Het handboek van KCachegrind

Oorspronkelijke auteur van de documentatie:
Josef Weidendorfer
Bijwerken en corrigeren: Federico Zenith
Vertaler/Nalezer: Freek de Kruijf
Vertaler: Ronald Stroethoff

Het handboek van KCachegrind

Inhoudsopgave

1 Inleiding
1.1 Profileren e
12 Profileringmethodes
1.3 Profileringshulpmiddelen,
14 Visualisatie e
2 KCachegrind gebruiken
2.1 Data-productie voor visualisatie
211 Callgrind. L
212 OProfile
2.2 Gebruikersinterface L L
3 Basis idee
3.1 HetData Model voor ProfileData.
3.1.1 Kostenelementen L L
3.1.2 Gebeurtenistypen
3.2 Toestand visualisatie
33 OnderdelenvanGUI
33.1 Zijdocken e
332 Weergavezonet
333 ZonesvaneenTab o
3.34 Gesynchroniseerde weergave met geselecteerde elementineenTab
3.3.5 SynchronisatietussenTabs,
336 Indelingen
34 Zijdocken
341 Kostenprofiel
3.42 Opverzichtvandeonderdelen
343 Aanroepstapel.
35 Weergaven
351 Gebeurtenistype
352 Aanroeplijsten
353 Kaarten e
354 Graafaanroepen e
355 Annotaties

X NN o &

O O

Het handboek van KCachegrind

Overzicht van de opdrachten
41 Hethoofdvenster van KCachegrind
411 HetmenuBestand

Vragen en antwoorden
Woordenlijst

Dankbetuiging en licentie

17
17
17

18

19

21

Samenvatting

KCachegrind is een visualisatie hulpmiddel, geschreven met gebruik van KDE Frame-
works.

Het handboek van KCachegrind

Hoofdstuk 1

Inleiding

KCachegrind is een browser voor gegevens geproduceerd door profileringshulpmiddelen. Dit
hoofdstuk legt uit waar profilering voor is, hoe het wordt gedaan en geeft enige voorbeelden van
beschikbare profileringshulpmiddelen.

1.1 Profileren

Bij het ontwikkelen van een programma is vaak een van de laatste stappen het optimaliseren
van de prestaties. Omdat het niet zinvol is zelden gebruikte functies te optimaliseren, omdat dat
verspilling van tijd is, is het nodig om te weten in welk deel van het programma de meeste tijd
wordt gebruikt.

Voor sequentiéle code, volstaat het meestal om statistische data van een werkend programma zo-
als de gebruikte tijd in functies en coderegels te verzamelen. Dit heet profileren. Het programma
werkt onder controle van een profilering-programma, wat aan het eind een overzicht geeft van de
werking. Daarentegen worden voor parallelle code performance problemen meestal veroorzaakt
doordat een processor aan het wachten is op data van een andere processor. Omdat de oorzaak
van dit soort wachttijd niet makkelijk te achterhalen is, is het hier beter om “timestamped event
traces” aan te maken. KCachegrind kan dit soort data niet visualiseren.

Na het analyseren van de geproduceerde profilering-data, is het makkelijk om de hotspots en
knelpunten van de code te vinden: bijvoorbeeld, aannames over call counts zijn controleerbaar
en identificeerbare code regions kunt u optimaliseren. Daarna, moet u het resultaat van de opti-
malisatie controleren met nog een profile run.

1.2 Profileringmethodes

Om precies de gepasseerde tijd te meten of om de gebeurtenissen tijdens de werking van een
stuk code te noteren (bijv. een functie), moet er extra meet-code voor en achter het te onderzoeken
code worden toegevoegd. Deze code leest de tijd, of een algemene gebeurtenis-teller, en berekent
de verschillen. De originele code moet u dus voor de test wijzigen. Dit heet instrumentatie.
Instrumentatie kan door de programmeur zelf, de compiler, of door het runtime systeem worden
gedaan. Omdat interessante stukken code meestal genest zijn, beinvloedt de overhead van de
meting altijd de meting zelf. Instrumentatie moet u dus selectief toepassen en de resultaten moet
u voorzichtig interpreteren. Dit maakt natuurlijk performance analyse door exacte metingen een
complex proces.

Het handboek van KCachegrind

Precieze meting is mogelijk met behulp van de hardware counters (met tellers die bij iedere tik
omhoog gaan) die in moderne processors aanwezig zijn, die bij iedere gebeurtenis een stap wor-
den verhoogd. Omdat we gebeurtenissen aan stukken code willen toevoegen, zouden we (zon-
der de tellers) zelf iedere gebeurtenis moeten bijhouden door voor het geselecteerde stuk code
een teller te verhogen. Dit in software uitvoeren is, natuurlijk, niet mogelijk; maar, aangenomen
dat de gebeurtenissen netjes over de code verdeelt is, kunnen we alleen maar elke n-th gebeurte-
nis te kijken en niet naar elke gebeurtenis, een meetmethode is ontwikkelt waarvan de overhead
inschakelbaar is: dit heet Sampling. Op tijd gebaseerde Sampling (TBS) gebruikt een timer om
regelmatig naar een programma-teller voor het creéren van een histogram voor de programma
code. Op gebeurtenissen gebaseerde Sampling (EBS) gebruikt de hardware tellers van moderne
processors, en gebruikt een modus waar een interrupt handler wordt aangeroepen als de teller
op nul is voor het genereren van een histogram van de bijbehorende gebeurtenis distributie: in
de handler, zal de gebeurtenis teller altijd weer worden geinitialiseerd tot het n van de meet-
methode. Het voordeel van sampling is dat de code niet gewijzigd hoeft te worden, maar het
blijft een compromis: de bovengenoemde aanname zal meer correct zijn als n klein is, maar hoe
kleiner n is , hoe groter de overhead van de interrupt handler.

Een andere meetmethode is het simuleren van gebeurtenissen in het computer systeem bij het
uitvoeren van een gegeven code, bijv. executie gedreven simulatie. De simulatie is altijd afgeleid
van een min of meer accuraat machine model; maar, met zeer gedetailleerde machine model-
len, geeft dat vrij nauwkeurige benaderingen van de werkelijkheid, de simulatie tijd kan in de
praktijk onacceptabel groot zijn. Het voordeel van simulatie is dat willekeurig ingewikkelde me-
ting/simulatie code aan een gegeven code zonder storende resultaten kan worden toegevoegd.
Door dit net voor de uitvoer te doen (runtime instrumentatie genaamd), met gebruik van de ori-
ginele binary, is dit erg handig voor de gebruiker: een her-compilatie is dan niet nodig. Simulatie
is bruikbaar als u alleen gedeeltes van machine met een eenvoudig model uitvoert; een ander
voordeel is dat de door eenvoudige modellen geproduceerde resultaten vaak makkelijker te be-
grijpen zijn: vaak is het probleem met echte hardware dat in de resultaten elkaar overlappende
effecten uit verschillende gedeeltes van de machine zitten.

1.3 Profileringshulpmiddelen

Het meest bekend is het GCC profiling programma gprof: u moet het programma compileren
met de optie -pg; het laten werken van het programma genereert een bestand gmon.out, dat u
vervolgens in een door mensen leesbaar formaat kunt omzetten met gprof. Een nadeel is de
benodigde her-compilatie om de executable voor te bereiden, die statistisch gelinkt moet zijn.
De hier gebruikte methode is compiler-genereerde instrumentatie, die alle tussen functies uitge-
voerde call arcs en bijpehorende call tellers meet, in samenwerking met TBS, die een histogram
van de tijd-verdeling over de code geeft. Door beide stukken informatie te gebruiken, is het
mogelijk om heuristisch alle door een functie gebruikte tijden te berekenen, bijv. de tijd die een
functie inclusief alle aangeroepen functies heeft gebruikt

Voor nauwkeurige metingen van gebeurtenissen, bestaan er bibliotheken met functies die hard-
ware performance tellers kunnen uitlezen. Het meest bekend hier is de PerfCtr patch voor
Linux®, en de architectuur onafhankelijke bibliotheken PAPI en PCL. Maar toch, nauwkeurige
metingen heeft instrumentatie van code nodig, zoals hierboven al gezegd. Naar keuze gebruikt u
de bibliotheken zelf of gebruikt u automatische instrumentatie systemen zoals ADAPTOR (voor
FORTRAN broncode instrumentatie) of DynaProf (code injectie via DynlInst).

OProfile is een systeembreed profileringshulpmiddel voor Linux® met gebruik van Sampling.

In veel aspecten is het gebruik van Cachegrind of Callgrind een handige manier van Profiling,
deze zijn simulators die de runtime instrumentatie framework Valgrind gebruiken. Omdat u
hier geen toegang tot de hardware tellers hoeft te hebben (vaak onhandig met de huidige Linux®
installaties), en de binaries die u wilt profileren ongewijzigd kunnen blijven, is het een goed
alternatief voor andere profileringshulpmiddelen. Het nadeel van simulatie - vertraging - kunt u
verminderen door de simulatie alleen uit te voeren op de interessante programma-gedeeltes, en
misschien alleen een paar iteraties van een loop. Zonder meting/simulatie instrumentatie, geeft

Het handboek van KCachegrind

het gebruik van uitsluitend Valgrindalleen een vertraging s factor van 3 tot 5. Wanneer alleen de
call grafieken en call tellers interessant zijn , dan kunt u de cache simulator uitschakelen.

Cache simulatie is de eerste stap in het benaderen van reéle tijden, omdat runtime erg gevoelig
is voor het gebruik van de zogenoemde caches, kleine en snelle buffers in moderne systemen
die herhaalde toegang tot zelfde stukken hoofd geheugen versnellen. Cachegrind voert cache
simulatie uit door het catchen van geheugen-toegangen. In de geproduceerde data is ook het
aantal uitlezingen van instructie/data geheugen mory accesses en gemiste eerste- en tweede-
level cache uitlezingen, en de relatie tot de regels en functies in de broncode van het programma.
Door het combineren van de aantal gemiste en gebruik van de miss latencies van standaard
processors, is het mogelijk om een schatting van de gebruikte tijd te geven.

Callgrind is een uitbreiding van Cachegrind dat grafiek van aanroepingen onmiddellijk op-
bouwt, bijv. hoe deze functies elkaar aanroepen en hoeveel gebeurtenissen tijdens een aange-
roepen functie gebeuren. Maar de profile data kan ook voor elke thread call chain context apart
worden verzameld. Het kan profiling data op instructie niveau geven voor annotatie van gedis-
assembleerde code.

1.4 Visualisatie

Profileringshulpmiddelen geven standaard grote hoeveelheden data. De wens om makkelijk
omhoog en omlaag te bladeren door de call grafiek, samen met snel omschakelen van de functie-
overzicht en de weergaven van verschillende gebeurtenistypen, doen verlangen naar een GUI
programma die deze taak kan uitvoeren.

KCachegrind is een visualisatiemiddel voor profileringsdata dat deze wensen kan vervullen.
Ondanks dat het geprogrammeerd is met doorzoeken van de data van Cachegrind en Calltree
in gedachte, zijn er converters beschikbaar om data weer te geven dat afkomstig is van andere
hulpmiddelen. In de appendix is een beschrijving van het bestandsformaat van Cachegrind/-
Callgrind te vinden.

Naast een lijst met functies die gesorteerd zijn op kosten, en optioneel gegroepeerd op
bronbestand, shared library of C++ class, heeft KCachegrind ook verschillende weergaven-
mogelijkheden voor een geselecteerde functie, namelijk:

* Weergave van een call-grafiek, die een sectie van de call-grafieken rond de geselecteerde func-
tie toont.

* een boom-weergave, waarmee de relaties van geneste aanroepen worden weergegeven, samen
met de bijbehorende kosten voor snelle visuele detectie van problematische functies.

* Weergave van annotatie van broncode en disassembler, waarmee u details van de kosten ten
opzichte van regels en assembler- instructies kunt bestuderen.

Het handboek van KCachegrind

Hoofdstuk 2

KCachegrind gebruiken

2.1 Data-productie voor visualisatie

Eerst moet u met behulp van een profilering-hulpmiddel performance data genereren door as-
pecten van het werkende programma te meten. Cachegrind heeft zelf geen profileringshulpmid-
del, maar u kunt het goed samen met Callgrind gebruiken, en door een converter te gebruiken,
kunt u het ook gebruiken om de data te visualiseren dat door OProfile is geproduceerd. Alhoe-
wel het profileren met deze hulpmiddelen buiten de scoop van deze handleiding valt, geeft de
volgende sectie een korte uitleg over daarmee te beginnen.

2.1.1 Callgrind

Callgrind is een onderdeel van Valgrind. Merk op dat het in het verleden Calltree werd genoemd
, maar deze naam was misleidend.

De meest voorkomende gebruik is het toevoegen van een voorvoegsel aan de commandoregel
bij het starten van uw programma met valgrind —-tool=callgrind , zoals in:

valgrind —--tool=callgrind myprogram myargs

Bij het beéindigen van het programma, zal er een bestand genaamd callgrind.out.pid worden
gegenereerd, dat u in KCachegrind kunt laden.

Meer geavanceerd gebruik is het dumpen van profielgegevens bij het aanroepen van een op-
geven functie in uw programma. B.v. voor Konqueror, om alleen profielgegevens te zien van
het renderen van een Web pagina, kunt u de beslissing nemen om de data te dumpen als u het
menu-item Beeld — Herladen selecteert. Dit is overeenkomstig met een aanroep van KongMaini
indow: : slotReload. Gebruik:

valgrind —--tool=callgrind —--dump-before=KongMainWindow: :slotRe
load konqueror

Dit zal meerdere profielgegevens-bestanden (met een extra volgnummer aan het eind van de
bestandsnaam) produceren. Een bestand zonder een dergelijk nummer aan het eind (alleen
eindigend op het proces-PID) wordt ook geproduceerd; door dit bestand in KCachegrind te la-
den, zullen alle andere ook worden geladen en zijn vervolgens zichtbaar in Profieloverzicht en
deProfiellijst.

http://valgrind.org

Het handboek van KCachegrind

2.1.2 OProfile

OProfile is beschikbaar via zijn home pagina. Volg de installatie instructies op de Web site, maar,
voordat u dat doet, controleer eerst of uw distributie het niet al als pakket levert (zoals SuSE®).

Het systeemmbreed profileren is alleen voor de gebruiker root toegestaan, omdat u dan alle ac-
ties in het systeem kunt observeren; daarom moet u het volgende als root uitvoeren. Configureer
eerst het profilering-proces met behulp van de GUI oprof_start of het programma voor de com-
mandoregel opcontrol. Standaard configuratie moet de timer mode zijn (TBS, zie introductie).
Om de meting te starten, start opcontrol -s. Start vervolgens het programma waarin u bent
geinteresseerd en, geef aan het eind het commando opcontrol -d. Dit zal de meetresultaten
wegschrijven naar bestanden in de map /var/lib/oprofile/samples/ . Om de data te kunnen
visualiseren in KCachegrind, geef in een lege map het volgende commando:

opreport —gdf | op2callgrind

Dit zal een heleboel bestanden produceren, een voor elke programma dat in het systeem draaide.
Elk kunt u apart in KCachegrind laden.

2.2 Gebruikersinterface

Als u KCachegrind start met een profielgegevensbestand als argument, of na het via Bestand
— Openen van laden van een ervan, krijgt u een navigatie-paneel te zien met de functie-lijst aan
de linkerkant; en, aan de rechterkant het hoofdvenster, een ruimte met vensters voor een gese-
lecteerde functie. Deze vensterruimte kunt u willekeurig indelen om meerdere vensters tegelijk
te kunnen zien.

Bij de eerste keer starten zal deze ruimte verdeelt zijn in een boven en een onder gedeelte, elk met
verschillende tab-selecteerbare vensters. Om de vensters te verplaatsen, gebruikt u het tabs con-
text menu, en pas de splitters tussen de vensters aan. Om snel tussen de verschillende beeld lay-
outs te schakelen, gebruikt u Beeld — Layout — Ga naar volgende (Ctrl+—) en Beeld — Layout
— Ga naar vorige (Ctrl++).

Het active gebeurtenistype is belangrijk voor visualisatie: voor Callgrind, is dit, bijvoorbeeld,
gemiste cache of cyclus schatting; for OProfile, dit is voor de eenvoudigste gevallen “Timer’. U
kunt het event type via een keuzelijst in de werkbalk of in het Gebeurtenistype venster. Een
eerste overzicht van de runtime karakteristieken krijgt u te zien als u de functie main in de linker
lijst selecteert; kijk vervolgens naar het venster met de call-grafiek. Daar ziet u de calls die in uw
programma voorkomen. Merk op dat het call graph venster alleen functies toont die een groot
aantal keren voorkomen. Door op een functie in de grafiek te dubbelklikken, krijgt u de door de
geselecteerde functie aangeroepen functies te zien krijgen.

Om de GUI verder te verkennen, kunt u ook behalve deze handleiding ook in de sectie docu-
mentatie van de Web site kijken. Elke widget in KCachegrind heeft ook een “Wat is dit” hulp.

10

http://oprofile.sf.net
http://kcachegrind.github.io

Het handboek van KCachegrind

Hoofdstuk 3

Basis idee

Dit hoofdstuk legt enkele basisideeén van KCachegrind uit, en introduceert in het interface ge-
bruikte termen.

3.1 Het Data Model voor Profile Data

3.1.1 Kostenelementen

De kosten van gebeurtenistypes (zoals L2 Misses) worden ingedeeld als kostenelementen, wat
items zijn met een relatie tot broncode of data structuren van een gegeven programma. Kos-
tenelementen kunnen niet alleen eenvoudige code of data posities zijn, maar ook positie tuples.
Bijvoorbeeld, een call heeft een bron en een doel, of een data adres kan een data type en een code
positie waar zijn allocatie gebeurt.

De kostenelementen die bij KCachegrind bekend zijn, volgen hieronder. Simple Positions:

Instruction
Een assembler instructie op een opgegeven adres.

Source Line of a Function

Alle instructies die de compiler (via debug informatie) mapt naar een opgegeven regel in de
broncode (gespecificeerd door broncodebestand en regelnummer), en die in de context van
een functie worden uitgevoerd. Dit laatste is nodig omdat regelcode in een inlined functie
in de context van meerdere functies kan verschijnen. Instructie zonder enige mapping naar
een daadwerkelijke coderegel worden gemapt naar regelnummer 0 in bestand 2?2°2.

Function

Alle coderegels van een opgegeven functie horen bij de functie zelf. Een functie is gespe-
cificeerd door zijn naam en de locatie in een binair object (indien beschikbaar). Dit laatste
is nodig omdat elk binair object van een enkel programma functies met dezelfde naam
kan hebben (deze zijn toegankelijk met bijv. met dlopen of dlsym; de runtime linker zoekt
functies in een opgegeven zoek-volgorde voor gebruikte binary objects op). Als een pro-
fileringshulpmiddel het symboollabel van een functie niet kan vinden, bijv. omdat debug
informatie niet beschikbaar is, ofwel het adres van de eerst uitgevoerde instructie standaard
is gebruikt, of 222.

Binary Object

Alle functies waarvan de code is binnen de range van een opgegeven binar object, of van
het hoofd executable of een gedeelde library.

11

Het handboek van KCachegrind

Source File

Alle functies waarvan de eerste instructie is gemapped naar een regel van de opgegeven
broncodebestand.

Class

Symbol namen van functies zijn standaard hiérarchisch geordend in name spaces, bijv. C++
namespaces, of classes van object-georiénteerde talen; dus, een class kan functies van de
class of ingebedde classes zelf hebben.

Profile Part

Een tijd sectie van een profile run, met een opgegeven thread ID, process ID, en uitgevoerde
command line.

Zoals u in de lijst kan zien, een set van kostenelementen veroorzaakt weer andere kostenelemen-
ten; dus, er is een inclusieve hiérarchie van kostenelementen.

Positieons tuples:

e Aanroep van instructie adres naar doel functie.
¢ Aanroep van doel functie vanuit coderegel.

* Aanroep van doel functie vanuit bron functie.

(On)voorwaardelijke sprong van bron naar doel instructie.

(On)voorwaardelijke sprong van bron naar doel regel.

Sprongen tussen functies zijn niet toegestaan, omdat dit geen zin heeft in een call graph; dus,
constructs zoals exception handling en long jumps in C moeten zo nodig worden vertaald naar
popping de call stack.

3.1.2 Gebeurtenistypen

U kunt willekeurige gebeurtenistypen opgeven in de profile data door ze een naam te geven. De
kosten daarvan vergeleken met een kostenelement is een 64-bit integer.

Gebeurtenistypen waarvan de kosten zijn opgegeven in een profile data bestand worden echte
events genoemd. Daarnaast kunt u formules specificeren voor uit echte gebeurtenissen bere-
kende event-types, die inherited events worden genoemd.

3.2 Toestand visualisatie

De toestand visualisatie van een KCachegrind venster is inclusief:

¢ de voor weergave gekozen primaire en secundaire gebeurtenistype,

de functie groepering (gebruikt in het Functieprofiel lijst en element kleuring),

de profielgegevens waarvan de kosten ook in de visualisatie zichtbaar moeten zijn,
¢ een actieve kostenelement (bijv. een uit het functie profiel zijdock geselecteerde functie),

* een geselecteerde kostenelement.

12

Het handboek van KCachegrind

Deze toestanden beinvloedt de weergaven.

Weergaven worden altijd voor een kostenelement getoond, de actieve. Als een opgegeven weer-
gave ongeschikt is voor een kostenelement, dan is het uitgeschakeld: bij het selecteren van bijv.
een ELF object in de groep-lijst, is een source annotatie niet zinvol.

Bijvoorbeeld, voor een een actieve functie, toont de lijst met aangeroepenen alle functies die door
de actieve zijn aangeroepen: u kunt een van deze functies selecteren zonder hem actief te maken.
Daarnaast, als de call graph daarnaast wordt getoond, dan zal deze automatisch dezelfde functie
selecteren.

3.3 Onderdelen van GUI

3.3.1 Zijdocken

Zijdocken zijn zijvensters die u aan elke rand van een KCachegrind-venster kunt plaatsen. Zij
hebben altijd een lijst met kostenelementen die op een bepaalde volgorde staan.

¢ De Functieprofiel is een lijst met functies die de inclusive en exclusive kosten, getelde aanroe-
pen, naam en positie van functies toont.

e Overzicht van de onderdelen
e Aanroepstapel

3.3.2 Weergavezone

De weergavezone, standaard het rechter gedeelte van het hoofdvenster van KCachegrind, heeft
een (standaard) of meerdere tabs, horizontaal of verticaal verdeelt. Elke tab heeft meerdere weer-
gaven met elk een kostenelement tegelijk. De naam van dit element is aan de bovenkant van de
tab te zien. Als er meerdere tabs zijn, dan is er maar een actief. In de actieve tab is de element-
naam vetgedrukt, en bepaalt de kostenelement van het KCachegrind -venster.

3.3.3 Zones van een Tab

Elke tab kan tot vier weergavezones hebben, genaamd Top, Right, Left, en Bottom. Elke zone kan
meerdere opgestapelde weergaven hebben. Het zichtbare gedeelte van een zone is selecteerbaar
door middel van een tabbalk. De tab balken van de rechter en bovenste gebieden zijn aan de
bovenkant; de tab balken van de linker en onderste gebieden zijn aan de onderkant. U kunt
instellen door middel van de contextmenu’s van de tab welk soort weergave in welke zone gaat.

3.3.4 Gesynchroniseerde weergave met geselecteerde element in een Tab

Naast een actief element, heeft elke tab een geselecteerde element. Omdat de meeste weergavety-
pes meerdere elementen tonen met de actieve op de een of andere manier gecentreerd, kunt u het
geselecteerde item wijzigen door binnen de weergave te navigeren (door met de muis te klikken
of door het toetsenbord te gebruiken). Standaard worden geselecteerde items als gemarkeerd
getoond. Door de geselecteerde item in een van de weergaven in een tab te wijzigen, zijn in alle
andere weergaven het nieuw geselecteerde item ook gemarkeerd.

3.3.5 Synchronisatie tussen Tabs

Als er meerdere tabs zijn, dan lijdt een selectiewijziging in een tab tot wijziging in activering in
de volgende tab, onafhankelijk of dit rechts of onder daarvan is. Deze manier van linken zou,
bijvoorbeeld, het mogelijk maken om snel te bladeren in call graphs.

13

Het handboek van KCachegrind

3.3.6 Indelingen

De layout van alle tabs in een venster kunt u opslaan (Beeld — Layout). Na het dupliceren van
de geselecteerde layout (Beeld — Layout — Dupliceren (Ctrl++)) en het wijzigen van enkele af-
metingen of het verplaatsen van een weergave naar een plek in een tab, kunt u snel heen en weer
schakelen tussen de oude en de nieuwe layout via Ctrl+<— en Ctrl+—. De verzameling layouts
zullen tussen de sessies van KCachegrind met hetzelfde profilering-commando worden opge-
slagen. U kunt de huidige verzameling layouts de standaard maken voor nieuwe KCachegrind
sessies, of de standaard layout verzameling weer terugzetten.

3.4 Zijdocken

3.4.1 Kostenprofiel

De Kostenprofiel heeft een lijst met groepen en een lijst met functies. In de lijst met groepen
vindt u alle groepen waar kosten zijn gemaakt, afhankelijk van de gekozen type groep. De lijst
met groepen is verborgen als groeperen is uitgeschakeld.

De functie-lijst toont de functies van de geselecteerde groep (of alle functies als groeperen is
uitgeschakeld), gesorteerd volgens een bepaalde kolom, bijv. inclusief of zelf gespendeerde kos-
ten. Er is een maximum aantal functies die te zien zijn in de lijst, instelbaar in Instellingen
— KCachegrind instellen.

3.4.2 Overzicht van de onderdelen

In een profile run, is het mogelijk om meerdere profile data bestanden te produceren, die u sa-
men in KCachegrind kunt laden. De zijdock Overzicht van geladen trace-profielbronnen toont
deze, horizontaal geordend overeenkomstig het moment van creatie; het formaat rechthoek is
overeenkomstig met de gespendeerde kosten van elk onderdeel. U kunt een of meerde profielen
selecteren om de in de andere KCachegrind-weergaven zichtbare kosten te beperken.

De details zijn verder onderverdeeld in een detail- en een inclusive kosten split mode:

Modus voor partitionering

De details zijn in groepen voor een profielgegevens te zien, overeenkomstig de geselec-
teerde type groep. Bijvoorbeeld, als u ELF object groepen zijn selecteert, dan ziet u ge-
kleurde rechthoeken voor elk gebruikt ELF object (shared library of executable), de grootte
overeenkomstig de kosten daarvan.

Diagrammodus

Een rechthoek toont de inclusieve kosten van de geselecteerde actieve functie in de ge-
toonde details. Ook dit is verdeelt in de inclusieve kosten van de aangeroepenen.

3.4.3 Aanroepstapel

Dit is een puur fictieve ‘meest waarschijnlijke” call stack. Het wordt opgebouwd bij de start van
de huidige actieve functie, en voegt de aanroepers en aangeroepenen toe met de hoogste kosten
bovenaan.

De kolommen Kosten en Aanroepen tonen de gebruikte kosten voor alle aanroepen van de func-
tie in de regel erboven.

14

Het handboek van KCachegrind

3.5 Weergaven

3.5.1 Gebeurtenistype

De Gebeurtenistype lijst toont alle beschikbare kostentypes en de bijbehorende eigen en inclu-
sieve kosten van de huidige actieve functie voor dat gebeurtenistype.

Door uit de lijst een gebeurtenistype te kiezen, kunt u in de gehele KCachegrind de getoonde
kostentype wijzigen naar de geselecteerde.

3.5.2 Aanroep lijsten

Deze lijst toont de calls naar en van de huidige actieve functie. Met Alle Callers en Alle Aange-
roepenen betekenen die functies die bereikbaar zin in de richting van het aanroepen, zelfs als er
andere functie er tussen zitten.

De aanroeplijst is inclusief:

® Directe Aanroepers
¢ Directe Aangeroepenen
¢ Alle aanroepers

¢ Alle aangeroepenen

3.5.3 Kaarten

Een boomstructuur overzicht van het primaire gebeurtenistype, omhoog of omlaag in de call
hierarchy. Elke gekleurde rechthoek stelt een functie voor; de grootte komt ongeveer overeen
met de gespendeerde kosten als de functie actief is (maar, er zijn beperkingen in de weergave).

Voor de Aanroeperskaart, toont de graaf de geneste hierarchy van alle aanroepers in de huidige
geselecteerde functie; voor de Aangeroepenenkaart, toont het voor alle aangeroepenen.

Weergave instellingen kunt u in het context menu vinden. Om precieze afmetingen te krijgen,
selecteert u Incorrecte Borders overslaan. omdat deze modus veel computer-tijd kan gebruiken,
wilt u wellicht het maximum aantal drawn nesting level beperken. Best determinates the split
direction for children from the aspect ratio of the parent. Altijd Best beslist over de overblijvende
ruimte voor elk broer. Ignore Proportions ruimte in beslag neemt voor de naam van de functie
die van de kinderen afgaat. Merk op dat de proporties van de afmetingen erg kunnen afwijken.

Toetsenbord navigatie is beschikbaar met de links en rechts pijltjestoetsen om door de neefjes te
wandelen en de omhoog en omlaag pijltjestoetsen om een genest niveau omhoog en omlaag te
gaan. Enter selecteert het huidige item.

3.5.4 Graaf aanroepen

Deze weergave toont de aanroep graaf rond de actieve functie. De getoonde kosten zijn alleen
de gebruikte kosten als de actieve functie daadwerkelijk heeft gewerkt, bijv. de getoonde kosten
voor main () (als het zichtbaar is) zou hetzelfde moeten zijn als de kosten van de actieve functie,
omdat dit het gedeelte van de gebruikte inclusieve kosten zijn vanmain () terwijl het een werkend
actieve functie was.

Voor cycles, geven blauwe call pijlen aan dat dit een kunstmatige call is, die nooit echt is gebeurt,
toegevoegd voor een correcte weergave.

Als de graaf groter is dan de weergavezone, dan krijgt u een bird’s eye view aan de zijkant te
zien is. De opties voor weergave zijn vergelijkbaar met die van de call maps; de geselecteerde
functie is gemarkeerd.

15

Het handboek van KCachegrind

3.5.5 Annotaties

De annotaties van broncode of assembler lijsten tonen de broncoderegels of disassembled instruc-
ties van de huidige actieve functie samen met (zelf) gebruikte kosten voor het uitvoeren van de
code van een broncoderegel of instructie. Als er een call was , dan zijn de regels met details over
de call aan de bron toegevoegd: de (inclusieve) in de call gebruikte kosten, het aantal uitgevoerde
calls, en het doel van de call.

Selecteer dergelijke informatieregel over een call om het call-doel te activeren.

16

Het handboek van KCachegrind

Hoofdstuk 4

Overzicht van de opdrachten

4.1 Het hoofdvenster van KCachegrind

4.1.1 Het menu Bestand

Bestand — Nieuw (Ctrl+N)

Opent een leeg top-level venster waarin u profielgegevens kunt laden. Deze actie is niet
echt noodzakelijk, omdat Bestand — Openen u een nieuw top-level venster geeft indien
de huidige al gegevens toont.

Bestand — Openen (Ctrl+0O)

Opent het KDE-bestand venster voor het kiezen welk profielbronbestand u wilt laden. Als
er al data zichtbaar is in huidige top-level venster, dan opent een nieuw venster; als u
extra profielgegevens in in het huidige venster openen, dan moet u Bestand — Toevoegen
gebruiken.

De namen van de profielbronbestanden eindigen meestal in .pid.part-threadID, waar p
art en threadID optioneel zijn. pid en part worden gebruikt in het geval dat meerdere
profielbronbestanden bij een programma run horen. Door het laden van een bestand dat
met alleen pid eindigt, zullen de ander bestanden die bij deze run horen met extra karakters
eindigen ook geladen worden.

Als er de profielbronbestanden cachegrind.out.123 en cachegrind.out.123.1 bestaan ,
dan zal u door de eerste te laden, automatisch ook de tweede laden.

Bestand — Toevoegen

Voegt een profielbronbestand toe aan het huidige venster. Door dit te gebruiken, kunt u
het laden van meerdere data-bestanden in hetzelfde top-level venster forceren zelfs als ze
van dezelfde run zijn, zoals ingesteld door de profielbronbestand-conventie. U kunt dit
bijvoorbeeld gebruiken voor het naast elkaar vergelijken.

Bestand — Herladen (F5)
Herlaad de profielgegevens. Dit is handig als nog een profielbronbestand is gegenereerd
voor een al geladen programma run.

Bestand — Afsluiten (Ctrl+Q)

Beéindigt KCachegrind

17

Het handboek van KCachegrind

Hoofdstuk 5

Vragen en antwoorden

1. Waar is KCachegrind voor? Ik heb geen idee.

KCachegrind is behulpzaam in een late fase van software ontwikkeling, profilering ge-
naamd. Als u geen programma’s ontwikkelt, dan heeft u KCachegrind niet nodig.

2. Wat is het verschil tussen Incl. en Self?

Dit zijn kostenelementen voor functies wat betreft sommige gebeurtenistypen. Omdat
functies elkaar kunnen aanroepen (call), is het zinnig om onderscheidt te maken tussen
de kosten van de functie zelf (‘Self Cost’) en de kosten incusief alle aangeroepen functies
("Inclusieve kosten’). Aan ‘Self” wordt soms ook gerefereerd als ‘Exclusieve’ kosten.

Dus, bijvoorbeeld, voor main (), heeft u altijd inclusieve kosten van bijna 100%, waar de
kosten zelf bijna verwaarloosbaar is omdat het echte werk in andere functies wordt gedaan.

3. Als ik dubbelklik op een functie lager in de Call Graph weergave, dan toont voor de functie main ()
dezelfde kosten als de gekozen functie. Zou dit niet constant 100% moeten zijn?

U een heeft een functie onder main () geactiveerd, die uiteraard minder kost dan main ()
zelf. Voor elke functie, wordt alleen het gedeelte van de kosten getoond als de geactiveerde
functie werkend is; dat houdt in, dat de getoonde kosten voor elke functie kan nooit hoger
zijn dan de kosten van de geactiveerde functie.

18

Het handboek van KCachegrind

Hoofdstuk 6

Woordenlijst

Kostenelementen

Een abstract item in relatie tot broncode waaraan gebeurteniskosten kunnen worden toe-
gewezen. Dimensies voor kostenelementen zijn code locatie (bijv. coderegel, functie), data
locatie (bijv. accessed data type, data object), executie locatie (bijv. thread, process), en
tuples of triples van de eerder genoemde posities (bijv. calls, object access van statement,
evicted data van cache).

Gebeurteniskosten

Totaal aantal gebeurtenissen van een bepaalde gebeurtenistype die optreden tijdens de uit-
voering en die een relatie met een bepaalde kostenelement hebben. De kosten hebben een
relatie met het element.

Gebeurtenistype

Het soort gebeurtenis waarbij kosten aan een kostenelement kunnen worden toegewezen.
Er zijn echte gebeurtenistypen en inherited event types.

Inherited gebeurtenistype

Een virtueel gebeurtenistype alleen zichtbaar in de weergave, gedefinieerd door een for-
mule zodat het uit echte gebeurtenistypen kan worden berekent.

Profielgegevensbestand

Een bestand met in een profilering-experiment gemeten data, of een gedeelte daarvan, of
geproduceerd door post-processing van een trace. De grootte daarvan is standaard linear
met de grootte van de code van het programma.

Profile Data Part
Data van een profielgegevensbestand
Profilering-experiment
Een programma dat werkt onder supervisie van profileringsprogramma, mogelijk meer-
dere profielgegevensbestanden van gedeeltes of threads van de run producerend.
Profilering project

Een configuratie voor profilering experimenten gebruikt om een programma te profileren,
misschien in meerdere versies. Vergelijkingen van profilering data is standaard alleen zin-
vol tussen profilering data geproduceerd in experimenten van een profilering project.

Profileren

Het proces van het verzamelen van statistische informatie over runtime karakteristieken
van werkende programma’s.

19

Het handboek van KCachegrind

Echt gebeurtenistype
Een gebeurtenistype dat meetbaar met een hulpprogramma. Dit vereist een sensor voor het
gegeven gebeurtenistype.

Trace

Een rij van timestamped gebeurtenissen die optraden tijdens het tracen van programma
run. De grootte is standaard linear met de executie tijd van de programma run.

Trace Part
Zie "Profile Data Part".
Tracing

Het proces van supervising een programma run en het opslaan van de gebeurtenissen,
gesorteerd op een timestamp, in een output-bestand, de trace.

20

Het handboek van KCachegrind

Hoofdstuk 7

Dankbetuiging en licentie

Dank aan Julian Seward voor zijn uitstekende Valgrind, en Nicholas Nethercote voor de uitbrei-
ding Cachegrind. Zonder deze programma’s zou KCachegrind niet bestaan. Sommige ideeén
voor deze GUI zijn van hun afkomstig.

Dank voor alle bug-rapporten en suggesties van verschillende gebruikers.

Op- of aanmerkingen over de vertalingen van de toepassing en haar documentatie kunt u melden
op http://www.kde.nl/bugs.

Dit document is vertaald in het Nederlands door Freek de Kruijf freekdekruijf@kde.nl.

Dit document is vertaald in het Nederlands door Ronald Stroethoff stroet43@zonnet.nl.
Deze documentatie valt onder de bepalingen van de GNU vrije-documentatie-licentie.

21

http://www.kde.nl/bugs
mailto:freekdekruijf@kde.nl
mailto:stroet43@zonnet.nl
fdl-translated.html

	Inleiding
	Profileren
	Profileringmethodes
	Profileringshulpmiddelen
	Visualisatie

	KCachegrind gebruiken
	Data-productie voor visualisatie
	Callgrind
	OProfile

	Gebruikersinterface

	Basis idee
	Het Data Model voor Profile Data
	Kostenelementen
	Gebeurtenistypen

	Toestand visualisatie
	Onderdelen van GUI
	Zijdocken
	Weergavezone
	Zones van een Tab
	Gesynchroniseerde weergave met geselecteerde element in een Tab
	Synchronisatie tussen Tabs
	Indelingen

	Zijdocken
	Kostenprofiel
	Overzicht van de onderdelen
	Aanroepstapel

	Weergaven
	Gebeurtenistype
	Aanroep lijsten
	Kaarten
	Graaf aanroepen
	Annotaties

	Overzicht van de opdrachten
	Het hoofdvenster van KCachegrind
	Het menu Bestand

	Vragen en antwoorden
	Woordenlijst
	Dankbetuiging en licentie

