
The PolicyKit-kde manual

Daniel Nicoletti

The PolicyKit-kde manual

2

Contents

1 Overview 5

2 How it works 6
2.1 Overview . 6
2.2 The problem . 6

2.3 The solution . 6

3 Authorization manager 7

3.1 Manual . 7

4 Authorization Agent 10

4.1 Manual . 10
4.2 Authorization Agent dialog . 10

5 Credits and License 14

Abstract

PolicyKit-kde is a KDE front end to the PolicyKit system that is used to manages authenti-
cation.

PolicyKit is a toolkit designed to allow unprivileged processes to speak to privileged pro-
cesses. It does that by centralizing information of actions and authorized applications.

The PolicyKit-kde manual

Chapter 1

Overview

PolicyKit-kde is a implementation of PolicyKit tool to the look and feel of KDE.

PolicyKit allows easy and secure password management, it can be used by applications to ask
their users for a password. Each application defines a set of actions that can be executed by
their program. The application will call PolicyKit to see if the user can perform a given action,
if not, the application can issue the auth dialog where the user can enter his/her password, root
password, the password of a given group of users or even swipe the finger.

PolicyKit-kde consists of two applications: The Authorization agent that receives requests for
authentication, and shows a dialog asking for a password. The Authorization manager that is
used to manage the authorizations, it is mainly used by system administrators that may want to
change the default behavior of a program policies.

For Qt/KDE developers there is Qt library to allow easy integration with you application and
PolicyKit.

For more information of how PolicyKit works, it’s design and API visit PolicyKit Library Refer-
ence Manual

5

http://hal.freedesktop.org/docs/PolicyKit/
http://hal.freedesktop.org/docs/PolicyKit/

The PolicyKit-kde manual

Chapter 2

How it works

2.1 Overview

PolicyKit has a simple way of working, but it requires some design changes from the applications
that want to use it to request passwords.

2.2 The problem

In GUI applications the common way to gain root privileges is to start it as root, but there are
several security risks in doing this method and it does not allow a good actions mapping. There
is no way to separate actions like package-install of system-upgrading. All the users who want
to use it must have the root password. Another common approach is using sudo but once you
start an application with sudo you will have all the rights the root user will have. If for example
the GUI application has a dialog to select files that dialog is running as root which means that the
user might be able to delete any file on his machine or even coping others user files.

2.3 The solution

With PolicyKit this problem is solved. The application in question just need to separate the priv-
ileged code into another application, often called helper (which will not have a GUI), then maps
the desired actions into a ‘.policy’ file. PolicyKit then loads this file and it can now authenticate
applications to use those actions. The use of D-Bus activated applications is the best if not the
only, way of putting an helper application to run with root privileges.

With this design the GUI application calls an action of the helper application through D-Bus,
which will start the helper with root privileges, and informing it which action was requested and
which application has requested it. The helper application now calls the PolicyKit agent to see if
that application can do the given task, the helper should report if it could do the requested action.
In case the helper saw that the application didn’t have enough rights the GUI will then need to
ask PolicyKit to obtain an authorization.

When PolicyKit receives the request to obtain an authorization it issues an available Agent, which
might happen to be PolicyKit-kde if available. After a successful authentication the GUI applica-
tion needs to call the helper repeating the same operation again.

6

The PolicyKit-kde manual

Chapter 3

Authorization manager

3.1 Manual

The Authorization manager is the application that system administrators can use to easily change
the default behavior of any actions. This page does not aim to explain how to create new actions
or define new ‘.policy’ files.

The Authorization screen is divided in two parts, at the left we have all the actions that PolicyKit
knows, you are able to search the actions using the search bar at the top, and at the right we have
the selected action. This screenshot shows the main Authorization screen:

When you select an action it’s details will be shown at the right side, the action might have an
icon, a description and the vendor name. Next in the view we have the ‘Implicit Authorizations’
and ‘Explicit Authorizations’.

The ‘Implicit Authorizations’ are authorizations automatically given to users based on certain
criteria such as if they are on the local console. These authorizations are read from the ‘.policy’
files that the given application defined, they are the defaults settings of the action. These are the
valid values

7

The PolicyKit-kde manual

• no

• auth_self_one_shot

• auth_self

• auth_self_keep_session

• auth_self_keep_always

• auth_admin_one_shot

• auth_admin

• auth_admin_keep_session

• auth_admin_keep_always

• yes

You can change these defaults values simply by changing it on the combo box, the not bold value
is the default one so if you want to change one value back you can select it, to make you selection
take effect you have to click on the ‘Modify’ button. The ‘Revert to defaults’ can be used to
change all ‘Implicit Authorizations’ to it’s defaults values. Note that both ‘Modify’ and ‘Revert
to defaults’ requires you to issue the PolicyKit ‘org.freedesktop.policykit.modify-defaults’ action
which might ask a password.

The ‘Explicit Authorizations’ are authorizations that are either obtained through authentication
process or specifically given to the action in question. The default behavior is to only show the
current user explicit authorizations; if you want to see others users explicit authorizations click
on the ‘Show authorizations from all users’, note that this requires you to issue the PolicyKit
‘org.freedesktop.policykit.read’ action which might ask a password. Blocked authorizations are
marked with a ‘STOP’ sign.

The ‘Revoke’ button is used to revoke an explicit authorization. Note that this requires you to
issue the PolicyKit ‘org.freedesktop.policykit.revoke’ action which might ask a password.

If you want to specifically grant or block a given user of performing a given action you can click
on the ‘Grant’ or ‘Block’. The following screenshot you see the Grant/Block dialog:

8

The PolicyKit-kde manual

To grant/block explicit authorizations you have to select the user that will receive the authoriza-
tion. You can also select the ‘Constraints’ to limit the authorization such that it only applies under
certain circumstances.

WARNING
Be aware that explicit blocking and authorization might self lock you of performing the given action so
be sure of what you are doing

Note that this requires you to issue the PolicyKit ‘org.freedesktop.policykit.grant’ action which
might ask a password.

9

The PolicyKit-kde manual

Chapter 4

Authorization Agent

4.1 Manual

The Authorization Agent is the application that is called whenever an user wants to obtain a
given authorization. It’s a D-Bus activated daemon which uses ‘libpolkit-grant’ that in turn uses
PAM for authentication services (however, other authentication back-ends can be plugged in as
required).

4.2 Authorization Agent dialog

The appearance of the authentication dialog depends on the result from PolicyKit and also
whether administrator authentication is defined as ‘authenticate as the root user’ or ‘authenti-
cate as one of the users from UNIX group wheel’ or however the PolicyKit library is configured
(see the PolicyKit.conf(5) manual page for details). Note that some of the screenshots below were
made on a system set up to use the ThinkFinger PAM module. The text shown in the authentica-
tion dialogs stems from the PolicyKit .policy XML files residing in /usr/share/PolicyKit/policy
and is read by the authentication daemon when an applications asks to obtain an authorization.
Thus, what the user sees is not under application control (e.g. it’s not passed from the applica-
tion) which rules out a class of attacks where applications are trying to fool the user into gaining
a privilege.

The authentication dialog where the user is asked to authenticate as root using the password
or swiping the finger. The details shows the application that’s requesting the action, the action
itself and the action vendor. If clicking in the action link it will open the authorization manager
pointing to the given action, and the vendor might also provide a link for the given action that
will be fired when clicking on the ‘Vendor’ link:

10

http://thinkfinger.sourceforge.net/

The PolicyKit-kde manual

Authentication dialog where the user is asked to authenticate as an administrative user and Pol-
icyKit is configured to use the root password for this:

Authentication dialog where the user is asked to authenticate as an administrative user and Pol-
icyKit is configured to use a group for this:

11

The PolicyKit-kde manual

Same authentication dialog, showing drop down box where the user can be selected:

Authentication dialog showing an Action where the privilege can be retained indefinitely:

12

The PolicyKit-kde manual

Authentication dialog showing an Action where the privilege can be retained only for the re-
mainder of the desktop session:

13

The PolicyKit-kde manual

Chapter 5

Credits and License

PolicyKit-kde

Program copyright 2008-2009 Daniel Nicoletti

Documentation copyright 2008-2009 Daniel Nicoletti

This documentation is licensed under the terms of the GNU Free Documentation License.

14

fdl-license.html

	Overview
	How it works
	Overview
	The problem
	The solution

	Authorization manager
	Manual

	Authorization Agent
	Manual
	Authorization Agent dialog

	Credits and License

