rk.plugin.skeleton()
del paquet rkwarddev, es crearan automàticament tots els fitxers i directoris necessaris, excepte el
directori po que es crea i gestiona amb l’script de traducció.

65

Introducció a l’escriptura de connectors per al RKWard

14.3.1.1 Components bàsics del connector

És obligatori incloure almenys tres fitxers: un .pluginmap, una descripció .xml del connector i un
fitxer .js del connector. És a dir, fins i tot el directori ˝plugins˝ és opcional. Pot ajudar a donar una
mica d’ordre als vostres fitxers, especialment si incloeu més d’un connector/diàleg a l’arxiu, que
no és cap problema per descomptat. Podeu tenir tants directoris per als fitxers de connectors reals
com creieu oportú, només s’han d’assemblar al .pluginmap, respectivament. També és possible
incloure diversos fitxers .pluginmap, si s’adapta a les vostres necessitats, però llavors hauríeu
d’incloure’ls tots a «plugin_name.pluginmap».

Cada paquet R ha de tenir un fitxer DESCRIPTION vàlid, el qual també és crucial per al RKWard
reconeixent-lo com a proveïdor de connectors. La major part de la informació que porta també
és necessària en el connector Meta-information i possiblement dependencies, però en un format
diferent (la documentació de l’R explica el fitxer DESCRIPTION en detall).

A més del contingut general d’un fitxer DESCRIPTION, assegureu-vos també d’incloure la línia
«Enhances: rkward». Això farà que el RKWard escanegi automàticament el paquet cercant con-
nectors si està instal·lat. Un exemple de fitxer DESCRIPTION té aquest aspecte:

Package: SquaretheCircle
Type: Package
Title: Square the circle
Version: 0.1-3
Date: 2011-09-19
Author: E.A. Dölle <doelle@eternalwondermaths.example.org>
Maintainer: A. Assistant <alterego@eternalwondermaths.example.org>
Enhances: rkward
Description: Squares the circle using Heisenberg compensation.
License: GPL
LazyLoad: yes
URL: http://eternalwondermaths.example.org/23/stc.html
Authors@R: c(person(given="E.A.", family="Dölle", role="aut",

email="doelle@eternalwondermaths.example.org"),
person(given="A.", family="Assistant", role=c("cre ←↩

",
"ctb"), email="alterego@eternalwondermaths.example. ←↩

org"))

SUGGERIMENT
No heu d’escriure aquest fitxer a mà. Si utilitzeu la funció rk.plugin.skeleton() del paquet rkward-
dev i proporcioneu tota la informació necessària a través de l’opció «about», es crearà automàticament
un fitxer DESCRIPTION que funciona.

14.3.1.2 Informació addicional (opcional)

ChangeLog, README, AUTHORS, LICENSE haurien de ser autoexplicatius i són totalment opcionals.
En realitat, no seran interpretats pel RKWard, de manera que estan més aviat destinats a portar
informació addicional que podria ser rellevant, p. ex., per als distribuïdors. La majoria del seu
contingut rellevant (crèdits d’autor, termes de llicència, etc.) s’inclourà de totes maneres en els
fitxers dels connectors reals (vegeu la secció sobre metainformació). Tingueu en compte que tots
aquests fitxers també es poden col·locar en algun lloc del directori ˝inst˝, si voleu que no només
estiguin presents a l’arxiu d’origen, sinó també al paquet instal·lat.

66

http://cran.r-project.org/doc/manuals/R-exts.html#The-DESCRIPTION-file

Introducció a l’escriptura de connectors per al RKWard

14.3.1.3 Proves automatitzades de connectors (opcional)

Un altre directori opcional és ˝tests˝, que està destinat a proporcionar els fitxers necessaris per
a proves automatitzades de connectors. Aquestes proves són útils per a comprovar ràpidament
si els connectors encara funcionen amb versions noves de l’R o del RKWard. Si voleu incloure
proves, realment hauríeu de restringir-vos a l’esquema de noms i jerarquia que es mostra aquí.
És a dir, les proves han de residir en un directori anomenat tests, que inclou un fitxer testsuit
e.R i una carpeta amb estàndards de proves anomenats després del conjunt de proves apropiat.
No obstant això, podeu proporcionar més d’un conjunt de proves; en aquest cas, si no voleu
afegir-les totes en el conjunt de proves testsuite.R, podeu dividir-los, p. ex., un fitxer per a
cada paquet de proves i crear un testsuite.R amb crides source() a cada fitxer de la suite. En
qualsevol cas, creeu subdirectoris separats amb estàndards de prova per a cada suite definida.

Els avantatges de mantenir aquesta estructura és que les proves dels connectors es poden exe-
cutar simplement cridant rktests.makplugintests() del paquet rkwardtests sense arguments
addicionals. Consulteu la documentació en línia de Proves de connectors automatitzades per a
més detalls.

14.4 Construcció del paquet del connector

Com s’ha explicat anteriorment, els connectors externs del RKWard són, en efecte, paquets R i,
per tant, el procés d’empaquetatge és idèntic. En contrast amb els paquets R «reals», un paquet de
connector pur no porta cap codi R addicional (tot i que per descomptat podeu afegir connectors
del RKWard als paquets R habituals, utilitzant els mateixos mètodes que s’expliquen aquí). Això
hauria de fer encara més fàcil crear un paquet operatiu, sempre que tingueu un fitxer DESCRIPTI
ON vàlid i s’adhereixi a la jerarquia de fitxers explicada en les seccions anteriors.

La manera més fàcil de construir i provar el vostre connector és utilitzar l’ordre R a la línia d’or-
dres, per exemple:

R CMD build SquaretheCircle

R CMD INSTALL SquaretheCircle_0.1-3.tar.gz

SUGGERIMENT
No cal construir el paquet com aquest a la línia d’ordres. Si utilitzeu la funció rk.build.package()
del paquet rkwarddev, es construirà i/o comprovarà el paquet de connectors.

67

http://sourceforge.net/apps/mediawiki/rkward/index.php?title=Automated_Plugin_Testing
rkward://rhelp/rkwardtests
http://sourceforge.net/apps/mediawiki/rkward/index.php?title=Automated_Plugin_Testing

Introducció a l’escriptura de connectors per al RKWard

Capítol 15

Desenvolupament de connectors
amb el paquet rkwarddev

15.1 Vista general

Escriure connectors externs implica escriure fitxers en tres llenguatges (XML, JavaScript i R) i
la creació d’una jerarquia estandarditzada de directoris. Per a fer-ho molt més fàcil als desen-
volupadors voluntaris de connectors, estem proporcionant el paquet rkwarddev. Proporciona
una sèrie de funcions simples de l’R per a crear el codi XML per a tots els elements de diàleg
com els «tabbooks», caselles de selecció, llistes desplegables o navegadors de fitxers, així com
funcions per a crear el codi JavaScript i fitxers d’ajuda del RKWard per a començar. La funció
rk.plugin.skeleton() crea l’arbre de directoris esperat i tots els fitxers necessaris on se suposa
que són.

Aquest paquet no està instal·lat de manera predeterminada, però s’ha d’instal·lar manualment
des del repositori propi del RKWard. Podeu fer-ho utilitzant la interfície de la IGU (Arranjament
→ Configura els paquets), o des de qualsevol sessió R en execució:

install.packages("rkwarddev", repos="https://files.kde.org/rkward/R")
library(rkwarddev)

El rkwarddev depèn d’un altre paquet petit anomenat «XiMpLe», que és un analitzador i gene-
rador de XML molt senzill i també està present en el mateix repositori.

També es pot trobar la documentació completa en format PDF. Es pot trobar una introducció més
detallada per a treballar amb el paquet al resum bàsic del «rkwarddev».

15.2 Exemple pràctic

Per a tenir una idea de com «crear scripts en un connector», en comparació amb l’enfocament
directe que heu vist en els capítols anteriors, crearem el connector complet de la prova t una
vegada més; aquesta vegada només amb les funcions R del paquet rkwarddev.

SUGGERIMENT
El paquet afegirà un diàleg nou de la IGU al RKWard a Fitxer→ Exporta→ Crea un script de
connector del RKWard. Com suggereix el nom, podeu crear esquelets de connectors per a una
edició posterior. Aquest diàleg al seu torn es va generar amb un script del rkwarddev que trobareu
al directori «demo» del paquet i de codi font de paquet instal·lat, com a exemple addicional. També
podeu executar-la cridant demo(˝skeleton_dialog˝)

68

https://files.kde.org/rkward/R/
https://files.kde.org/rkward/R/pckg/rkwarddev/rkwarddev.pdf
https://files.kde.org/rkward/R/pckg/rkwarddev/rkwarddev_vignette.pdf

Introducció a l’escriptura de connectors per al RKWard

15.2.1 Descripció de la IGU

Us adonareu immediatament que el flux de treball és molt diferent: al contrari d’escriure directa-
ment codi XML, no comenceu amb la definició <document>, sinó directament amb els elements
del connector que us agradaria tenir al diàleg. Podeu assignar cada element d’interfície, ja siguin
caselles de selecció, menús desplegables, «varslots» o qualsevol altra cosa, a objectes individuals
de l’R, i després combinar aquests objectes amb la IGU real. El paquet té funcions per a cada
etiqueta XML que es pot utilitzar per a definir la IGU del connector, i la majoria fins i tot tenen
el mateix nom, només amb el prefix rk.XML.*. Per exemple, la definició d’una variable <varse-
lector> i dos elements <varslot> per a la variable ˝x˝ i ˝y˝ de l’exemple de prova t es pot fer
mitjançant:

variables <- rk.XML.varselector(id.name="vars")
var.x <- rk.XML.varslot("compare", source=variables , types="number", ←↩

required=TRUE , id.name="x")
var.y <- rk.XML.varslot("against", source=variables , types="number", ←↩

required=TRUE , id.name="y")

El detall més interessant probablement és source=variables: Una característica destacada del
paquet és que totes les funcions poden generar ID automàtics, de manera que no us heu de
molestar pensant o recordant en valors d’id per a referir-vos a un element específic del connector.
Senzillament, podeu donar els objectes R com a referència, ja que totes les funcions que necessiten
un ID d’algun altre element també poden llegir-lo des d’aquests objectes. rk.XML.varselector()
és una mica especial, ja que normalment no té contingut específic per a crear un ID (pot, però
només si especifiqueu una etiqueta), de manera que hem d’establir un nom d’ID. Però rk.XML.v
arslot() no necessitaria els arguments id.name, així que això seria suficient:

variables <- rk.XML.varselector(id.name="vars")
var.x <- rk.XML.varslot("compare", source=variables , types="number", ←↩

required=TRUE)
var.y <- rk.XML.varslot("against", source=variables , types="number", ←↩

required=TRUE)

Per tal de tornar a crear el codi d’exemple fins aquest punt, haureu d’establir tots els valors
d’ID manualment. Però com que el paquet facilitarà les nostres vides, a partir d’ara ja no ens
preocuparà.

SUGGERIMENT
El rkwarddev és capaç de fer molta automatització per a ajudar-vos a construir els vostres connectors.
No obstant això, podria ser preferible no utilitzar-ho en tota la seva màxima extensió. Si el vostre ob-
jectiu és produir codi que no només funcioni, sinó que també es pugui llegir fàcilment i en comparació
l’script generador amb un ésser humà, hauríeu de considerar establir sempre ID útils amb id.name.
Anomenar els vostres objectes R idèntics a aquests ID també ajudarà a obtenir codi de script que sigui
fàcil d’entendre.

Si voleu veure com es veu el codi XML de l’element definit si l’exporteu a un fitxer, només podeu
cridar l’objecte pel seu nom. Per tant, si heu anomenat «var.x» en la vostra sessió R, hauríeu de
veure quelcom com això:

<varslot id="vrsl_compare" label="compare" source="vars" types="number" ←↩
required="true" />

Algunes etiquetes només són útils en el context d’altres. Per tant, per exemple, no trobareu una
funció per a l’etiqueta <option>. En lloc d’això, tant els botons d’opció com les llistes desplega-
bles es defineixen incloent les seves opcions com una llista amb nom, on els noms representen
les etiquetes que es mostraran en el diàleg, i el seu valor és un vector amb nom que pot tenir
dues entrades, val per al valor d’una opció i el booleà chk per a especificar si aquesta opció està
marcada de manera predeterminada.

69

Introducció a l’escriptura de connectors per al RKWard

test.hypothesis <- rk.XML.radio("using test hypothesis",
options=list(

"Two-sided"=c(val="two.sided"),
"First is greater"=c(val="greater"),
"Second is greater"=c(val="less")

)
)

El resultat quedarà així:

<radio id="rad_usngtsth" label="using test hypothesis">
<option label="Two-sided" value="two.sided" />
<option label="First is greater" value="greater" />
<option label="Second is greater" value="less" />

</radio >

Tot el que falta als elements de la pestanya «Configuració bàsica» és la casella de selecció per a
mostres aparellades, i l’estructuració de tots aquests elements en files i columnes:

check.paired <- rk.XML.cbox("Paired sample", value="1", un.value="0")
basic.settings <- rk.XML.row(variables , rk.XML.col(var.x, var.y, test. ←↩

hypothesis , check.paired))

rk.XML.cbox() és una excepció rara on el nom de la funció no conté el nom complet de l’etiqueta,
per a desar algun tecleig per a aquest element utilitzat sovint. Això és el que basic.settings
conté ara:

<row id="row_vTFSPP10TF">
<varselector id="vars" />
<column id="clm_vrsTFSPP10">

<varslot id="vrsl_compare" label="compare" source="vars" ←↩
types="number" required="true" />

<varslot id="vrsl_against" label="against" i18n_context=" ←↩
compare against" source="vars" types="number" required=" ←↩
true" />

<radio id="rad_usngtsth" label="using test hypothesis">
<option label="Two-sided" value="two.sided" />
<option label="First is greater" value="greater" />
<option label="Second is greater" value="less" />

</radio >
<checkbox id="chc_Pardsmpl" label="Paired sample" value="1" ←↩

value_unchecked ="0" />
</column >

</row>

De manera similar, les línies següents crearan objectes R per als elements de la pestanya «Opci-
ons», introduint funcions per a «spinboxes» (botons de selecció de valors), «frames» i «stretch»:

check.eqvar <- rk.XML.cbox("assume equal variances", value="1", un.value ←↩
="0")

conf.level <- rk.XML.spinbox("confidence level", min=0, max=1, initial ←↩
=0.95)

check.conf <- rk.XML.cbox("print confidence interval", val="1", chk=TRUE)
conf.frame <- rk.XML.frame(conf.level , check.conf , rk.XML.stretch(), label ←↩

="Confidence Interval")

Tot el que hem de fer ara és reunir els objectes en un «tabbook», i col·locar-lo en una secció
«dialog»:

70

Introducció a l’escriptura de connectors per al RKWard

full.dialog <- rk.XML.dialog(
label="Two Variable t-Test",
rk.XML.tabbook(tabs=list("Basic settings"=basic.settings , "Options ←↩

"=list(check.eqvar , conf.frame)))
)

També podem crear la secció de l’assistent amb les seves dues pàgines utilitzant els mateixos
objectes, de manera que els seus ID s’extrauran per a les etiquetes <copy>:

full.wizard <- rk.XML.wizard(
label="Two Variable t-Test",
rk.XML.page(

rk.XML.text("As a first step , select the two ←↩
variables you want to compare against

each other. And specify , which one you ←↩
theorize to be greater. Select two-sided ←↩
,

if your theory does not tell you, which ←↩
variable is greater."),

rk.XML.copy(basic.settings)),
rk.XML.page(

rk.XML.text("Below are some advanced options. It is ←↩
generally safe not to assume the

variables have equal variances. An ←↩
appropriate correction will be applied ←↩
then.

Choosing \"assume equal variances\" may ←↩
increase test -strength , however."),

rk.XML.copy(check.eqvar),
rk.XML.text("Sometimes it is helpful to get an ←↩

estimate of the confidence interval of
the difference in means. Below you can ←↩

specify whether one should be shown , and
which confidence -level should be applied ←↩

(95% corresponds to a 5% level of
significance)."),

rk.XML.copy(conf.frame)))

Això és per a la IGU. El document global es combinarà al final amb rk.plugin.skeleton().

15.2.2 Codi JavaScript

Fins ara, l’ús del paquet rkwarddev podria no haver ajudat tant. Això canviarà ara mateix.

En primer lloc, de la mateixa manera que no ens havien d’importar els ID dels elements en definir
la disposició de la IGU, no ens haurà d’importar els noms de les variables JavaScript en el pas
següent. Si voleu més control, podeu escriure codi JavaScript net i enganxar-lo al fitxer generat.
Però probablement és molt més eficient fer-ho de la manera del rkwarddev.

El més notable és que no haureu de definir cap variable, ja que rk.plugin.skeleton() pot explo-
rar el codi XML i definir automàticament totes les variables que probablement necessitareu; per
exemple, no us molestareu a incloure una casella de selecció si després no utilitzeu el seu valor o
estat. Així que podem començar a escriure el codi R real que genera JS immediatament.

SUGGERIMENT
La funció rk.JS.scan() també pot explorar els fitxers XML existents per a les variables.

71

Introducció a l’escriptura de connectors per al RKWard

El paquet té algunes funcions per a construccions de codi JS que s’utilitzen habitualment en
connectors del RKWard, com la funció echo() o les condicions if() {...} else {...}. Hi ha
algunes diferències entre el JS i l’R, p. ex., per a paste() a l’R utilitzeu la coma per concatenar
les cadenes de caràcters, mentre que per a echo() en el JS utilitzeu «+», i les línies han d’acabar
amb un punt i coma. Mitjançant l’ús de les funcions R, gairebé podeu oblidar-vos d’aquestes
diferències i continuar escrivint codi R.
Aquestes funcions poden prendre diferents classes d’objectes d’entrada: text net, objectes R amb
codi XML com a dalt, o al seu torn resultats d’altres funcions JS del paquet. Al final, sempre
cridareu rk.paste.JS(), el qual es comporta de manera similar a paste(), però depenent dels
objectes d’entrada els reemplaçarà amb el seu ID XML, el nom de variable JavaScript o fins i tot
blocs de codi JavaScript complets.

Per a l’exemple de la prova t, necessitem dos objectes JS: un per a calcular els resultats, i un per a
imprimir-los a la funció printout():

JS.calc <- rk.paste.JS(
echo("res <- t.test (x=", var.x, ", y=", var.y, ", hypothesis=\"", ←↩

test.hypothesis , "\""),
js(

if(check.paired){
echo(", paired=TRUE")

},
if(!check.paired && check.eqvar){

echo(", var.equal=TRUE")
},
if(conf.level != "0.95"){

echo(", conf.level=", conf.level)
},
linebreaks=TRUE

),
echo(")\n"),
level=2

)

JS.print <- rk.paste.JS(echo("rk.print (res)\n"), level=2)

Com podeu veure, el rkwarddev també proporciona una implementació R de la funció echo().
Torna exactament una cadena de caràcters amb una versió JS vàlida d’ella mateixa. També us
podeu adonar que tots els objectes R aquí són els que hem creat abans. Se substituiran automàti-
cament pels seus noms de variables, per la qual cosa això hauria de ser bastant intuïtiu. Sempre
que necessiteu aquest reemplaçament, es pot utilitzar la funció id(), que també retornarà exacta-
ment una cadena de caràcters de tots els objectes que s’han indicat (podríeu dir que es comporta
com paste() amb una substitució d’objecte molt específica).

La funció js() és un embolcall que permet utilitzar les condicions if(){...} else {...} de l’R com les
que esteu acostumat a fer. Es traduiran directament al codi JS. També conserva alguns operadors
com <, >= o ||, de manera que podeu comparar lògicament els objectes R sense la necessitat
de posar cometes la major part del temps. Mirem l’objecte «JS.calc» resultant, que ara conté una
cadena de caràcters amb aquest contingut:

echo("res <- t.test (x=" + vrslCompare + ", y=" + vrslAgainst + ", ←↩
hypothesis =\"" + radUsngtsth + "\"");

if(chcPardsmpl) {
echo(", paired=TRUE");

} else {}
if(!chcPardsmpl && chcAssmqlvr) {

echo(", var.equal=TRUE");
} else {}
if(spnCnfdnclv != "0.95") {

echo(", conf.level=" + spnCnfdnclv);

72

Introducció a l’escriptura de connectors per al RKWard

} else {}
echo(")\n");

NOTA
Alternativament per a les condicions imbricades if() en js(), podeu utilitzar la funció ite(), que es
comporta de manera similar a ifelse() de l’R. No obstant això, les sentències condicionals cons-
truïdes utilitzant ite() solen ser més difícils de llegir i s’han de substituir per js() sempre que sigui
possible.

15.2.3 Mapa de connectors

Aquesta secció és molt curta: no cal escriure cap .pluginmap, ja que es pot generar automàtica-
ment amb rk.plugin.skeleton(). La jerarquia del menú es pot especificar mitjançant l’opció
pluginmap:

[...]
pluginmap=list(

name="Two Variable t-Test",
hierarchy=list("analysis", "means", "t-Test"))

[...]

15.2.4 Pàgina d’ajuda

Aquesta secció també és molt curta: rk.plugin.skeleton() no pot escriure una pàgina d’ajuda
completa a partir de la informació que té. Però també pot explorar el document XML cercant
elements que probablement mereixen una entrada de pàgina d’ajuda, i crear automàticament
una plantilla de pàgines d’ajuda per al nostre connector. Tot el que hem de fer després és escriure
algunes línies per a cada secció llistada.

SUGGERIMENT
La funció rk.rkh.scan() també pot explorar els fitxers XML existents per a crear un esquelet de
fitxer d’ajuda.

15.2.5 Generació dels fitxers del connector

Ara ve el pas final, en el qual lliurarem tots els objectes generats a rk.plugin.skeleton():

plugin.dir <- rk.plugin.skeleton("t-Test",
xml=list(

dialog=full.dialog ,
wizard=full.wizard),

js=list(
results.header="Two Variable t-Test",
calculate=JS.calc ,
printout=JS.print),

pluginmap=list(
name="Two Variable t-Test",
hierarchy=list("analysis", "means", "t-Test")),

load=TRUE ,
edit=TRUE ,
show=TRUE)

73

Introducció a l’escriptura de connectors per al RKWard

Els fitxers es crearan en un directori temporal predeterminat. Les últimes tres opcions no són
necessàries, però són molt útils: load=TRUE afegirà automàticament el connector nou a la con-
figuració del RKWard (ja que està en un directori temporal i, per tant, deixarà d’existir quan es
tanqui el RKWard, s’eliminarà automàticament de nou pel RKWard durant l’inici següent), ed
it=TRUE obrirà tots els fitxers creats per a editar-los a les pestanyes de l’editor del RKWard, i
show=TRUE intentarà llançar directament el connector, de manera que podreu examinar com es
veu sense un clic. Podríeu considerar afegir overwrite=TRUE si executareu l’script repetidament
(p. ex., després dels canvis al codi), ja que de manera predeterminada no se sobreescriuran fitxers.

L’objecte resultant «plugin.dir» conté el camí al directori on es va crear el connector. Això pot
ser útil en combinació amb la funció rk.build.package(), per a construir un paquet R real per a
compartir el vostre connector amb altres; p. ex., per enviant-lo a l’equip de desenvolupament del
RKWard per a afegir-lo al nostre repositori de connectors.

15.2.6 L’script complet

Per a recapitular tot l’anterior, aquí hi ha l’script complet per a crear l’exemple de prova t que
funciona. Afegint el codi ja explicat, també carrega el paquet si cal, i utilitza l’entorn local(), de
manera que tots els objectes creats no acabaran a l’espai de treball actual (excepte el «plugin.dir»):

require(rkwarddev)

local({
variables <- rk.XML.varselector(id.name="vars")
var.x <- rk.XML.varslot("compare", source=variables , types="number ←↩

", required=TRUE)
var.y <- rk.XML.varslot("against", source=variables , types="number ←↩

", required=TRUE)
test.hypothesis <- rk.XML.radio("using test hypothesis",

options=list(
"Two-sided"=c(val="two.sided"),
"First is greater"=c(val="greater"),
"Second is greater"=c(val="less")

)
)
check.paired <- rk.XML.cbox("Paired sample", value="1", un.value ←↩

="0")
basic.settings <- rk.XML.row(variables , rk.XML.col(var.x, var.y, ←↩

test.hypothesis , check.paired))

check.eqvar <- rk.XML.cbox("assume equal variances", value="1", un. ←↩
value="0")

conf.level <- rk.XML.spinbox("confidence level", min=0, max=1, ←↩
initial =0.95)

check.conf <- rk.XML.cbox("print confidence interval", val="1", chk ←↩
=TRUE)

conf.frame <- rk.XML.frame(conf.level , check.conf , rk.XML.stretch() ←↩
, label="Confidence Interval")

full.dialog <- rk.XML.dialog(
label="Two Variable t-Test",
rk.XML.tabbook(tabs=list("Basic settings"=basic.settings , " ←↩

Options"=list(check.eqvar , conf.frame)))
)

full.wizard <- rk.XML.wizard(
label="Two Variable t-Test",
rk.XML.page(

74

Introducció a l’escriptura de connectors per al RKWard

rk.XML.text("As a first step , select the ←↩
two variables you want to compare ←↩
against

each other. And specify , which one ←↩
you theorize to be greater. ←↩
Select two-sided ,

if your theory does not tell you, ←↩
which variable is greater."),

rk.XML.copy(basic.settings)),
rk.XML.page(

rk.XML.text("Below are some advanced ←↩
options. It is generally safe not to ←↩
assume the

variables have equal variances. An ←↩
appropriate correction will be ←↩
applied then.

Choosing \"assume equal variances\" ←↩
may increase test -strength , ←↩

however."),
rk.XML.copy(check.eqvar),
rk.XML.text("Sometimes it is helpful to get ←↩

an estimate of the confidence interval ←↩
of

the difference in means. Below you ←↩
can specify whether one should ←↩
be shown , and

which confidence -level should be ←↩
applied (95% corresponds to a 5% ←↩
level of

significance)."),
rk.XML.copy(conf.frame)))

JS.calc <- rk.paste.JS(
echo("res <- t.test (x=", var.x, ", y=", var.y, ", ←↩

hypothesis=\"", test.hypothesis , "\""),
js(

if(check.paired){
echo(", paired=TRUE")
},
if(!check.paired && check.eqvar){
echo(", var.equal=TRUE")
},
if(conf.level != "0.95"){
echo(", conf.level=", conf.level)
},
linebreaks=TRUE

),
echo(")\n"), level=2)

JS.print <- rk.paste.JS(echo("rk.print (res)\n"), level=2)

plugin.dir <<- rk.plugin.skeleton("t-Test",
xml=list(

dialog=full.dialog ,
wizard=full.wizard),

js=list(
results.header="Two Variable t-Test",
calculate=JS.calc ,

75

Introducció a l’escriptura de connectors per al RKWard

printout=JS.print),
pluginmap=list(

name="Two Variable t-Test",
hierarchy=list("analysis", "means", "t-Test")),

load=TRUE ,
edit=TRUE ,
show=TRUE ,
overwrite=TRUE)

})

15.3 Afegir pàgines d’ajuda

Si voleu escriure una pàgina d’ajuda per al connector, la manera més directa de fer-ho és afegir
les instruccions particulars directament a les definicions dels elements XML als quals pertanyen:

variables <- rk.XML.varselector(
id.name="vars",
help="Select the data object you would like to analyse.",
component="Data"

)

El text donat al paràmetre help es pot obtenir amb rk.rkh.scan() i s’escriu a la pàgina d’ajuda
d’aquest component del connector. Perquè això funcioni tècnicament, tanmateix, rk.rkh.scan()
ha de saber quins objectes R pertanyen a un component del connector. Per això també heu de
proporcionar el paràmetre component i assegurar-vos que és idèntic per a tots els objectes que
pertanyen junts.

Com que normalment combinareu molts objectes en un diàleg i també us podria agradar reu-
tilitzar objectes com el <varslot> en diversos components dels vostres connectors, és possible
definir globalment un component amb rk.set.comp(). Si es defineix, s’assumeix que tots els ob-
jectes següents utilitzats en el vostre script pertanyen a aquest component en particular, fins que
rk.set.comp() es torna a cridar amb un nom de component diferent. Després podeu ometre el
paràmetre component:

rk.set.comp("Data")
variables <- rk.XML.varselector(

id.name="vars",
help="Select the data object you would like to analyse."

)

Per a afegir seccions globals com <summary> o <usage> a la pàgina d’ajuda, utilitzeu funcions
com rk.rkh.summary() o rk.rkh.usage() d’acord amb això. Els seus resultats s’utilitzen per a
establir els elements de la llista com summary o usage en el paràmetre rkh de rk.plugin.compon
ent()/rk.plugin.skeleton().

15.4 Connectors de traducció

El paquet rkwarddev és capaç de produir connectors externs amb suport complet d’«i18n». Per
exemple, totes les funcions rellevants que generen objectes XML ofereixen un paràmetre opcional
per a especificar i18n_context o noi18n_label:

varComment <- rk.XML.varselector(id.name="vars", i18n=list(comment="Main ←↩
variable selector"))

varContext <- rk.XML.varselector(id.name="vars", i18n=list(context="Main ←↩
variable selector"))

cboxNoi18n <- rk.XML.cbox(label="Power", id.name="power", i18n=FALSE)

76

Introducció a l’escriptura de connectors per al RKWard

Els exemples anteriors produeixen una sortida com aquesta:

varComment
<!-- i18n: Main variable selector -->

<varselector id="vars" />

varContext
<varselector id="vars" i18n_context="Main variable selector" />

cboxNoi18n
<checkbox id="power" noi18n_label="Power" value="true" />

També hi ha suport per al codi JS traduïble. De fet, el paquet intenta afegir les crides i18n()
predeterminades en els llocs on això sol ser útil. La funció rk.JS.header() és un bon exemple:

jsHeader <- rk.JS.header("Test results")

Això produeix el codi JS següent:

new Header(i18n("Test results")).print();

Però també podeu marcar manualment les cadenes del codi JS com a traduïbles, utilitzant la
funció i18n() tal com ho faríeu si escriviu el fitxer JS directament.

77

Introducció a l’escriptura de connectors per al RKWard

Apèndix A

Referència

A.1 Tipus de propietats/Modificadors

En alguns llocs d’aquesta introducció hem parlat de «propietats» d’elements de la IGU o d’al-
tres. De fet, hi ha diversos tipus de propietats. Normalment no cal que us preocupeu per això,
ja que podeu utilitzar el sentit comú per a connectar qualsevol propietat a qualsevol altra propi-
etat. No obstant això, internament, hi ha tipus diferents de propietats. El que importa és quan
s’obtenen alguns valors especials a la plantilla JS. A les sentències getString (˝id˝)/getBoolean
(˝id˝)/getList (˝id˝) també podeu especificar alguns dels anomenats «modificadors» com aquest:
getString (˝id.modifier˝). Aquest modificador afectarà, de manera que s’imprimirà el valor.
Llegiu la llista de propietats i els modificadors que publiquen:

Propietats de cadena

El tipus de propietat més senzill, utilitzat per a contenir un tros de text. Modificadors:

Sense modificador (˝˝)
La cadena com a definida/establerta.

quoted
La cadena en la forma citada (adequada per a passar a R com a caràcter).

Propietats booleanes

Propietats que poden estar activades o desactivades, certes o falses. Per exemple, les pro-
pietats creades per les etiquetes <convert>, també la propietat que acompanya una <check-
box> (vegeu a sota). Es retornaran els valors següents segons el modificador indicat:

Sense modificador (˝˝)
Per defecte, la propietat retornarà 1 si és certa i 0 en cas contrari. La manera recoma-
nada d’obtenir els valors booleans és utilitzant getBoolean(). Tingueu en compte que
per a getString(), es retornarà la cadena ˝0˝ quan la propietat sigui falsa. Aquesta
cadena s’avaluaria a certa, no a falsa en JS.

˝labeled˝
Retorna la cadena «true» (certa) quan és certa, «false» (falsa) quan és falsa, o qualsevol
cadena personalitzada que s’hagi especificat (normalment en una <checkbox>).

˝true˝
Retorna la cadena com si la propietat fos certa, encara que sigui falsa

˝false˝
Retorna la cadena com si la propietat fos falsa, encara que sigui certa

78

Introducció a l’escriptura de connectors per al RKWard

˝not˝
Això realment retorna una altra propietat booleana, la qual és la inversa de l’actual
(és a dir, falsa si és certa, certa si és falsa)

˝numeric˝
Obsoleta, proporcionada per a la compatibilitat cap enrere. Igual que sense modifica-
dor ˝˝. Retorna ˝1˝ si la propietat és certa, o ˝0˝ si és falsa.

Propietats dels enters

Una propietat dissenyada per a tenir un valor enter (però, per descomptat, encara retorna
una cadena de caràcters numèrics a la plantilla JS). No accepta cap modificador. Utilitzat
en les <spinbox> (vegeu a sota)

Propietats dels nombres reals

Una propietat dissenyada per a tenir un valor de nombre real (però, per descomptat, encara
retorna una cadena de caràcters numèrics a la plantilla JS). Utilitzat en les <spinbox> (vegeu
a sota)

Sense modificador (˝˝)
Per a getValue()/getString(), això retorna el mateix que ˝formatted˝. En canvi, en
versions futures serà possible obtenir una representació numèrica.

˝formatted˝
Retorna el nombre amb format (com a cadena).

Propietats dels RObject

Una propietat destinada a una selecció d’un o més objectes R. S’utilitza de forma més desta-
cada en «varselectors» i «varslots». Es retornaran els valors següents segons el modificador
indicat:

Sense modificador (˝˝)
De manera predeterminada, la propietat retornarà el nom complet de l’objecte selec-
cionat. Si se selecciona més d’un objecte, els noms dels objectes se separaran amb salts
de línia (˝\n˝).

˝shortname˝
Com a dalt, però només retorna els noms curts dels objectes. Per exemple, un objecte
dins d’una llista només rebria el nom que té dins de la llista, sense el nom de la llista.

˝label˝
Com a dalt, però retorna les etiquetes del RKWard dels objectes (si no hi ha cap eti-
queta disponible, aquesta serà la mateixa que el nom curt)

Propietats de les llistes de cadenes

Aquesta propietat conté una llista de cadenes.

Sense modificador (˝˝)
Per a getValue()/getString(), això retorna totes les cadenes separades per «\n».
Qualsevol caràcter «\n» de cada element s’escapa com a literal «\n». No obstant això,
l’ús recomanat és obtenir el valor amb getList(), en el seu lloc, el qual retornarà una
matriu de cadenes.

˝joined˝
Retorna la llista com una única cadena, amb els elements units amb «\n». En contrast
a sense modificador (˝˝), les cadenes individuals _no_ s’escapen.

Propietats del codi

Una propietat dels connectors que han generat el codi. Això és important pels connectors
incrustadors, per tal d’incrustar el codi generat pel connector incrustat en el codi generat
pel connector incrustador (nivell superior). Es retornaran els valors següents segons el
modificador indicat:

79

Introducció a l’escriptura de connectors per al RKWard

Sense modificador (˝˝)
Retorna el codi complet, és a dir, les seccions preprocess», «calculate», «printout» i
(però no «preview») concatenades en una cadena.

˝preprocess˝
Retorna només la secció «preprocess» del codi

˝calculate˝
Retorna només la secció «calculate» del codi

˝printout˝
Retorna només la secció «printout» del codi

˝preview˝
Retorna la secció «preview» del codi

A.2 Elements de propòsit general que s’utilitzaran en qualsevol
fitxer XML (.xml,.rkh, .pluginmap)

<snippets>

Permès com a fill directe del node <document> i només allà. S’ha de col·locar a prop de la
part superior del fitxer. Vegeu la secció sobre l’ús de fragments. Només pot estar present
un element <snippets>. Opcional, sense atributs.

<snippet>

Defineix un fragment únic. Només es permet com a fill directe de l’element <snippets/>.
Atributs:

<id>
Una cadena d’identificador per al fragment. Requerit.

<insert>
Insereix el contingut d’un <snippet>. Permès en qualsevol lloc. Atributs:

<snippet>
La cadena de l’identificador del fragment a inserir. Requerit.

<include>
Inclou el contingut d’un altre fitxer XML (tot dins de l’element <document> d’aquest fitxer).
Permès en qualsevol lloc. Atributs:

<file>
El nom del fitxer, relatiu al directori a on és el fitxer actual. Requerit.

A.3 Elements a utilitzar en la descripció XML del connector

Les propietats dels elements s’enumeren en una secció separada.

80

Introducció a l’escriptura de connectors per al RKWard

A.3.1 Elements generals

<document>
Cal que sigui present en cada fitxer «description.xml» com a node arrel. No hi ha cap funció
especial. Sense atributs

<about>
Informació sobre aquest connector (autor, llicència, etc.). Aquest element està permès tant
en el fitxer .xml d’un connector individual com en els fitxers .pluginmap. Consulteu la
referència del fitxer .pluginmap per als detalls de referència, el capítol sobre la informació
«about» per a una introducció.

<code>
Defineix on cercar la plantilla JS al connector. Utilitzeu-ho només una vegada per fitxer,
com a fill directe de l’etiqueta del document. Atributs:

file
Nom de fitxer de la plantilla JS, relatiu al directori on està l’«xml» del connector

<help>

Defineix on cercar el fitxer d’ajuda del connector. Utilitzeu-ho només una vegada per fitxer,
com a fill directe de l’etiqueta del document. Atributs:

file
Nom de fitxer del fitxer d’ajuda, relatiu al directori on està l’«xml» del connector

<copy>

Es pot utilitzar com a fill (directe o indirecte) dels elements principals de la disposició, és
a dir, <dialog> i <wizard>. Això s’utilitza per a copiar 1:1 tot un bloc a elements XML.
Atributs:
id

L’ID a cercar. L’etiqueta <copy> cercarà un element XML anterior que tingui el mateix
ID, i el copiarà incloent-hi tots els elements descendents.

copy_element_tag_name

En alguns casos, voldreu una còpia gairebé literal, però canvieu el nom d’etiqueta de
l’element a copiar. L’exemple més important d’això és quan voleu copiar tot un <tab>
des d’una interfície de diàleg a <page> d’una interfície assistent. En aquest cas, esta-
bliu copy_element_tag_name=˝page˝ per a fer aquesta conversió automàticament.

A.3.2 Definicions d’interfície

<dialog>

Defineix una interfície de tipus diàleg. Col·loca la definició de la IGU dins d’aquesta eti-
queta. Utilitzeu només una vegada per fitxer, com a fill directe de l’etiqueta document. Es
requereix almenys una de les etiquetes «dialog» o «wizard» per a un connector. Atributs:

label
Llegenda per al diàleg

recommended
S’ha d’utilitzar el diàleg com a interfície «recomanada» (és a dir, la interfície que es
mostrarà de manera predeterminada, llevat que l’usuari hagi configurat el RKWard a
una interfície específica com a predeterminada)? Aquest atribut actualment no té cap
efecte, ja que és implícitament «true», llevat que es recomani l’assistent.

81

Introducció a l’escriptura de connectors per al RKWard

<wizard>
Defineix una interfície de tipus assistent. Col·loca la definició de la IGU dins d’aquesta eti-
queta. Utilitzeu només una vegada per fitxer, com a fill directe de l’etiqueta del document.
Es requereix almenys una de les etiquetes «dialog» o «wizard» per a un connector. Accepta
només etiquetes <page> o <embed> com a fills directes. Atributs:

label
Llegenda per a l’assistent

recommended
S’ha d’utilitzar l’assistent com a interfície «recomanada» (és a dir, la interfície que es
mostrarà de manera predeterminada, llevat que l’usuari hagi configurat el RKWard a
una interfície específica com a predeterminada)? Opcional, el valor predeterminat és
«false».

A.3.3 Elements de disposició

Tots els elements d’aquesta secció accepten un atribut id=˝identifierstring˝. Aquest atribut és op-
cional per a tots els elements. Es pot utilitzar, per exemple, per a ocultar/inhabilitar tot l’element
de la disposició i tots els elements continguts en ell (vegeu el capítol de la lògica de la IGU). La ca-
dena «id» no pot contenir «.» (punt) ni «;» (punt i coma), i generalment s’ha de limitar a caràcters
alfanumèrics i el guió baix («_»). Només es llisten els atributs addicionals.

<page>

Defineix una pàgina nova dins d’un assistent. Només es permet com a fill directe d’un
element <wizard>.

<row>
Tots els fills directes d’una etiqueta «row» es col·locaran d’esquerra a dreta.

<column>
Tots els fills directes d’una etiqueta «column» es col·locaran de dalt a baix.

<stretch>
De manera predeterminada, els elements de la IGU ocupen tot l’espai disponible. Per exem-
ple, si teniu dues columnes una al costat de l’altra, l’esquerra està empaquetada amb ele-
ments, però la dreta només conté un sol <radio>, el control <radio> s’expandirà vertical-
ment, tot i que realment no necessita l’espai disponible, i es veurà lleig. En aquest cas, real-
ment voleu afegir un «blank» a sota del <radio>. Per a això, utilitzeu l’element <stretch>.
Simplement utilitzarà una mica d’espai. No utilitzeu en excés aquest element, normalment
és una bona idea que els elements de la IGU obtinguin tot l’espai disponible, només de
vegades la disposició es veurà espaiada. L’element <stretch> no pren cap argument, ni tan
sols una «id». Tampoc podeu posar un fill dins de l’element <stretch> (en altres paraules,
només l’utilitzareu com a «<stretch/>»)

<frame>
Dibuixa un marc/quadre al voltant dels seus fills directes. Es pot utilitzar per a agrupar
visualment les opcions relacionades. La disposició dins d’un marc és de dalt a baix, llevat
que col·loqueu una <row> a dins. Atributs:

label
Llegenda per al marc (opcional)

checkable
Els marcs es poden marcar. En aquest cas, tots els elements continguts s’inhabilitaran
quan el marc no estigui marcat i s’habilitaran quan estigui marcat. (Opcional, de
manera predeterminada és ˝false˝)

82

Introducció a l’escriptura de connectors per al RKWard

checked
Només per als marcs que es poden marcar: s’ha de marcar el marc de manera prede-
terminada? El valor predeterminat és «true». No s’interpreta per a marcs que no es
poden marcar.

<tabbook>
Organitza elements en un «tabbook». Accepta només etiquetes <tab> com a fills directes.

<tab>
Defineix una pàgina en un «tabbook». Col·loca la definició de la IGU per a la pestanya dins
d’aquesta etiqueta. Només es pot utilitzar com a fill directe d’una etiqueta <tabbook>. Un
<tabbook> hauria de tenir almenys dues pestanyes definides. Atributs:

label
Llegenda per a la pàgina de pestanya (requerit)

<text>
Mostra el text envoltat per aquesta etiqueta a la IGU. S’admeten alguns marcadors senzills
d’estil HTML (en particular , <i>, <p>, i
). No obstant això, mantingueu el format
al mínim. Inserir una línia completament buida afegeix un salt de línia dur. Atributs:

type
Tipus del text. Un de ˝normal˝, ˝avís˝ o ˝error˝. Això influeix en l’aspecte del text
(opcional, el predeterminat és ˝normal˝)

A.3.4 Elements actius

Tots els elements d’aquesta secció accepten l’atribut id=˝identifierstring˝. Aquest atribut és obli-
gatori per a tots els elements. Només es llisten els atributs addicionals. La cadena d’identificació
no pot contenir ˝.˝ (punts).

<varselector>
Proporciona una llista d’objectes disponibles des dels quals l’usuari pot seleccionar-ne un
o més. Requereix una o més <varslot> com a contrapartida per a ser útil. Atributs:

label
Etiqueta per al «varselector» (opcional, el predeterminat és ˝Select variable(s)˝)

<varslot>
S’utilitza conjuntament amb un ˝varselector˝ per a permetre que l’usuari seleccioni una o
més variables. Atributs:
label

Etiqueta per al «varslot» (recomanada, la predeterminada és «Variable:»)
source

El «varselector» des d’on obtenir la selecció (requerit, llevat que es connecti manual-
ment o usant «source_property»)

source_property
Una propietat arbitrària d’on copiar els valors, quan es fa clic al botó de selecció. Si
s’especifica, això anul·la l’atribut «source».

required
Si es requereix que per a enviar el codi aquest «varslot» tingui un valor vàlid. Vegeu
la propietat requerida (opcional, predeterminada a ˝false˝)

multi
Si el «varslot» només conté un (predeterminat, «fals») o diversos objectes

allow_duplicates
Si el «varslot» només pot acceptar objectes únics (predeterminat, «fals»), o si el mateix
objecte es pot afegir diverses vegades.

83

Introducció a l’escriptura de connectors per al RKWard

min_vars

Només té sentit si és multi=˝true˝: nombre mínim de variables que s’han de seleccio-
nar perquè la selecció es consideri vàlida (opcional, el valor predeterminat és ˝1˝)

min_vars_if_any

Només té sentit si és multi=˝true˝: Alguns «varslots» es poden considerar vàlids, si,
per exemple, el «varslot» està buit o té almenys dos valors. Això especifica quantes
variables s’han de seleccionar si n’hi ha (2 a l’exemple). (Opcional, el valor predeter-
minat és ˝1˝)

max_vars

Només té sentit si és multi=˝true˝: nombre màxim de variables a seleccionar (opcio-
nal, el valor predeterminat és ˝0˝, el qual vol dir sense màxim)

classes
Si especifiqueu un o més noms de classe R (separats per espais (˝ ˝)), aquí, el «varslot»
només acceptarà objectes pertanyents a aquestes classes (opcional, useu-ho amb molta
cura, no s’hauria d’impedir a l’usuari prendre decisions vàlides, i R té moltes classes
diferents)

types

Si especifiqueu un o més tipus de variables (separades per espais («)»), aquí, el
«varslot» només acceptarà objectes d’aquests tipus. Els tipus vàlids són ˝unknown˝,
˝number˝, ˝string˝, ˝factor˝, ˝invalid˝. (Opcional, useu-ho amb molta cura, no s’ha
d’impedir a l’usuari que prengui decisions vàlides, i el RKWard no sempre coneix el
tipus d’una variable)

num_dimensions

El nombre de dimensions que un objecte necessita tenir. ˝0˝ (predeterminat), vol dir
que qualsevol nombre de dimensions és acceptable. (Opcional, el valor predeterminat
és ˝0˝)

min_length

La longitud mínima que un objecte ha de tenir per a ser acceptable. (Opcional, el valor
predeterminat és ˝0˝)

max_length

La longitud màxima que un objecte ha de tenir per tal de ser acceptable. (Opcional,
predeterminat pel nombre enter més gran representable al sistema)

<valueselector>
Proporciona una llista de cadenes disponibles (no objectes R) que se seleccionaran en una o
més àrees d’acompanyament <valueslot>. Les opcions de cadena es poden definir utilitzant
etiquetes <option> com a fills directes (vegeu més avall), o establir-les utilitzant propietats
dinàmiques. Atributs:

label
Etiqueta per al «valueselector» (opcional, predeterminat a sense etiqueta)

<valueslot>
S’utilitza conjuntament amb un <valueselector> per a permetre a l’usuari seleccionar un
o més elements de cadena. Aquest element és majoritàriament idèntic a <varslot>, i com-
parteix els mateixos atributs, excepte els que es refereixen a les propietats dels elements
acceptables (és a dir classes, types, num_dimensions, min_length, max_length).

<radio>
Defineix un grup de botons exclusius d’opcions (només es pot seleccionar un alhora). Re-
quereix almenys dues etiquetes <option> com a fills directes. No es permeten altres etique-
tes com a filles. Atributs:
label

Etiqueta per al control d’opcions (recomanada, la predeterminada és «Select one:»)

84

Introducció a l’escriptura de connectors per al RKWard

<dropdown>

Defineix un grup d’opcions de les quals es pot seleccionar una i només una alhora, utilitzant
una llista desplegable. Això és funcionalment equivalent a un <radio>, però es veu diferent.
Requereix almenys dues etiquetes <option> com a filles directes. No es permeten altres
etiquetes com a filles. Atributs:

label
Etiqueta per a la llista desplegable (recomanada, la predeterminada és «Select one:»)

<select>
Proporciona una llista de cadenes disponibles des de les quals l’usuari pot seleccionar un
nombre arbitrari. Les opcions de cadena es poden definir utilitzant etiquetes <option> com
a filles directes (vegeu més avall), o establir-les utilitzant propietats dinàmiques. Atributs:

label
Etiqueta per a <select> (opcional, predeterminat a sense etiqueta)

single
Si s’estableix a cert, només es podrà seleccionar un valor únic, en lloc de diversos
valors alhora (booleà, predeterminat a fals)

<option>

Només es pot utilitzar com a fill directe d’un element <radio>, <dropdown>, <valueselec-
tor> o <select>. Representa una opció seleccionable en un control d’opcions o llista desple-
gable. Com que els elements <option> sempre formen part d’un dels elements de selecció,
normalment no tenen una ˝id˝ pròpia, però vegeu a continuació. Atributs:

label
Etiqueta per a l’opció (requerit)

value
El valor de la cadena que retornarà l’element pare si aquesta opció està marcada/se-
leccionada (requerit)

checked
Si l’opció s’ha de marcar/seleccionar de manera predeterminada a «true» o «false».
En un <radio> o <dropdown>, només es pot establir una opció a checked=˝true˝ ,
i si no s’estableix cap opció a «checked», es marcarà/seleccionarà automàticament la
primera opció de l’element pare. En un <select>, es pot establir com a «checked»
qualsevol nombre d’opcions. (Opcional, predeterminat a ˝false˝)

id

És opcional especificar el paràmetre «id» per als elements <option> (i de fet, es reco-
mana no establir un «id», llevat que realment en necessiteu un). No obstant això, espe-
cificar un ˝id˝ us permetrà habilitar/inhabilitar dinàmicament <option>, connectant-
vos a la propietat booleana id_of_radio.id_of_optionX.enabled. Actualment ai-
xò funciona per a opcions dins d’elements <radio> o <dropdown>, només; actual-
ment les opcions <valueselector> i <select> no admeten els identificadors.

<checkbox>
Defineix una casella de selecció, és a dir, una opció única que es pot activar o desactivar.
Atributs:
label

Etiqueta per a la casella de selecció (requerit)
value

El valor que la casella de selecció retornarà si està marcada (requerit)
value_unchecked

El valor que es retornarà si la casella de selecció no està marcada (opcional, el valor
predeterminat és ˝˝, és a dir, una cadena buida)

checked
Si l’opció s’ha de marcar per defecte ˝true˝ o ˝false˝ (opcional, predeterminat a
˝false˝)

85

Introducció a l’escriptura de connectors per al RKWard

<frame>
L’element del marc s’utilitza generalment com un element de disposició pur, i es llista a la
secció sobre elements de disposició. No obstant això, també es pot fer que es pugui marcar,
actuant així com una casella de selecció senzilla al mateix temps.

<input>

Defineix un camp d’entrada de text lliure. Atributs:

label
Etiqueta per al camp d’entrada (requerida)

initial
Text inicial del camp de text (opcional, el valor predeterminat és ˝˝, és a dir, una
cadena buida)

size
Un de ˝small˝, ˝medium˝, o ˝large˝. ˝large˝ defineix un camp d’entrada multilí-
nia, ˝small˝ i ˝medium˝ són camps d’una sola línia (opcional, el predeterminat és
˝medium˝)

required

Si es requereix que per a enviar el codi aquesta entrada no estigui buida. Vegeu la
propietat requerida (opcional, predeterminat a ˝false˝)

<matrix>
Una taula per a introduir dades de matrius (o vectors) a la IGU.

NOTA
Aquest element d’entrada no està optimitzat per a introduir/editar grans quantitats de dades. Si
bé no hi ha un límit estricte en la mida d’una <matrix>, en general no hauria de superar al voltant
de deu files/columnes. Si espereu dades més grans, permeteu als usuaris seleccionar-lo com
un objecte R (el qual pot ser una bona idea com a opció alternativa, en gairebé cada instància
on utilitzeu un element de matriu).

Atributs:
label

Etiqueta per a la taula (requerida)
mode

Un d’entre ˝integer˝, ˝real˝, o ˝string˝. El tipus de dades que s’acceptaran a la taula
(requerit)

min
Valor mínim acceptable (per a matrius de tipus ˝integer˝ o ˝real˝) (opcional, prede-
terminat al valor més petit representable)

max
Valor màxim acceptable (per a matrius de tipus ˝integer˝ o ˝real˝) (opcional, prede-
terminat al valor més gran representable)

allow_missings

Si es permeten valors (buits) a la matriu. Això està implícit per a matrius o mode
«cadena» (opcional, el valor predeterminat és ˝false˝).

allow_user_resize_columns

Quan s’estableix a «true» (cert), l’usuari pot afegir columnes escrivint a les cel·les
(inactives) més a la dreta (opcional, predeterminat a ˝true˝).

allow_user_resize_rows

Quan s’estableix a «true» (cert), l’usuari pot afegir files escrivint a les cel·les (inactives)
de la part de baix de tot (opcional, predeterminat a ˝true˝).

rows
Nombre de files a la matriu. No té cap efecte per allow_user_resize_rows=˝true˝.

86

Introducció a l’escriptura de connectors per al RKWard

NOTA
Això també es pot controlar establint la propietat ˝rows˝.

(opcional, predeterminat a 2).
columns

Nombre de columnes a la matriu. No té cap efecte per
allow_user_resize_columns=˝true˝.

NOTA
Això també es pot controlar establint la propietat ˝columns˝.

(opcional, predeterminat a 2).
min_rows

Nombre mínim de files a la matriu. La matriu refusarà reduir-se per sota d’aquesta
mida. (Opcional, el valor predeterminat és 0; vegeu també: allow_missings).

min_columns
Nombre mínim de columnes a la matriu. La matriu refusarà reduir-se per sota d’a-
questa mida. (Opcional, el valor predeterminat és 0; vegeu també: allow_missings).

fixed_height
Força l’element de la IGU a romandre a la seva alçada inicial. No l’utilitzeu en com-
binació amb matrius, on el nombre de files pot canviar de qualsevol manera. Especi-
alment útil quan es crea un element d’entrada vectorial (columns=˝1˝). Amb aquesta
opció establerta a «true» (cert), no es mostrarà cap barra de desplaçament horitzontal,
fins i tot si la matriu excedeix l’amplada disponible (ja que això afectaria l’alçada).
(Opcional, el valor predeterminat és ˝false˝).

fixed_width
Nom lleugerament incorrecte: suposa que el comptador de columnes no canviarà.
L’última columna (o normalment només) s’estirarà per a agafar l’amplada disponible.
No l’utilitzeu en combinació amb matrius, on el nombre de columnes pot canviar
de qualsevol manera. Especialment útil quan es crea un element d’entrada vectorial
(rows=˝1˝). (Opcional, el valor predeterminat és ˝false˝).

horiz_headers
Cadenes a usar per a la capçalera horitzontal, separades per «;». La capçalera s’ocul-
tarà, si s’estableix a ˝˝. (Opcional, el valor predeterminat és el número de columna).

vert_headers
Cadenes a usar per a la capçalera vertical, separades per «;». La capçalera s’ocultarà,
si s’estableix a ˝˝. (Opcional, el valor predeterminat és el número de fila).

<optionset>
Una interfície d’usuari per a repetir un conjunt d’opcions per a un nombre arbitrari d’ele-
ments (introducció als «optionsets»). Atributs:

min_rows
Si s’especifica, el conjunt es marcarà com a no vàlid, llevat que tingui almenys aquest
nombre de files (opcional, enter).

min_rows_if_any
Com «min_rows», però només es provaran si hi ha almenys una fila (opcional, enter).

max_rows
Si s’especifica, el conjunt es marcarà com a no vàlid, llevat que tingui com a màxim
aquest nombre de files (opcional, enter).

keycolumn
L’ID de la columna per a actuar com a «keycolumn». Un «optionset» amb una «key-
column» (vàlida) actuarà com un «optionset» ˝driven˝. Un «optionset» sense «keyco-
lumn» permetrà la inserció/eliminació manual d’elements. La «keycolumn» s’ha de
marcar com a externa. (Opcional, de manera predeterminada no hi ha cap «keyco-
lumn»).

87

Introducció a l’escriptura de connectors per al RKWard

Elements fills:

<optioncolumn>
Declara una «optioncolumn» del conjunt. Per a cada valor que voleu obtenir des de
l’«optionset», haureu de declarar una <optioncolumn> separada. Atributs:
id

L’identificador de l’«optioncolumn» (requerit, cadena).
external

Establiu-ho a «true» (cert), si l’«optioncolumn» es controla des de fora de
l’«optionset» (opcional, booleà, el valor predeterminat és ˝false˝).

label
Si s’indica, l’«optioncolumn» es mostrarà en una columna amb aquesta etiqueta
(opcional, cadena, de manera predeterminada no es mostrarà).

connect
La propietat a la qual connectar aquesta «optioncolumn», donada com a «id»
dins de l’àrea <content>. Per a <optioncolumn> externes, el valor corresponent
s’establirà al valor establert externament. Per a les <optioncolumn> normals (no
externes), la fila corresponent de la propietat <optioncolumn> s’establirà quan
la propietat canviï dins de l’àrea de contingut. (Opcional, cadena, de manera
predeterminada no està connectada).

default
Només per a columnes externes: el valor que s’ha d’assumir per a aquesta co-
lumna, si no es coneix cap valor per a una entrada. És útil rares vegades. (Opci-
onal, el valor predeterminat és una cadena buida)

<content>
Declara el contingut/IU del conjunt. Sense atributs. Es permeten tots els elements ac-
tius, passius i de disposició habituals com a elements de nom fill. A més, en versions
anteriors del RKWard (fins a 0,6.3), es va permetre l’element fill especial <option-
display>. Això és obsolet en el RKWard 0.6.4, i simplement s’hauria d’eliminar dels
connectors existents.

<logic>
Especificació opcional de la lògica de la IU a aplicar dins de la regió de contingut de
l’«optionset». Vegeu la referència a <logic>

<browser>
Un element dissenyat per a seleccionar un únic nom de fitxer (o nom de directori). Tin-
gueu en compte que aquest camp prendrà qualsevol cadena, encara que estigui destinada
a utilitzar-se només per a fitxers:

label
Etiqueta per al navegador (opcional, el valor predeterminat és ˝Enter filename˝)

initial
Text inicial del navegador (opcional, predeterminat a ˝˝, és a dir, una cadena buida)

type

Un d’entre ˝file˝, ˝dir˝, o ˝savefile˝. Per a seleccionar un fitxer existent, un directori
existent o un fitxer no existent, respectivament (opcional, el valor predeterminat és
˝file˝)

allow_urls

Si es poden seleccionar URL (no locals) (opcional, predeterminat a ˝false˝)
filter

Filtre del tipus de fitxer, p. ex. (˝*.txt *.csv˝ per als fitxers .txt i .csv). Automàticament
s’afegeix una entrada separada per a ˝All files˝ (opcional, per defecte a ˝˝, és a dir
˝All files˝)

required

Si es requereix que per a enviar el codi el camp no estigui buit. Tingueu en compte que
això no significa necessàriament que el nom de fitxer seleccionat sigui vàlid. Vegeu la
propietat requerida (opcional, predeterminat a ˝true˝)

88

Introducció a l’escriptura de connectors per al RKWard

<saveobject>

Un element dissenyat per a seleccionar el nom d’un objecte R a on desar (és a dir, general-
ment no existeix prèviament, en contrast amb un «varslot»):

label
Etiqueta per a l’entrada (opcional, predeterminada a ˝Save to:˝)

initial
Text inicial de l’entrada (opcional, predeterminat a ˝my.data˝)

required

Si es requereix que per a enviar el codi el camp tingui un nom d’objecte admès. Vegeu
la propietat requerida (opcional, predeterminat a ˝true˝)

checkable
En molts casos d’ús, desar a un objecte R és opcional. En aquests casos, es pot integrar
una casella de selecció a l’element «saveobject» usant aquest atribut. Quan s’estableix
a «true» (cert), la casella de selecció activarà/desactivarà el «saveobject». Vegeu la
propietat activa de «saveobject» (opcional, predeterminat a ˝false˝)

checked
Per a elements «saveobject» seleccionables, només: si el control està marcat/activat
de manera predeterminada (opcional, el valor predeterminat és ˝false˝)

<spinbox>

Un «spinbox» en el qual l’usuari pot seleccionar un valor numèric, utilitzant l’entrada di-
recta del teclat o les fletxes amunt/avall petites. Atributs:

label
Etiqueta per al «spinbox» (recomanada, la predeterminada és «Enter value:»)

min
El valor més baix que l’usuari pot introduir en el «spinbox» (opcional, de manera
predeterminada el valor més baix que es pot representar tècnicament en el «spinbox»)

max
El valor més gran que l’usuari pot introduir al botó de selecció de valors (opcional,
de manera predeterminada el valor més alt que es pot representar tècnicament en el
«spinbox»)

initial
El valor inicial que es mostra al botó de selecció de valors (opcional, el valor prede-
terminat és ˝0˝)

type

Un entre ˝real˝ o ˝integer˝. Si el botó de selecció de valors accepta nombres reals o
només enters (opcional, el valor predeterminat és ˝real˝)

default_precision

Només té sentit si el «spinbox» és de tipus=˝real˝. Especifica el nombre predeterminat
de xifres decimals que es mostren al botó de selecció de valors (només es mostraran
aquests zeros finals). Quan l’usuari prem les fletxes amunt/avall, aquest lloc decimal
es canviarà. Tanmateix, l’usuari pot ser capaç d’introduir valors amb una precisió
més alta (vegeu més avall) (opcional, predeterminat a ˝2˝)

max_precision

El nombre màxim de dígits que es poden representar significativament (opcional, pre-
determinat a ˝8˝)

<formula>
Aquest element avançat permet a l’usuari seleccionar una fórmula/conjunt d’interaccions
a partir de les variables seleccionades. Per exemple, per un GLM, aquest element es pot
utilitzar per a permetre a l’usuari especificar els termes d’interacció en el model. Atributs:

fixed_factors

L’ID del «varslot» que conté els factors fixos seleccionats (requerit)

89

Introducció a l’escriptura de connectors per al RKWard

dependent

L’ID del «varslot» que conté la variable dependent seleccionada (requerit)

<embed>
Incrusta un connector diferent en aquest (vegeu el capítol sobre la incrustació). Atributs:

component

El nom registrat del component a incrustar (vegeu el capítol sobre el registre de com-
ponents) (requerit)

as_button

Si s’estableix a ˝true˝, només es col·locarà un botó a la IGU incrustada, la IGU incrus-
tada només es mostrarà (en una finestra separada) quan es premi el botó (opcional,
de manera predeterminada és ˝false˝)

label
Només té sentit si as_button=˝true˝: l’etiqueta del botó (recomanada, la predetermi-
nada és «Options»)

<preview>

Una casella de selecció per a commutar la funcionalitat de vista prèvia. Tingueu en compte
que a partir de la versió 0.6.5 del RKWard els elements de vista prèvia <preview> són casos
especials en els diàlegs de connectors (no assistents): es col·locaran a la columna de botons,
independentment d’on estiguin exactament definits a la interfície d’usuari. Continua sent
una bona idea definir-les en un lloc assenyat de la disposició, per a la compatibilitat cap
endarrere. Atributs:
label

Etiqueta del quadre (opcional, el valor predeterminat és ˝Preview˝)
mode

Tipus de vista prèvia. Els tipus admesos són ˝plot˝ (vegeu el capítol sobre les pre-
visualitzacions de gràfics), ˝output˝ (vegeu el capítol sobre les previsualitzacions de
sortida (HTML), ˝data˝ (vegeu les previsualitzacions de dades), i ˝custom˝ (vegeu
les previsualitzacions personalitzades). (Opcional, el valor predeterminat és ˝plot˝)

placement

Col·locació de la vista prèvia: ˝attached˝ (al lloc de treball principal), ˝detached˝
(finestra independent), ˝docked˝ (adjunt al diàleg del connector) i ˝default˝ (actual-
ment és el mateix que ˝docked˝, però pot arribar a ser configurable per l’usuari en
algun moment). En general, es recomana deixar-ho com a paràmetre predeterminat
per a la millor coherència de la interfície d’usuari (opcional, el valor predeterminat és
˝default˝)

active
Si la vista prèvia està activa de manera predeterminada. En general, només les vis-
tes prèvies acoblades es faran actives de manera predeterminada, i fins i tot per a
aquestes, hi ha un motiu pel qual el valor predeterminat és de vistes prèvies inactives
(opcional, el valor predeterminat és ˝false˝)

A.3.5 Secció de lògica

<logic>

L’element que conté la secció lògica. Tots els elements següents només es permeten dins
de l’element <logic>. L’element <logic> només es permet com a fill directe de l’element
<document> (com a màxim una vegada per document), o dels elements <optionset> (com
a màxim una vegada per «optionset»). La secció lògica del document s’aplica tant a la IGU
de <dialog> com a <wizard> de la mateixa manera.

90

Introducció a l’escriptura de connectors per al RKWard

<external>
Crea una propietat nova (cadena) que se suposa que està connectada a una propietat exter-
na si el connector s’incrusta. Vegeu la secció sobre els connectors «incomplets». Atributs:

id
L’ID de la propietat nova (requerit)

default
El valor predeterminat de la cadena de la propietat nova, és a dir, el valor utilitzat si la
propietat no està connectada a una propietat externa (opcional, el valor predeterminat
és una cadena buida)

<i18n>
Crea una propietat nova (cadena) que se suposa que proporciona una etiqueta que es pot
traduir (i18n). Atributs:

id
L’ID de la propietat nova (requerit)

label
L’etiqueta. Això es traduirà. (Requerida)

<set>
Estableix una propietat a un valor fix (per descomptat, si connecteu addicionalment la pro-
pietat a alguna altra propietat, el valor no es manté fix). Per exemple, si incrusteu un con-
nector, però voleu ocultar alguns dels seus elements, podeu establir la propietat de visibi-
litat d’aquests elements a fals. Especialment útil per a connectors incrustats/incrustants.
Nota: si hi ha diversos elements <set> per a un únic id, l’últim a definir tindrà prioritat.
Això de vegades serà útil per a confiar quan s’usin les parts <include>. Atributs:

id
L’ID de la propietat a establir (requerit)

to
El valor de la cadena a establir la propietat (requerit). Nota: Per a les propietats boo-
leanes com la visibilitat, l’habilitació, normalment establireu l’atribut a «to=˝true˝» o
a «to=˝false˝».

<convert>
Crea una propietat booleana nova que depèn de l’estat d’una o més propietats diferents.
Atributs:
id

L’ID de la propietat nova (requerit)
sources

Els identificadors de les propietats de les quals dependrà aquesta propietat. Es poden
especificar una o més propietats, separades per «;» (requerit)

mode
El mode de conversió/operació. Un d’entre ˝equals˝, ˝notequals˝, ˝range˝, ˝and˝,
˝or˝. Si és en mode ˝equals˝, la propietat només serà certa si el valor de totes les
seves fonts és igual que l’estàndard de l’atribut (vegeu a sota). Si està en el mode
˝notequals˝, la propietat només serà certa si el valor de totes les seves fonts són di-
ferents de l’estàndard de l’atribut (vegeu a sota). Si està en mode ˝range˝, les fonts
han de ser numèriques (entera o real). La propietat només serà certa, si totes les fonts
estan en l’interval especificat pels atributs mín i màx. Si està en mode ˝and˝, les fonts
han de ser propietats booleanes. La propietat només serà certa, si totes les fonts són
certes simultàniament. Si està en mode ˝or˝, les fonts han de ser propietats booleanes.
La propietat només serà certa, si almenys una de les fonts és certa. (Requerit)

standard
Només té sentit en els modes ˝equal˝ o ˝notequals˝: el valor de la cadena contra el
qual comparar (requerit si està en un d’aquests modes)

91

Introducció a l’escriptura de connectors per al RKWard

min
Només té sentit en el mode ˝range˝: el valor mínim contra el qual comparar (opcional,
predeterminat al número de coma flotant més baix representable a la màquina)

max
Només té sentit en el mode ˝range˝: el valor màxim contra el qual comparar (opcio-
nal, predeterminat al número de coma flotant més gran representable a la màquina)

require_true

Si s’estableix a ˝true˝, la propietat serà obligatòria, i només es considerarà vàlida si
el seu estat és cert/activat. Per tant, si la propietat és falsa, bloquejarà el botó Envia
(opcional, el valor predeterminat és ˝false˝).

ATENCIÓ
Si utilitzeu això, assegureu-vos que l’usuari pot detectar fàcilment el què està malament,
com ara mostrar un <text> d’explicació.

<switch>
Crea una propietat nova que retransmetrà a diferents propietats de destinació (o cadenes
fixes) en funció del valor d’una propietat de condició. Això permet crear una lògica similar
a les construccions if() o switch(). Atributs:

id
L’ID de la propietat nova (requerit)

condition
L’identificador de la propietat de condició (requerit)

Elements fills:

<true>
Si la propietat condició és booleana, podeu especificar els dos elements fills <true> i
<false> (i només aquests). (Requerit, si també es proporciona <false>)

<false>
Si la propietat condició és booleana, podeu especificar els dos elements fills <true> i
<false> (i només aquests). (Requerit, si també es proporciona <true>)

<case>
Si la propietat condició no és booleana, podeu proporcionar un nombre arbitrari d’e-
lements <case>, un per a cada valor de la propietat condició que voleu que coincideixi
(almenys es requereix un d’aquests elements, si la propietat condició no és booleana)

<default>
Si la propietat condició no és booleana, l’element opcional <default> permet especifi-
car el comportament, si no hi ha cap element <case> que coincideixi amb el valor de
la propietat condició (opcional, permès només una vegada, en combinació amb un o
més elements <case>).

Els elements fills <true>, <false>, <case>, i <default> prenen els atributs següents:

standard
Només per als elements <case>: el valor amb el qual coincidir la propietat condició
(requerit, cadena).

fixed_value

Una cadena fixa que s’ha de proporcionar com el valor de la propietat <switch>, si la
condició actual coincideix (requerit, si no es proporciona dynamic_value).

dynamic_value

L’id de la propietat de destinació que s’ha de proporcionar com el valor de la pro-
pietat <switch>, si la condició actual coincideix (requerit, si no es proporciona fi-
xed_value).

92

Introducció a l’escriptura de connectors per al RKWard

<connect>
Connecta dues propietats. La propietat del client es canviarà sempre que la propietat del
governador canviï (però no a l’inrevés). Atributs:

client
L’ID de la propietat del client, és a dir, la propietat que s’ajustarà (requerit)

governor

L’ID de la propietat del governador, és a dir, la propietat que ajustarà la propietat del
client. Això pot incloure un modificador (requerit)

reconcile
Si és «true», la propietat del client ajustarà la propietat del governador en la conne-
xió de tal manera que la propietat del governador només acceptarà valors que també
siguin acceptables pel client (p. ex., suposem que el governador és una propietat nu-
mèrica amb valor mínim «0», i el client és una propietat numèrica amb valor mínim
«100». El mínim d’ambdues propietats s’ajustarà a 100, si reconcile=˝true˝). General-
ment només funciona per a propietats del mateix tipus bàsic (opcional, predeterminat
a ˝false˝)

<dependency_check>

Crea una propietat booleana que és certa, si es compleixen les dependències especificades,
falsa en cas contrari. La sintaxi XML de l’element és la mateixa que la de l’element <de-
pendencies>, descrit en la referència del .pluginmap. A partir del RKWard 0.6.1, només es
tindran en compte les especificacions de versió del RKWard i R, no les dependències en els
paquets o els .pluginmap.

<script>

Defineix el codi de script per a controlar la lògica de la IU. Vegeu la secció sobre la lògica
de script de GUJI per a més detalls. El codi de l’script a executar es pot donar utilitzant
l’atribut ˝file˝ , o com un text (comentat) de l’element. L’element <script> no està permès
a la secció <logic> d’un «optionset». Atributs:

file
Nom de fitxer del fitxer de script. (Requerit)

A.4 Propietats dels elements del connector

Tots els elements de disposició, i tots els elements actius tenen les propietats següents, accessibles
a través de ˝id_of_element.name_of_property˝:

visible
Si l’element de la IGU és visible o no (booleà)

enabled
Si l’element de la IGU està habilitat o no (booleà)

required

Si es requereix o no l’element de la IGU (per a mantenir una configuració vàlida). Tingueu
en compte que qualsevol element que estigui desactivat o ocult també és implícitament no
requerit (booleà).

A més d’això, alguns elements tenen propietats addicionals a les quals es pot connectar. La ma-
joria dels elements actius també tenen una propietat ˝default˝, el valor de la qual es retornarà en
les crides a getBoolean/getString/getList (˝...˝), si no s’ha nomenat cap propietat específi-
ca, com es descriu a continuació.

93

Introducció a l’escriptura de connectors per al RKWard

<text>
La propietat predeterminada és text

text
El text mostrat (text)

<varselector>
Sense propietat predeterminada

selected
Els objectes actualment seleccionats. Probablement, no voldreu utilitzar això. Usat
internament (RObject)

root
L’objecte arrel/pare dels objectes oferts per a la selecció (RObject)

<varslot>
La propietat predeterminada és ˝available˝ (disponible)

available
Tots els objectes continguts en el «varslot» (RObject)

selected
Dels objectes que hi ha al «varslot», els que estan seleccionats actualment. Probable-
ment, no voldreu utilitzar això. Usat internament (RObject)

source
Una còpia dels objectes seleccionats en el «varselector» corresponent. Probablement
no volen utilitzar això. Usat internament (RObject)

<valueselector>
La propietat predeterminada és ˝selected˝

selected
Les cadenes actualment seleccionades. Modificador ˝labeled˝ per a recuperar les eti-
quetes corresponents. En un <valueselector> probablement no el voldreu utilitzar
directament (només en un <select>). (Llegeix/escriu StringList)

available
La llista de valors de cadena de la qual seleccionar. (Llegeix/escriu StringList)

labels
Etiquetes a mostrar per als valors de cadena. (Llegeix/escriu StringList)

<valueslot>
El mateix que <varslot>, però les propietats són llistes de cadenes, en lloc de RObjects.

<radio>
La propietat predeterminada és ˝string˝

string
El valor de l’opció actualment seleccionada (cadena)

number
El nombre de l’opció actualment seleccionada (les opcions estan numerades de dalt a
baix, començant en el 0) (enter)

<dropdown>

El mateix que <radio>

<select>
El mateix que <valueselector>

94

Introducció a l’escriptura de connectors per al RKWard

<option>

No hi ha cap propietat per defecte. ˝enabled˝ és la *única* propietat, i actualment no està
disponible per a opcions dins de <select> o <valueselector>. <option> no té les propietats
˝visible˝ o ˝required˝.

enabled
Si s’ha d’activar o desactivar aquesta opció única. En la majoria dels casos activa-
reu/desactivareu tot el <radio< o <dropdown<. Però això es pot utilitzar per a es-
tablir dinàmicament l’activació d’una opció única dins d’un <radio< o <dropdown<
(booleà)

<checkbox>
La propietat predeterminada és ˝state.labeled˝, el qual vol dir que es retornen els valors
especificats pels atributs value, i value_unchecked, no l’etiqueta mostrada de la casella de
selecció.
state

Estat de la casella de selecció (activada o desactivada). Tingueu en compte que els
modificadors útils d’aquesta propietat (com totes les propietats booleanes) són ˝not˝
i ˝labeled˝ (vegeu tipus de propietats). No obstant això, sovint és més útil connectar
a la propietat sense modificador, és a dir, ˝checkbox_id.state˝, el qual retornarà l’estat
de la casella de selecció en un format adequat per al seu ús en una declaració ˝if˝ (0 o
1). (Booleà)

<frame>
La propietat predeterminada és ˝checked˝, si (i només si) el marc es pot marcar. Per als
marcs que no es poden marcar, no hi ha cap propietat per defecte.

checked
Disponible només per als marcs que es poden marcar: estat de la casella de selecció
(activada o desactivada). Tingueu en compte que els modificadors útils d’aquesta
propietat (com totes les propietats booleanes) són ˝not˝ i ˝numeric˝ (vegeu tipus de
propietats). (Booleà)

<input>

La propietat predeterminada és ˝text˝

text
Text actual en el camp d’entrada (cadena)

<matrix>
La propietat predeterminada és ˝cbind˝.

rows
Nombre de files a la matriu (enter). Si la matriu permet a l’usuari afegir/eliminar files,
aquesta propietat s’ha de tractar com de només lectura. En cas contrari, canviant-la,
es canviarà la mida de la matriu.

columns
Nombre de columnes a la matriu (enter). Si la matriu permet a l’usuari afegir/elimi-
nar columnes, aquesta propietat s’ha de tractar com de només lectura. En cas contrari,
canviant-la, es canviarà la mida de la matriu.

tsv
Dades en la matriu en format «tsv» (cadena; lectura-escriptura). Tingueu en compte
que en comparació amb la disposició «tsv» habitual, les columnes, no files, estan sepa-
rades per caràcters de línia nova, i les cel·les dins d’una columna estan separades per
caràcters tabuladors.

0,1,2...
Les dades d’una sola columna (0 per a la columna més a l’esquerra). getValue()/ge
tString() retorna això com una sola cadena, separada per «\n». No obstant això, la
manera recomanada d’obtenir-ho és utilitzant getList(), que retorna aquesta colum-
na com una matriu de cadenes.

95

Introducció a l’escriptura de connectors per al RKWard

row.0,row.1,row.2...
Les dades d’una sola fila (0 per a la fila superior). getValue()/getString() retorna
això com una sola cadena, separada per «\n». No obstant això, la manera recomana-
da d’obtenir-ho és utilitzant getList(), que retorna aquesta fila com una matriu de
cadenes.

cbind
Dades en un format adequat per a enganxar a R, embolcallades en una expressió
«cbind» (cadena; només lectura).

<optionset>

No hi ha cap propietat predeterminada.

row_count
Nombre d’elements a l’«optionset» (enter). Només lectura.

current_row
Element actualment actiu a l’«optionset» (enter). -1 per a cap element actiu. Lectura i
escriptura.

optioncolumn_ids
Per a cada <optioncolumn> que definiu, es crearà una propietat de llista de cadenes
amb l’identificador especificat.

<browser>
La propietat predeterminada és ˝selection˝

selection
Text actual (nom de fitxer seleccionat) al navegador (cadena)

overwrite
Si l’opció «overwrite» està marcada (booleana, només lectura, és a dir, per programa
es pot llegir l’estat de la casella de selecció, però no canviar-la)

<saveobject>

La propietat predeterminada és ˝selection˝

selection
Nom complet de l’objecte seleccionat (cadena; només lectura, per a establir-ho des del
programa utilitzeu ˝parent˝ i ˝objectname˝)

parent
L’objecte pare de l’objecte seleccionat. Aquest sempre és un objecte R existent d’un
tipus que pot contenir altres objectes (p. ex., una llista o un «data.frame»). Quan s’es-
tableix a una cadena buida o a un objecte no vàlid, s’assumeix ˝.GlobalEnv˝ (RObject)

objectname
El nom base de l’objecte seleccionat, és a dir, la cadena introduïda per l’usuari (canvi-
ada a un nom R vàlid, si cal) (cadena)

active
Només per a «saveobject» que es puguin marcar: si el control està activat/activat.
Sempre cert per als «saveobject» que no es poden marcar (booleà)

<spinbox>

La propietat predeterminada és ˝int˝ o ˝real.formatted˝, depenent del mode del botó de
selecció de valors

int
Valor enter que té el botó de selecció de valors, o enter més proper, si està en mode
real (enter)

real
Valor real que té el botó de selecció de valors (o enter, si és enter) (real)

96

Introducció a l’escriptura de connectors per al RKWard

<formula>
La propietat predeterminada és ˝model˝

model
La cadena del model actual (cadena)

table
El «data.frame» conté les variables requerides. Si només s’utilitzen variables d’un
«data.frame», es retornarà el nom d’aquest «data.frame». Altrament es construeix un
«data.frame» nou segons sigui necessari (cadena)

labels
Si estan implicades les variables de diversos «data.frames», els seus noms es poden
barrejar (per exemple, si ambdós «data.frames» contenen una variable anomenada
«x»). Això retorna una llista amb els noms entrellaçats com a índexs i l’etiqueta des-
criptiva com a valor (cadena)

fixed_factors
Els factors fixos. Probablement no voldreu utilitzar això. Usat internament (RObject)

dependent
Les variables dependents. Probablement no voldreu utilitzar això. Usat internament
(RObject)

<embed>
Sense propietat predeterminada

code
El codi generat pel connector incrustat (codi)

<preview>

La propietat predeterminada és ˝state˝

state
Si la casella de previsualització està marcada (no necessàriament si ja s’ha mostrat la
previsualització) (booleà)

<convert>
Aquest element (utilitzat a la secció <logic>) és especial, ja que tècnicament *és* una propie-
tat, en lloc de només tenir una o més propietats. És de tipus booleà. Tingueu en compte que
els modificadors útils d’aquesta propietat (com totes les propietats booleanes) són ˝not˝ i
˝numeric˝ (vegeu tipus de propietats)

<switch>
Aquest element (utilitzat a la secció <logic>) és especial, ja que tècnicament *és* una pro-
pietat (cadena), en lloc de només tenir una o més propietats. Permet canviar entre diverses
propietats de destinació depenent del valor d’una propietat de condició, o per a tornar
a assignar els valors de la propietat de condició. Qualsevol modificador que proporcio-
neu es transmet a les propietats de destinació, per tant, p. ex., si totes les propietats de
destinació són propietats RObject, també podreu utilitzar el modificador ˝shortname˝ al
commutador. No obstant això, si les propietats de destinació són de tipus diferents, l’ús de
modificadors pot provocar errors. Pels fixed_value, s’elimina qualsevol modificador, en
silenci. Tingueu en compte que les propietats de destinació, quan s’accedeix a través d’un
commutador, sempre són de només lectura.

A.5 Connectors incrustables distribuïts amb la versió oficial del
RKWard

Amb el RKWard es distribueixen una sèrie de connectors incrustables, i es poden utilitzar en
els vostres propis connectors. Actualment, la documentació detallada només està disponible en

97

Introducció a l’escriptura de connectors per al RKWard

aquests fitxers de codi font o d’ajuda dels connectors. No obstant això, aquí hi ha una llista per a
donar-vos una visió ràpida del que hi ha disponible:

ID Pluginmap Descripció Exemple d’ús

rkward::plot_optio-
ns

embedded.pluginm-
ap

Proporciona una
gran varietat
d’opcions per als
diagrames. La
majoria dels
connectors de traçat
utilitzen això.

Diagrames->Diagra-
ma de barres, la
majoria dels altres
connectors de traçat

rkward::color_choo-
ser

embedded.pluginm-
ap

Connector molt
senzill per a
especificar un color.
La implementació
actual proporciona
una llista de noms
de color. Les
implementacions
futures poden
proporcionar una
tria de colors més
elaborada.

Diagrames->Histog-
rama

rkward::plot_stepf-
un_options

embedded.pluginm-
ap

Opcions de
diagrama amb
funció esglaonada

Diagrames->Diagra-
ma ECDF

rkward::histogram-
_options

embedded.pluginm-
ap

Opcions de
l’histograma
(diagrama)

Diagrames->Histog-
rama

rkward::barplot_e-
mbed

embedded.pluginm-
ap

Opcions del
diagrama de barres

Diagrames->Diagra-
ma de barres

rkward::one_var_ta-
bulation

embedded.pluginm-
ap

Proporciona
tabulació en una
variable única.

Diagrames->Diagra-
ma de barres

rkward::limit_vecto-
r_length

embedded.pluginm-
ap

Limita la longitud
d’un vector (als n
elements més grans
o més petits).

Diagrames->Diagra-
ma de barres

rkward::level_select embedded.pluginm-
ap

Proporciona un
<valueselector> ple
amb els nivells (o
valors únics) d’un
vector.

Dades->Recodifica
dades categòriques

rkward::multi_input embedded.pluginm-
ap

Combina els botons
de selecció de
valors, entrada i
control d’opcions
per a proporcionar
entrada de dades de
caràcters,
numèriques i
lògiques.

Dades->Recodifica
dades categòriques

98

Introducció a l’escriptura de connectors per al RKWard

Taula A.1: Connectors incrustables estàndards

A.6 Elements que s’utilitzaran en els fitxers .pluginmap

<document>
Cal que estigui present a cada fitxer .pluginmap com a node arrel (exactament una vegada).
Atributs:

base_prefix
Els noms de fitxer especificats al fitxer .pluginmap s’assumeixen que són relatius al
directori del fitxer .pluginmap + el prefix que especifiqueu aquí. Especialment útil si
tots els vostres components es troben sota un únic subdirectori.

namespace
Un espai de noms (˝namespace˝) per als identificadors dels components. Quan se
cerquin components per a incrustar-los, els components es podran recuperar mitjan-
çant una cadena ˝namespace::component_id˝. Establert a ˝rkward˝ per ara.

id
Una cadena d’identificador opcional per a aquest .pluginmap. Especificar això permet
als autors tercers referir-se i carregar el vostre .pluginmap des del seu (vegeu el capítol
sobre la gestió de les dependències).

priority
Un d’entre ˝hidden˝ , ˝low˝ , ˝medium˝ , o ˝high˝ . Els .pluginmap amb prioritat «me-
dium» o «high» s’activen automàticament quan el RKWard els troba per primera ve-
gada. Utilitzeu priority=˝hidden˝ per als .pluginmap que no estan destinats a ser
activats, el directori (només per a la inclusió). En la implementació actual això no
oculta realment el .pluginmap. (Opcional, el valor predeterminat és ˝medium˝).

<dependencies>

Aquest element, especificant dependències, es permet com a fill directe de l’element <docu-
ment> (un cop), i com a fill dels elements <component> (un cop per a cada element <com-
ponent>). Especifica les dependències que s’han de complir per a utilitzar els connectors.
Consulteu el capítol sobre dependències per a una visió general. Atributs:

rkward_min_version, rkward_max_version
Versió mínima i màxima permesa del RKWard. Les especificacions de versió poden
incloure sufixos no numèrics, com ˝0.5.7z-devel1˝. Si no es compleix una dependència
especificada, el/s connector/s al/s que s’aplica s’ignorarà. Més informació. Opcional;
si no s’especifica, no es requerirà cap versió mínima/màxima del RKWard.

R_min_version, R_max_version
Versió mínima i màxima permesa de l’R. Les especificacions de versió poden no in-
cloure sufixos no numèrics, com ˝0.5.7z-devel1˝. La dependència de la versió de l’R
es mostrarà a les pàgines d’ajuda dels connectors, però no té cap efecte directe, a par-
tir del RKWard 0.6.1. Més informació. Opcional; si no s’especifica, no es requerirà cap
versió mínima/màxima de l’R.

plataformes
Plataformes a on és disponible aquest connector. Els valors admesos són ˝unix˝ ,
˝windows˝ , ˝macos˝ , ˝any˝ i combinacions separades per dos punts (p. ex. ˝unix:
macos˝). ˝unix˝ inclou totes les variants del Linux i del BSD, però no MacOS. Si el
connector no és dependent de la plataforma, ometeu aquest atribut.

99

Introducció a l’escriptura de connectors per al RKWard

Elements fills:

<package>
Afegeix una dependència d’un paquet R específic. Atributs:
name

Nom del paquet (requerit).
min_version, max_version

Versió mínima/màxima permesa (opcional).
repository

Dipòsit on es troba el paquet. Opcional, però molt recomanat, si el paquet no
està disponible al CRAN.

<pluginmap>
Afegeix una dependència d’un .pluginmap específic del RKWard. Atributs:
name

Cadena d’«id» del connector .pluginmap requerit (requerit).
min_version, max_version

Versió mínima/màxima permesa (opcional).
url

URL on es pot trobar el .pluginmap. Requerit.

<about>
Pot estar present exactament una vegada com a fill directe de l’element <document>. Conté
la metainformació sobre el .pluginmap (o connector). Consulteu el capítol sobre la informa-
ció «about» per a obtenir una visió general. Atributs:

name
Nom visible de l’usuari. Opcional. No ha de ser el mateix que ˝id˝.

version
Número de versió. Opcional. El format no està restringit, però per a estar sobre segur,
seguiu esquemes de versions habituals com ara ˝x.y.z˝.

releasedate
Especificació de data de publicació. Opcional en format ˝AAAA-MM-DD˝.

shortinfo
Una descripció curta del connector/.pluginmap. Opcional.

url
URL a on es pot trobar més informació. Opcional, però recomanat.

copyright
Especificació del copyright, p. ex., ˝2012-2013 de John Doe˝. Opcional, però recoma-
nat.

licence
Especificació de la llicència, p. ex., «GPL» o «BSD». Assegureu-vos d’acompanyar els
fitxers amb una còpia completa de la llicència corresponent. Opcional, però recoma-
nat.

category
Categoria del/s connector/s, p. ex., «Teoria de resposta d’elements». A partir del
RKWard 0.6.1, no hi ha categories predefinides. Opcional.

Elements fills:

<author>
Afegeix informació sobre un autor. Atributs:
name, given, family

Especifiqueu el nom complet per al name, o especifiqueu ambdós given i famil
y, per separat.

100

Introducció a l’escriptura de connectors per al RKWard

role
Descripció del rol de l’autor (opcional).

email
L’adreça de correu electrònic on es pot contactar amb l’autor. Requerida. Es pot
establir a la llista de correu rkward-devel, si esteu subscrit, i el vostre connector
està destinat a ser inclòs en la versió oficial del RKWard.

url
L’URL amb més informació sobre l’autor, p. ex., la pàgina web (opcional).

<components>

Necessita estar present exactament una vegada com a fill directe de l’element <document>.
Conté els elements individuals <component> descrits a continuació. Sense atributs.

<component>

Un o més elements <component> s’han de donar com a fills directes de l’element <compo-
nents> (i només allà). Registra un component/plugin amb el «rkward». Atributs:

type
Per a futures extensions: el tipus de component/connector. S’estableix sempre a
«standard» per ara (l’únic tipus admès actualment).

id
L’ID pel qual es pot recuperar aquest component (per a col·locar-lo al menú (vegeu a
sota), o per a incrustar). Vegeu l’espai de noms <document> a dalt.

file
Requerit almenys pels components de type=˝standard˝: el nom del fitxer XML que
descriu la IGU.

label
L’etiqueta d’aquest component, quan es col·loca a la jerarquia del menú.

opcional
Només és significatiu per als components amb dependències definides: normalment,
està considerat com a error que s’informa, si un component no és compatible amb
aquesta versió del RKWard. Tanmateix, si el component no és realment necessari
a l’entorn actual, definint aquest atribut a ˝true˝ suprimeix qualsevol error (valor
predeterminat ˝false˝).

<attribute>
Defineix un atribut d’un component. Només té sentit per a connectors d’importació fins
ara. Només es permet com a fill directe de <component>. Atributs:

id
Id de l’atribut

value
Valor de l’atribut

labels
Etiqueta associada amb l’atribut

<hierarchy>

Necessita estar present exactament una vegada com a fill directe de l’element <document>.
Descriu on s’han de col·locar els components declarats a dalt a la jerarquia del menú. Ac-
cepta només elements <menu> com a fills directes. Sense atributs.

<menu>
Un o més elements <menu> s’han de donar com a fills directes de l’element <hierarchy>.
Declara un (sub)menú nou. Si ja existeix un menú amb l’ID indicat (vegeu més avall), els
dos menús es fusionen. Es permet l’element <menu> com a fill directe de l’element <hie-
rarchy> (menú de nivell superior), o com a fill directe en qualsevol altre element <menu>
(menú inferior). Per contra, l’element <menu> accepta altres elements <menu> o <entry>
com a elements fills. Atributs:

101

Introducció a l’escriptura de connectors per al RKWard

id
Una cadena d’identificació del menú. Útil quan les definicions del menú es llegeixen
des de diversos fitxers del .pluginmap, per a assegurar-se que els connectors es poden
col·locar en el mateix menú. Alguns identificadors de menú com ara «file» es referei-
xen a menús predefinits (en aquest cas el menú «File»). Assegureu-vos de comprovar
amb els fitxers existents del .pluginmap per a utilitzar ID coherents.

label
Una etiqueta per al menú.

group
Permet controlar l’ordenació de les entrades del menú. Vegeu ordenació d’elements
del menú. Opcional.

<entry>
Una entrada de menú, és a dir, una opció de menú per a invocar un connector. Només es
pot utilitzar com a fill directe d’un element <menu>, no accepta elements fills. Atributs:

component
L’ID del component que s’ha d’invocar quan s’activa aquesta entrada del menú.

group
Permet controlar l’ordenació de les entrades del menú. Vegeu ordenació d’elements
del menú. Opcional.

<group>
Declara un grup d’elements al menú. Vegeu ordenació d’elements del menú. Atributs:

id
El nom d’aquest grup.

separated
Opcional. Si s’estableix a «true» (cert), l’element d’aquest grup se separarà visualment
dels elements circumdants.

group
El nom del grup al qual afegir aquest grup (opcional).

<context>
Declara les entrades en un context. Només es permet com a fill directe de l’etiqueta <docu-
ment>. Només accepta etiquetes <menu> com a filles directes. Atributs:

id
L’ID del context. Fins ara només s’han implementat dos contextos: ˝x11˝ i ˝import˝.

<require>
Incloure un altre fitxer .pluginmap. Aquest fitxer .pluginmap només es carregarà una vega-
da, encara que sigui <require> des de diversos fitxers. El cas d’ús més important és incloure
un fitxer «pluginmap», el qual declara alguns components que estan incrustats pels com-
ponents declarats en aquest .pluginmap. Només es permeten els elements <require> com a
fills directes del node <document>. Atributs:
file

El nom del fitxer del .pluginmap a incloure. Això es veu en relació amb el directori del
fitxer .pluginmap actual + el base_prefix (vegeu més amunt l’element <document>).
Si no coneixeu el camí relatiu al .pluginmap que s’ha d’incloure, utilitzeu l’atribut map
per a referir-vos a ell per ID.

map
Per a incloure un fitxer .pluginmap des d’un paquet diferent (o un .pluginmap del
RKWard des del vostre .pluginmap extern), podeu referir-vos a ell pel seu namespac
ename::id, com s’especifica en l’element <document> necessari del .pluginmap. La
inclusió fallarà si no es coneix cap .pluginmap per aquest identificador (p. ex., no està
instal·lat en el sistema de l’usuari). Hauríeu d’utilitzar aquest mètode per a incloure
els .pluginmap fora del paquet, només. Per als mapes dins del paquet, especificar un
camí relatiu (l’atribut file) és més ràpid i més fiable.

102

Introducció a l’escriptura de connectors per al RKWard

A.7 Elements per a utilitzar en fitxers .rkh (ajuda)

<document>
Necessita estar present a cada fitxer .xml com a node arrel (exactament una vegada). Sense
atributs.

<title>
Títol de la pàgina d’ajuda. Això no s’interpreta per a pàgines d’ajuda d’un connector (això
pren el títol del mateix connector), només per a pàgines independents. Sense atributs. El
text que conté l’etiqueta <title> es convertirà en la llegenda de la pàgina d’ajuda. Només es
pot definir una vegada, com a fill directe del node <document>.

<summary>

Un breu resum de la pàgina d’ajuda (o per a què s’utilitza aquest connector). Això sempre
es mostrarà a la part superior de la pàgina d’ajuda. Sense atributs. Es mostrarà el text
contingut dins de l’etiqueta <summary>. Recomanat però no necessari. Només es pot
definir una vegada, com a fill directe del node <document>.

<usage>

Un resum una mica més elaborat de l’ús. Això sempre es mostrarà directament després
de <summary>. Sense atributs. Es mostrarà el text contingut dins de l’etiqueta <usage>.
Recomanat per a les pàgines d’ajuda del connector, però no és necessari. Només es pot
definir una vegada, com a fill directe del node <document>.

<section>
Secció de propòsits generals. Es pot utilitzar qualsevol nombre de vegades com a fill directe
del node <document>. Aquestes seccions es mostren en l’ordre de la seva definició, però
totes les després de la secció <usage> i abans de la secció <settings>. Es mostrarà el text
contingut dins de l’etiqueta <section>.

id
Un identificador necessari per a saltar a aquesta secció des de la barra de navegació
(o un enllaç). Cal que sigui únic dins del fitxer. Requerit, sense valor predeterminat.

title
El títol (llegenda) d’aquesta secció. Requerit, sense valor predeterminat.

short_title
Un títol curt adequat per a mostrar a la barra de navegació. Opcional, el valor prede-
terminat és el títol complet.

<settings>

Defineix la secció que conté la referència sobre les diverses opcions de la IGU. Només té
sentit i només s’utilitza per a les pàgines d’ajuda relacionades amb els connectors. Utilitzeu-
ho com a fill directe del <document>. Pot contenir només elements <setting> i <caption>
com a fills directes. Sense atributs.

<setting>

Explica una configuració única a la IGU. Només es permet com a fill directe de l’element
<settings>. Es mostra el text contingut dins de l’element.

id
L’ID del paràmetre en el .xml del connector. Requerit, sense valor predeterminat.

title
Un títol opcional per a la configuració. Si s’omet (es recomana l’omissió en la majoria
dels casos), el títol es prendrà del .xml del connector.

103

Introducció a l’escriptura de connectors per al RKWard

<caption>

Una llegenda per a agrupar visualment diversos paràmetres. Només es pot utilitzar com a
fill directe de l’element <settings>.

id
L’ID de l’element corresponent (normalment un <frame>, <page> o <tab>) en el .xml
del connector.

title
Un títol opcional per a la llegenda. Si s’omet (es recomana l’omissió en la majoria dels
casos), el títol es prendrà del .xml del connector.

<related>
Defineix una secció que conté enllaços a altra informació relacionada. Sempre es mostrarà
després de la secció <settings>. Sense atributs. Es mostrarà el text contingut dins de l’eti-
queta <related>. Normalment, això contindrà una llista d’estil HTML. Recomanat per a les
pàgines d’ajuda del connector, però no és necessari. Només es pot definir una vegada, com
a fill directe del node <document>.

<technical>
Defineix una secció que conté informació tècnica sense rellevància per als usuaris finals
(com l’estructura interna del connector). Sempre es mostrarà l’últim en una pàgina d’ajuda.
Sense atributs. Es mostrarà el text contingut dins de l’etiqueta <related>. No és necessari i
no es recomana per a la majoria de les pàgines d’ajuda del connector. Només es pot definir
una vegada, com a fill directe del node <document>.

<link>
Un enllaç. Es pot utilitzar en qualsevol de les seccions descrites anteriorment.

href
L’URL de destinació. Tingueu en compte que hi ha disponibles diversos URL especí-
fics del RKWard. Vegeu la secció sobre l’escriptura de les pàgines d’ajuda per a més
detalls.

<label>
Insereix el valor d’una etiqueta d’interfície d’usuari. Es pot utilitzar en qualsevol de les
seccions descrites anteriorment.

id
L’«id» de l’element en el connector, del qual copiar l’atribut label.

<etiquetes HTML diverses>

Les etiquetes HTML més bàsiques estan permeses dins de les seccions. No obstant això,
manteniu la formatació manual al mínim.

A.8 Funcions disponibles per a la creació de scripts de lògica de
la IGU

Classe «Component»

Classe que representa un únic component o component-propietat. La instància més im-
portant d’aquesta classe és la variable ˝gui˝ que està predefinida com a propietat arrel del
component actual. Hi ha disponibles els mètodes següents per a exemples de la classe
«Component»:

absoluteId(base_id)
Retorna l’ID absolut de base_id, o, si s’omet base_id, l’identificador del component.

104

Introducció a l’escriptura de connectors per al RKWard

getValue(id)
Es descoratja. Utilitzeu getString(), getBoolean() o getList() en el seu lloc. Re-
torna el valor de la propietat filla donada. Retorna el valor d’aquesta propietat, si
s’omet l’ID.

getString(id)
Retorna el valor de la propietat filla donada com a cadena. Retorna el valor d’aquesta
propietat, si s’omet l’ID.

getBoolean(id)
Retorna el valor de la propietat filla donada com a booleà (si és possible). Retorna el
valor d’aquesta propietat, si s’omet l’ID.

getList(id)
Retorna el valor de la propietat filla donada com una matriu de cadenes (si és possi-
ble). Retorna el valor d’aquesta propietat, si s’omet l’ID.

setValue(id, valor)
Estableix el valor de la propietat filla donada a valor.

getChild(id)
Retorna una instància de la propietat filla amb l’id donat.

addChangeCommand(id, ordre)
Executeu ordre sempre que canviï la propietat filla indicada per id. id es pot indi-
car com una cadena única, o com una matriu d’identificadors (si la funció ha de ser
cridada per canvis en diverses propietats. ordre és un valor que es pot cridar (nor-
malment una funció), però per compatibilitat amb connectors escrits per a versions
anteriors del RKWard també es pot indicar com una cadena que s’avaluarà.
La funció retorna el paràmetre ordre, per comoditat (per exemple, podeu assignar-la
a una variable i/o cridar-la durant la inicialització).

Classe «RObject»

Classe que representa un únic objecte R. Es pot obtenir una instància d’aquesta classe uti-
litzant makeRObject(objectname). Hi ha disponibles els mètodes següents per a exemples
de la classe ˝RObject˝:

AVÍS
Si hi ha ordres pendents al dorsal, la informació proporcionada per aquests mètodes pot estar
desactualitzada en el moment en què s’executi el codi del connector. No confieu en ell per a
operacions crítiques (s’està arriscant la pèrdua de dades).

getName()
Retorna el nom absolut de l’objecte.

exists()
Retorna si l’objecte existeix. Haureu de comprovar-ho abans d’utilitzar qualsevol dels
mètodes llistats a continuació.

dimensions()
Retorna una matriu de dimensions (similar a dim() en l’R).

classes()
Retorna una matriu de classes (similar a class() en l’R).

isClass(classe)
Retorna «true» (cert), si l’objecte és de classe class.

isDataFrame()
Retorna «true» (cert), si l’objecte és un «data.frame».

isMatrix()
Retorna «true» (cert), si l’objecte és una matriu.

105

Introducció a l’escriptura de connectors per al RKWard

isList()
Retorna «true» (cert), si l’objecte és una llista.

isFunction()
Retorna «true» (cert), si l’objecte és una funció.

isEnvironment()
Retorna «true» (cert), si l’objecte és un entorn.

isDataNumeric()
Retorna «true» (cert), si l’objecte és un vector de dades numèriques.

isDataFactor()
Retorna «true» (cert), si l’objecte és un vector de dades de factor.

isDataCharacter()
Retorna «true» (cert), si l’objecte és un vector de dades de caràcters.

isDataLogical()
Retorna «true» (cert), si l’objecte és un vector de dades lògiques.

parent()
Retorna una instància de «RObject» que representa el pare d’aquest objecte.

child(nomfill)
Retorna una instància de «RObject» que representa el nom del fill del fill d’aquest ob-
jecte.

Classe «RObjectArray»

Una matriu d’instàncies RObject. Una instància d’aquesta classe es pot obtenir utilitzant
makeRObjectArray(objectnames). És particularment útil quan es tracta de «varslots» que
permeten seleccionar diversos objectes.

include()-function
include(filename) es pot utilitzar per a incloure un fitxer JS separat.

doRCommand()-function
Obsolet. No utilitzeu en connectors nous: doRCommand(command, callback). En el seu lloc
utilitzeu new RCommand().

funció new RCommand()
new RCommand(command, optional_id) es pot utilitzar per a consultar l’R per a obtenir
informació. Llegiu la secció sobre consultes R des de dins d’un connector per a més detalls
i advertències.

106

Introducció a l’escriptura de connectors per al RKWard

Apèndix B

Resolució de problemes durant el
desenvolupament del connector

Així que heu llegit tota la documentació, ho heu fet tot bé i encara no podeu fer-ho funcionar? No
us preocupeu, ho resoldrem. El primer que cal fer és: activar la finestra Missatges de depuració
del RKWard (disponible des del menú Finestres -, o fer clic dret sobre una de les barres d’eines),
i després iniciar el connector, de nou. Com a regla general, no hauríeu de veure cap sortida a la
finestra de missatges quan s’invoqui el connector, o en qualsevol altre moment. Si n’hi ha una,
probablement està relacionada amb la vostra extensió. Mireu si us ajuda.

Si tot sembla estar bé a la consola, intenteu augmentar el nivell de depuració (des de la línia
d’ordres, utilitzant rkward --debug-level 3, o establint el nivell de depuració a 3 en Arranjament
→ Configura el RKWard→ Depuració). No tots els missatges mostrats a nivells de depuració
més alts indiquen necessàriament un problema, però hi ha possibilitats que el problema es mostri
en algun lloc entre els missatges.

Si encara no es pot esbrinar què és el que està malament, no espereu. Sabem que això és compli-
cat, i després de tot, possiblement també us heu trobat amb un error en el RKWard, i el RKWard
necessita ser corregit. Escriviu a la llista de correu de desenvolupament i expliqueu-nos el pro-
blema. Estarem encantats d’ajudar-vos.

Finalment, fins i tot si heu descobert com fer-ho pel vostre compte, però heu trobat que la docu-
mentació no és tan útil o fins i tot equivocada en alguns aspectes, digueu-nos-ho també a la llista
de correu, perquè puguem arreglar/millorar la documentació.

107

Introducció a l’escriptura de connectors per al RKWard

Apèndix C

Llicència

Traductor de la documentació: Josep M. Ferrer txemaq@gmail.com

Aquesta documentació està llicenciada d’acord amb les clàusules de la Llicència de Documenta-
ció Lliure de GNU.

108

mailto:txemaq@gmail.com
fdl-license.html
fdl-license.html

	Introducció
	Preliminars: Què són els connectors en el RKWard? Com funcionen?
	Creació d'entrades del menú
	Control de l'ordre de les entrades del menú

	Definir la IGU
	Definir un diàleg
	Afegir una interfície assistent
	Algunes consideracions sobre el disseny de la IGU
	<radio>, <checkbox> i <dropdown>

	Generació de codi R a partir de la configuració de la IGU
	Ús del JavaScript en els connectors del RKWard
	preprocess()
	calculate()
	printout()

	Convencions, polítiques i coneixement general
	Entendre l'entorn local()
	Format del codi
	Tractament amb opcions complexes

	Consells i trucs

	Escriure una pàgina d'ajuda
	Interaccions lògiques entre elements de la IGU
	Lògica de la IGU
	Lògica de la IGU amb scripts

	Incrustar connectors en connectors
	Casos d'ús per a incrustar
	Incrustació dins d'un diàleg
	Generació de codi en incrustar
	Incrustació dins d'un assistent
	Incrustació menys incrustada: botó d'opcions addicionals
	Incrustació/definició de connectors incomplets

	Tractament amb molts connectors similars
	Vista general de diferents enfocaments
	Ús de la sentència «include» del JS
	Incloure els fitxers .xml
	Ús de <snippets>
	<include> i <snippets> vs. <embed>

	Conceptes per a utilitzar en connectors especialitzats
	Connectors que produeixen un diagrama
	Dibuixar un diagrama a la finestra de sortida
	Afegir la funcionalitat de vista prèvia
	Opcions genèriques de diagrama
	Un exemple canònic

	Vistes prèvies de dades, sortida i altres resultats
	Vistes prèvies de sortida (HTML)
	Vistes prèvies de dades (importades)
	Vistes prèvies personalitzades

	Connectors dependents de context
	Context de dispositiu X11
	Importar el context de les dades

	Consultar l'R per a obtenir informació
	Referenciar l'objecte actual o el fitxer actual
	Repetir (un conjunt d') opcions
	«Driven» «optionsets»
	Alternatives: quan no s'usen els «optionsets»

	Gestió de dependències i problemes de compatibilitat
	Compatibilitat de la versió del RKWard
	Compatibilitat de la versió de l'R
	Dependències de paquets de l'R
	Dependències d'altres RKWard.pluginmaps
	Un exemple

	Traduccions d'un connector
	Consideracions generals
	«i18n» als fitxers «xml» del RKWard
	«i18n» als fitxers i seccions dels fitxers «js» del RKWard
	«i18n» i cometes

	Manteniment d'una traducció
	Escriure traduccions d'un connector

	Autor, llicència i informació de la versió
	Compartiu el vostre treball amb altres persones
	Connectors externs
	Per què connectors externs?
	Estructura d'un paquet de connector
	Jerarquia de fitxers
	Components bàsics del connector
	Informació addicional (opcional)
	Proves automatitzades de connectors (opcional)

	Construcció del paquet del connector

	Desenvolupament de connectors amb el paquet rkwarddev
	Vista general
	Exemple pràctic
	Descripció de la IGU
	Codi JavaScript
	Mapa de connectors
	Pàgina d'ajuda
	Generació dels fitxers del connector
	L'script complet

	Afegir pàgines d'ajuda
	Connectors de traducció

	Referència
	Tipus de propietats/Modificadors
	Elements de propòsit general que s'utilitzaran en qualsevol fitxer XML (.xml,.rkh, .pluginmap)
	Elements a utilitzar en la descripció XML del connector
	Elements generals
	Definicions d'interfície
	Elements de disposició
	Elements actius
	Secció de lògica

	Propietats dels elements del connector
	Connectors incrustables distribuïts amb la versió oficial del RKWard
	Elements que s'utilitzaran en els fitxers .pluginmap
	Elements per a utilitzar en fitxers .rkh (ajuda)
	Funcions disponibles per a la creació de scripts de lògica de la IGU

	Resolució de problemes durant el desenvolupament del connector
	Llicència

