Manuel de Kalzium

Carsten Niehaus
Traduction française : Ludovic Grossard
Traduction française : Gérard Delafond
Traduction française : Anne-Marie Mahfouf
Traduction française : Yohann Hamon
Traduction française : Olivier Delaune
Manuel de Kalzium
Table des matières

1 Introduction .. 6

2 Guide de démarrage rapide de Kalzium 7

3 Utilisation de Kalzium 10
 3.1 Vue d’ensemble de l’usage de Kalzium 10
 3.2 La boîte de dialogue d’information 10
 3.2.1 Vue d’ensemble des données 11
 3.2.2 Orbitales de Bohr 11
 3.2.3 Isotopes ... 12
 3.2.4 Divers ... 13
 3.2.5 Spectre .. 14
 3.2.6 Informations supplémentaires 14
 3.3 Tableaux ... 15
 3.4 Numérotation .. 15
 3.5 Modèles de couleurs 16
 3.6 Gradients ... 16
 3.7 Outils .. 17
 3.7.1 Éditeur moléculaire 17
 3.7.2 Table des isotopes 18
 3.7.3 Tracer les données 19
 3.7.4 Réaliser les calculs 20
 3.7.5 Phrases de risque / sécurité 24
 3.7.6 Glossaire .. 25
 3.7.7 Tableaux ... 26
 3.7.8 Panneau latéral 27
 3.7.8.1 Vue d’ensemble 27
 3.7.8.2 Affichage 27

4 Configuration de Kalzium 30

5 Référence des commandes 33
 5.1 Menus et touches de raccourci 33
 5.1.1 Le menu Fichier 33
 5.1.2 Le menu Affichage 33
 5.1.3 Le menu Outils 35
 5.1.4 Les menus Configuration et Aide 35
Résumé

Kalzium est un programme qui vous montre le tableau périodique des éléments. Vous pouvez utiliser Kalzium pour rechercher des informations sur les éléments ou pour apprendre des choses sur le tableau périodique.
Chapitre 1

Introduction

Kalzium vous fournit toutes sortes d’informations sur le tableau périodique des éléments. Vous pouvez découvrir beaucoup d’informations sur les éléments et utiliser l’afficheur pour les voir. C’est libre et sous licence GNU.

Vous pouvez afficher le tableau périodique des éléments par groupe, par bloc et par famille. Vous pouvez tracer des données pour un ensemble d’éléments, telles que la température de vaporisation ou la masse atomique, pour un éventail d’éléments. Vous pouvez revenir dans le temps et voir quels éléments étaient connus à une date donnée. Vous pouvez également calculer la masse molaire de molécules.
Chapitre 2

Guide de démarrage rapide de Kalzium

Voici Kalzium tel qu’il apparaît la première fois que vous le démarrez soit en sélectionnant Applications → Education → Science → Kalzium dans le menu K ou avec Alt+F2 et en saisissant kalzium dans le champ de texte.

Kalzium est divisé en un panneau de navigation sur la gauche (en rouge), l’affichage du tableau (en bleu) qui affiche les éléments du tableau périodique et un panneau de légende en bas (en vert). La barre de menu standard vous permet de choisir ce que vous voulez afficher et la barre d’état affiche les données. Vous pouvez cacher le tableau et les panneaux en utilisant le menu Affichage. Par exemple, vous pouvez cacher le panneau d’information avec Affichage → Information.

Lorsque vous déplacez le pointeur de la souris sur un élément du tableau, une vue d’ensemble de l’élément courant est affichée dans l’onglet Vue d’ensemble du panneau de navigation.

Vous pouvez choisir plusieurs types d’affichage pour le tableau : tableau périodique classique, tableau périodique court, tableau périodique étendu, etc. Il est également possible de modifier le
Manuel de Kalzium

schéma de numérotation ou d’afficher les éléments par famille, par groupe, par structure cristalline, en fonction de leur comportement acide, etc.. Vous pouvez changer tout cela dans le menu Affichage.

Si vous voulez connaître certaines données sur un élément particulier, cliquez dessus dans le tableau et la boîte d’information s’affichera.

Vous pouvez tracer des données en utilisant l’élément du menu **Outils → Tracer les données**.... Vous choisissez ce que vous voulez tracer sur l’axe des y et une sélection d’éléments à tracer sur l’axe des x. La copie d’écran ci-dessous montre la masse atomique des éléments 1 à 10.

Le glossaire (**Outils → Glossaire**...) définit les mots de la chimie les plus importants et vous affiche des images des instruments les plus communs ainsi qu’une explication.
Barreau magnétique

Les barreaux magnétiques sont très inertes chimiquement. La plupart des systèmes de chauffage ont un amant intégré qui peut tourner, cela provoque la rotation du barreau et le mélange devient ainsi homogène.
Chapitre 3

Utilisation de Kalzium

3.1 Vue d’ensemble de l’usage de Kalzium

Kalzium est simple à utiliser. Il est spécialement destiné aux étudiants de tous âges pour utiliser une base de données simple et rapide.

Voici une capture d’écran de Kalzium en action :

3.2 La boîte de dialogue d’information

La boîte de dialogue d’information est obtenue en cliquant avec bouton gauche de la souris sur n’importe quel élément. C’est l’endroit où vous obtenez des informations sur un élément. À l’aide des boutons en bas de la boîte de dialogue, vous pouvez changer l’élément qui est affiché sans fermer la boîte de dialogue.
3.2.1 Vue d’ensemble des données

La page Vue d’ensemble des données vous donne des informations sur différentes données relatives à l’élément.

En fonction des données disponibles dans Kalzium vous verrez différents rayons pour l’élément. Le rayon de covalence est le rayon d’un atome neutre de l’élément dans une molécule. Un exemple pourrait par exemple être la distance O-H dans l’eau. Le rayon atomique est le rayon d’un atome élémentaire, c’est-à-dire non lié à quoi que ce soit. Le rayon de van der Waals est défini comme la distance de deux atomes du même élément dans deux molécules identiques, par exemple deux atomes de carbone dans le propane. Le dernier rayon disponible est le rayon ionique qui prend en compte la charge.

La masse d’un élément est la moyenne des masses de ses isotopes pondérées par leur pourcentage respectif.

![Vue d’ensemble des données](image)

3.2.2 Orbitales de Bohr

La page Modèle de l’atome affiche les orbitales atomiques. Chaque cercle représente une orbitale atomique et chaque point jaune un électron.
3.2.3 Isotopes

La page Isotopes vous donne des informations sur les isotopes d’un élément.

Masse
La masse de cet isotope.

Neutrons
Le nombre de neutrons que cet isotope possède.

Pourcentage
Le pourcentage d’atomes étant de ce type d’isotope. Aussi appelé abondance.

Temps de demi-vie
Seuls les isotopes instables ont un temps de demi-vie. Il est défini comme le temps au cours duquel la moitié des isotopes s’est désintégrée.

Énergie et mode de désintégration
Quelques isotopes sont connus pour émettre des particules radiatives durant le processus de désintégration radioactive. Chaque désintégration dégage une quantité donnée d’énergie, laquelle est notée avec le mode de désintégration.

Spin et parité
Le spin du noyau et sa parité.

Moment magnétique
Le moment magnétique dipolaire du noyau. Mesuré en unités de magnéton nucléaire.
3.2.4 Divers

La page Divers vous donne d’autres informations sur l’élément courant, incluant sa date de découverte et l’origine de son nom.
3.2.5 Spectre

La page Spectre vous donne le spectre des éléments. Vous pouvez choisir la gamme de longueurs d’onde, les unités et le type de spectre. Le tableau d’intensité peut être vu dans la partie en bas à droite de la page.

3.2.6 Informations supplémentaires

La page Informations supplémentaires vous donne des liens vers les articles de Wikipédia, du Jefferson Lab, et de WebElements.
3.3 Tableaux

Le tableau périodique peut être représenté de différentes manières. Vous pouvez modifier la vue du tableau à partir du menu Affichage ou de la liste déroulante de la barre d’outils.

Les options suivantes dans le menu Affichage Tables peuvent être utilisées pour changer le tableau affiché :

Tableau périodique des éléments classique
Affiche un tableau périodique classique avec tous les éléments.

Tableau périodique des éléments court
Affiche un tableau périodique sans les éléments de transition.

Tableau périodique des éléments étendu
Affiche un tableau périodique avec les éléments de transition (bloc f) inclus.

Éléments de transition
Affiche un tableau périodique composé uniquement des éléments de transition.

Tableau périodique des éléments DZ
Cet objet représente la table que la DZ Deutscher Zentralausschuss « German Central Comitee » propose.

3.4 Numérotation

La numérotation est la façon de numéroter les 18 groupes du tableau périodique. Vous pouvez changer la numération en IUPAC, ancien IUPAC ou CAS ou encore la désactiver complètement.

Les options suivantes dans le menu Affichage Numérotation peuvent être utilisées pour changer les numérotations affichées :
— Pas de numérotation : si cette option est activée, aucune numérotation de groupe ne sera utilisée.
— **IUPAC** (par défaut) signifie *International Union of Pure and Applied Chemistry*. C’est une organisation qui définit les standards en ce qui concerne la chimie. Le nouveau système IUPAC numérote chaque colonne avec des chiffres arabes de 1 (un) à 18 (dix-huit).

— **CAS** signifie *Chemical Abstracts Service*. Dans le système CAS, les lettres **A** et **B** désignent les éléments du groupe principal (**A**) et les éléments de transition (**B**). Bien que la numérotation IUPAC soit la numérotation officielle, la numérotation CAS est toujours utilisée dans les salles de classe et les laboratoires.

— L’ancien système **IUPAC** numérotait les colonnes avec des chiffres romains suivis soit par la lettre “**A**”, soit par la lettre “**B**”. Les colonnes étaient numérotées de la façon suivante : les colonnes de un à sept étaient numérotées de “**IA**” à “**VIIA**”, les colonnes de 8 à 10 étaient numérotées “**VIIIA**”, les colonnes de 11 à 17 étaient numérotées “**VIIIB**” et la colonne 18 était numérotée “**VIII**”. À cause de la confusion entre les systèmes de l’ancien IUPAC et du CAS, l’IUPAC adopta son nouveau système.

3.5 Modèles de couleurs

Kalzium peut vous montrer où sont les éléments en fonction de leur “bloc” et “groupe” périodique, leur comportement avec l’acide et sous quel état de la matière (c’est-à-dire solide, liquide, gaz) ils se trouvent à une température donnée.

Les modèles de couleur peuvent être changés dans le menu **Affichage → Modèle de couleurs**, dans la liste déroulante de la barre d’outils, ou dans l’onglet **Affichage** du panneau latéral.

— **Monochrome** : tous les éléments ont la même couleur. Vous pouvez changer la couleur par défaut en choisissant **Configuration → Configurer Kalzium**, puis en allant dans la page **Couleurs**.

— **Blocs** : affiche une couleur différente pour chaque bloc.

— **Iconique** : affiche une icône pour chaque élément.

— **Famille** : représente chacune des neuf familles à l’aide d’une couleur.

— **Groupes** : affiche une couleur pour chaque groupe. Un groupe est une colonne verticale dans le tableau périodique des éléments. Il y a 18 groupes dans le tableau périodique standard. Les éléments d’un même groupe ont des configurations similaires dans leurs couches de valence électroniques, ce qui leur donne des propriétés similaires.

3.6 Gradients

L’affichage graduel présente les éléments, en fonction d’une propriété que vous pouvez sélectionner en dessous, à l’aide d’une variation de couleurs. Les éléments pour lesquels les données ne sont pas disponibles sont affichés en gris.

Les gradients peuvent être changés dans le menu **Affichage → Gradients**, dans la liste déroulante de la barre d’outils, ou dans l’onglet **Affichage** du panneau latéral.
Les gradients suivants sont pris en charge
— Aucun : n’utilise aucun gradient.
— État de la matière
— Rayon de covalence
— van der Waals : gradient par rayon de van der Waals.
— Masse atomique
— Point d’ébullition
— Point de fusion
— Électronégativité (Pauling)
— Affinité électronique
— Date de découverte
— Énergie d’ionisation

3.7 Outils

3.7.1 Éditeur moléculaire

L’éditeur moléculaire vous permet d’afficher et de modifier des molécules en utilisant les bibliothèques Avogadro.

Le panneau Statistiques affiche le nom (si disponible), la formule, et la masse de la molécule.

L’onglet Affichage peut être utilisé pour modifier la Qualité de l’image (Basse, Moyenne, ou Haute, peut être utilisé sur les systèmes peu puissants), le Style (choisir parmi Boules et bâtons,
Bâtons, Van der Waals, ou Fil de fer), 2ème style (choisir parmi Aucun, Ruban, Anneau, ou Orbitale moléculaire), et Libellés (choisir parmi Aucun, Numéro des atomes, Noms des éléments, ou Symbole des éléments).

L’onglet Modifier permet de modifier une molécule. Vous pouvez ajouter des éléments en les choisissant dans la liste déroulante Éléments et en cliquant avec le bouton gauche de la souris dans le panneau d’affichage. La molécule peut être optimisée en cliquant sur le bouton Optimiser.

L’onglet Mesure peut être utilisé pour mesurer des distances et des angles dans une molécule. Pour réaliser la mesure, utilisez les instructions données dans cet onglet.

La molécule sera affichée sur la droite de la fenêtre de l’éditeur moléculaire. Utilisez le bouton gauche de la souris pour tourner la molécule, le bouton droit de la souris pour la bouger, et le bouton central de la souris pour zoomer.

3.7.2 Table des isotopes

Table des isotopes... vous montre les isotopes des éléments.

Il existe plusieurs sortes d’isotopes, certains sont stables, d’autres ne le sont pas. Les isotopes instables peuvent décroître par rayonnement alpha ou par un des deux rayonnement bêta qui existent. Ces différences sont schématisées par différentes couleurs.
Kalzium peut afficher les isotopes d’un ensemble d’éléments.

3.7.3 Tracer les données

La boîte de dialogue *Tracer les données...* vous permet de tracer certaines informations sur des éléments. L’axe des abscisses représente une plage d’éléments (d’un nombre donné jusqu’à un nombre plus élevé). Vous fixez cette plage en utilisant les champs *Premier élément* et *Dernier élément* dans la boîte de dialogue.

Kalzium peut tracer des données pour une plage d’éléments.
3.7.4 Réaliser les calculs

Réaliser les calculs correspond au calculateur de Kalzium. Ce calculateur contient une variété de calculateurs pour différentes tâches réalisant différents calculs.

Vous pouvez trouver les calculateurs suivants dans Kalzium

Calculateur de masse moléculaire

Ce calculateur vous aide à calculer les masses moléculaires de différentes molécules. Vous pouvez saisir des noms abrégés pour la molécule en rajoutant des alias.

![Image du calculateur de masse moléculaire]

Kalzium calcule la masse moléculaire du phénol.

Calculateur de concentrations

Vous pouvez calculer des quantités telles que

— la quantité de matière
— le volume de solvant
— la concentration de matière

Il existe une large gamme d’unités à choisir et différentes méthodes pour indiquer les quantités.
Kalzium calcule les paramètres de la solution.

Calculateur nucléaire
Ce calculateur utilise les données nucléaires disponibles dans Kalzium pour prédire la masse attendue d’un matériau au bout d’un certain temps.

Kalzium calcule les paramètres de décroissance de l’uranium.

Calculateur de gaz
Ce calculateur permet de calculer les valeurs de température, pression, volume, quantité de gaz, etc. pour différents gaz, parfaits ou non.
Kalzium calcule des paramètres de gaz.

Calculateur de titrage

Ce calculateur essaie de trouver le meilleur point d’équivalence d’un titrage suivi par pH-mètre en utilisant une tangente hyperbolique. Vous pouvez aussi le laisser résoudre un système d’équations à l’équilibre and voir comment la concentration d’une espèce évolue en fonction d’une autre. Il y a deux onglets dans la page du calculateur, à savoir :

Valeurs expérimentales

Vous pouvez utiliser ce calculateur pour tracer les données expérimentales que vous avez obtenues durant le titrage et trouver le volume d’équivalence. Il est fortement recommandé d’insérer un nombre pair de points, du fait de l’algorithme de meilleur ajustement, triés par volume (la valeur de l’axe X).

Équations théoriques

Vous pouvez ici remplir le tableau avec les équations que vous obtenez précédemment pour l’équilibre chimique.

Par exemple, si vous avez cette réaction $A + B \rightarrow C + D$ alors vous aurez cette équation $K = (C \times D) / (A \times B)$ ainsi vous devrez écrire K dans la colonne *Paramètre* et $(C \times D) / (A \times B)$ dans la colonne *Valeur*. Si vous voulez assigner une valeur connue à un paramètre, vous pouvez simplement écrire la valeur numérique dans le champ *Valeur*.

Par exemple, vous pouvez utiliser le système

\[A = (C + D) / (B + K) \]
\[K = 10^{-3} \]
\[C = \text{OH} \]
\[\text{OH} = (10^{-14}) / H \]
\[H = 10^{-4} \]
\[B = 6 \times 10^{-2} \]

Alors vous devez écrire D pour l’*axe X* et A pour l’*axe Y* : ainsi, vous trouverez comment la concentration de A évolue en fonction de la concentration de D.

NOTE

N’utilisez pas de parenthèse pour les exposants 10^{-3} est correct, tandis que $10^{-(-3)}$ ne l’est pas.
Manuel de Kalzium

Les résultats peuvent être affichés en appuyant sur le bouton **Tracer**. Le graphique affiche en rouge la courbe prévue par la théorie, en bleu les points expérimentaux, et en vert la courbe approximative des points expérimentaux. Vous pouvez enregistrer le graphique au format SVG.

Exemple prédéfini d’un résultat de titrage.

Solveur d’équations

Le **Solveur d’équations** permet à l’utilisateur de résoudre des équations chimiques. Voici un exemple :

\[aH_2O + bCO_2 \rightarrow cH_2CO_3 \]

L’équation résolue sera affichée en haut de la fenêtre. Comme vous pouvez le constater avec le premier exemple, vous pouvez également définir la valeur d’un ou de plusieurs coefficients. Les autres coefficients seront ajustés. De plus, il est possible d’utiliser des crochets autour des éléments ou des charges électroniques comme cela est montré dans les deux exemples suivant.

23
Kalzium calcule des équations chimiques.

3.7.5 Phrases de risque / sécurité

Les phrases R / S, aussi appelées phrases de risques / sécurité, ou encore conseil de prudence pour les phrases S, est un système de codes et de phrases de danger utilisé pour l’étiquetage des composés et produits chimiques dangereux. La phrase R / S d’un composé est constituée d’une partie liée au risque (R) et d’une autre liée à la sécurité (S), suivis chacune par une combinaison de chiffres. Chaque numéro correspond à une phrase. La phrase correspondant à une combinaison de lettre / numéro a la même signification dans les différentes langues.
Kalzium peut afficher des phrases de risque / sécurité

3.7.6 Glossaire

Le glossaire vous donne des descriptions des instruments les plus utilisés en chimie ainsi que des connaissances générales. Sur le côté gauche de la fenêtre, vous pouvez voir l’arborescence des points traités. En haut, il y a les termes chimiques, et sous cela il y a une seconde arborescence pour les instruments de laboratoire.

En haut de la fenêtre, vous pouvez voir une barre de recherche. Si vous saisissez quelque chose, l’arborescence sera modifiée en conséquence immédiatement. Le petit bouton à l’extrémité droite de la barre de recherche la réinitialisera.
3.7.7 Tableaux

Les tableaux vous montrent les tableaux pour l’alphabet grec qui est utilisé pour nommer certaines quantités chimiques et physiques, et pour les préfixes latin et les nombres romains qui correspondent au nombres arabes standards.
3.7.8 Panneau latéral

3.7.8.1 Vue d'ensemble

L'onglet Vue d'ensemble est le premier et il vous montre une vue d'ensemble de l'élément sur lequel se trouve la souris.

3.7.8.2 Affichage

L'onglet Affichage est le second du panneau de navigation.
Il vous est d’abord présenté les icônes et le texte suivant :
Kalzium peut vous montrer quels éléments sont solides / liquides / gazeux à une température donnée.

L’onglet Affichage peut être utilisé pour filtrer le tableau périodique des éléments. Par exemple, cette fonctionnalité vous permet d’explorer l’élément sur une période de temps. C’est très bien pour avoir une idée de comment le tableau périodique a évolué avec le temps, au fur et à mesure que les éléments ont été découverts. Choisissez Date de découverte dans la liste Gradient. Si vous déplacez le curseur, vous noterez que certains éléments disparaissent si vous la déplacez vers la gauche et réapparaissent si vous la déplacez vers la droite. De plus, le nombre changera en permanence.

Ce nombre représente la date que vous recherchez. Si vous déplacez le curseur par exemple à 1856, vous ne verrez que les éléments qui étaient connus en 1856.
Le tableau périodique des éléments dans le temps (éléments connus en 1856)
Chapitre 4

Configuration de Kalzium

Kalzium dispose de plusieurs options de configuration auxquelles vous pouvez accéder en ouvrant la boîte de dialogue de configuration, en choisissant Configuration → Configurer Kalzium... depuis le menu.

Dans l’onglet Modèles, vous pouvez changer les différentes couleurs pour chacun des types de modèles.
Manuel de Kalzium

Au lieu d’utiliser un gradient linéaire pour afficher les propriétés d’un élément dans le tableau périodique, Kalzium peut utiliser un gradient logarithmique.

Dans l’onglet Gradients, vous pouvez vérifier les propriétés que vous souhaitez afficher avec un gradient logarithmique.

Vous pouvez choisir la couleur de la valeur maximale et la couleur de la valeur minimale pour le gradient.

Dans l’onglet Unités, vous pouvez choisir les unités de température, de longueur et d’énergie. Vous pouvez choisir si vous préférez électronvolt (eV), kilojoule par mole (kJ/mol) ou joule par mole (J/mol) par défaut. Pour les longueurs, choisissez picomètres (pm), nanomètres (nm) ou
Ångström (Å) par défaut. La température est en kelvin par défaut mais vous pouvez la changer pour des degrés Celsius (C), des degrés Fahrenheit (F) et des degrés Réaumur (Ré).

En utilisant la page **Calculateur**, vous pouvez configurer les calculateurs de Kalzium.
Chapitre 5

Référence des commandes

5.1 Menus et touches de raccourci

5.1.1 Le menu Fichier

Fichier → Enregistrer sous...
Enregistre les tableaux de Kalzium en tant qu’image.

Fichier → Exporter des données...
Ouvre une boîte de dialogue dans laquelle vous pouvez sélectionner les éléments et leurs propriétés pour les exporter dans un fichier HTML, XML, ou CSV.

Fichier → Convertir des fichiers...
Ouvre une boîte de dialogue pour importer et exporter un large éventail de formats de fichiers chimiques et de types de données avec la bibliothèque Open Babel.

Fichier → Quitter (Ctrl+Q)
Quitte Kalzium.

5.1.2 Le menu Affichage

Affichage → Tables → Tableau périodique des éléments classique
Affiche un tableau périodique classique avec tous les éléments.

Affichage → Tables → Tableau périodique des éléments court
Affiche un tableau périodique sans les éléments de transition.

Affichage → Tables → Tableau périodique des éléments étendu
Affiche un tableau périodique avec les éléments de transition (bloc f) inclus.

Affichage → Tables → Éléments de transition
Affiche un tableau périodique composé uniquement des éléments de transition.

Affichage → Tables → Tableau périodique des éléments DZ
Cet objet représente la table que la DZ Deutscher Zentraausschuss « German Central Comi-
tee » propose.

Affichage → Numérotation → Pas de numérotation
N'affiche aucun schéma de numérotation.

Affichage → Numérotation → IUPAC
Affiche la numérotation IUPAC.
Affichage → Numérotation → CAS
Affiche la numérotation CAS.

Affichage → Numérotation → Ancien IUPAC
Affiche la numérotation de l’ancien IUPAC.

Affichage → Modèle de couleurs → Monochrome
Affiche tous les éléments avec une seule couleur de fond.

Affichage → Modèle de couleur → Blocs
Affiche les quatre blocs d’éléments.

Affichage → Modèle de couleur → Iconique
Affiche une icône pour chaque élément.

Affichage → Modèle de couleur → Famille
Affiche les familles d’éléments.

Affichage → Modèle de couleur → Groupes
Affiche les groupes d’éléments.

Affichage → Gradients → Aucun
N’affiche aucun gradient dans le tableau.

Affichage → Gradients → État de la matière
Affiche l’état de la matière des éléments.

Affichage → Gradients → Rayon de covalence
Affiche le rayon de covalence des éléments.

Affichage → Gradients → van Der Waals
Affiche le rayon de van der Waals des éléments.

Affichage → Gradients → Masse atomique
Affiche la masse atomique des éléments.

Affichage → Gradients → Point d’ébullition
Affiche le point d’ébullition des éléments.

Affichage → Gradients → Température de fusion
Affiche la température de fusion des éléments.

Affichage → Gradients → Électronégativité (Pauling)
Affiche l’électronégativité des éléments.

Affichage → Gradients → Affinité électronique
Affiche l’affinité électronique des éléments.

Affichage → Gradients → Date de découverte
Affiche la date de découverte de chaque élément avec une couleur de fond différente pour chaque siècle.

Affichage → Gradients → Première ionisation
Affiche l’énergie de première ionisation des éléments.

Affichage → Légende
Affiche / cache le panneau de légende. Cela vous permet d’afficher la légende pour le type d’affichage dans lequel vous êtes (groupes, familles, blocs). La légende est affichée par défaut mais si vous la cachez, elle restera cachée jusqu’à ce que vous choisissiez de l’afficher à nouveau. Kalzium va conserver cette configuration dans son fichier de configuration, de sorte que la prochaine fois que vous le lancerez, vous retrouverez la configuration comme vous l’avez laissée.

Affichage → Information
Active / désactive l’affichage du panneau latéral.

Affichage → Information sur la table
Active / désactive le panneau d’information sur le tableau.
5.1.3 Le menu Outils

Outils → Éditeur moléculaire...
 Ouvre la boîte de dialogue de l’éditeur moléculaire.
Outils → Table des isotopes...
 Ouvre la fenêtre avec la table des isotopes.
Outils → Tracer les données...
 Ouvre la boîte de dialogue pour tracer les données.
Outils → Réaliser les calculs...
 Ouvre la boîte de dialogue pour réaliser les calculs.
Outils → Phrases R/S...
 Ouvre la boîte de dialogue des Phrases de risque / sécurité.
Outils → Glossaire...
 Ouvre le glossaire.
Outils → Tables...
 Affiche une boîte de dialogue avec l’alphabet grec et les nombres, préfixes et chiffres romains.

5.1.4 Les menus Configuration et Aide

Kalzium dispose des éléments de menu Configuration et Aide communs à KDE, pour plus d’informations, lisez les sections sur le menu Configuration et le menu Aide dans les Fondamentaux de KDE.
Chapitre 6

Questions et réponses

1. *Est-ce que je dois payer pour Kalzium ?*

 Non, jamais. Mais l’auteur reçoit toujours volontiers un courrier électronique sympathique ou un DVD comme “Remerciement”. Kalzium est sous licence **GPL**, et ainsi, vous n’aurez jamais à payer pour ce programme.
Chapitre 7

Comment puis-je contribuer ?

1. *Aidez moi avec des données.*
 Dans le monde des sciences, le progrès est plutôt rapide. Si vous trouvez une valeur incorrecte ou une valeur manquante, prévenez moi par courrier électronique.

2. *Trouvez des bogues ou donnez moi quelques suggestions*
 Si vous trouvez des bogues dans le programme, ou avez quelques suggestions d’améliorations, veuillez me le faire savoir à cniehaus@kde.org.
Chapitre 8

Remerciements et licence

Kalzium
Programme sous copyright, 2001-2005 Carsten Niehaus cniehaus@kde.org
Collaborateurs :
— Pino Toscano toscano.pino@tiscali.it
Traduction française par Ludovic Grossard grossard@kde.org, Gérard Delafond gerard@delafond.org, Anne-Marie Mahfouf annemarie.mahfouf@free.fr, Yohann Hamon yohann_hamon@yahoo.fr et Olivier Delaune olivier.delaune@wanadoo.fr.
Cette documentation est soumise aux termes de la Licence de Documentation Libre GNU (GNU Free Documentation License).
Ce programme est soumis aux termes de la Licence Générale Publique GNU (GNU General Public License).
Annexe A

Installation

A.1 Comment obtenir Kalzium

Kalzium se trouve dans le paquet kdeedu à l’adresse ftp://ftp.kde.org/pub/kde/ , le site FTP principal du projet KDE.

A.2 Présence sur le Web

Kalzium lui-même peut être trouvé sur la page web de Kalzium et fait partie du projet KDE édu.

A.3 Compilation et installation

Pour des informations détaillées sur comment compiler et installer les applications KDE, consultez la page Construire et Lancer KDE à partir des sources

Étant donné que KDE utilise cmake, vous ne devriez pas rencontrer de problèmes pour le compiler. Si c’est le cas, veuillez les signaler aux listes de discussions de KDE.