The Rocs Handbook

Tomaz Canabrava
Andreas Cord-Landwehr

The Rocs Handbook

Contents

2.1 Main Elements of the User Interface

The Rocs User Interface

2.2 Graph Editor Toolbar

3 Scripting

3.1 Executing Algorithms in Rocs

3.1.1

41 Exchange Rocs Projects

411

Control Script Execution

Import and Export

1 Introduction
1.1 Goals, Target Audience, and Workflows
1.2 RocsinaNutshell
121 GraphDocuments
122 EdgeTypes e
123 NodeTypes
124 Properties e
1.3 Tutorial e
1.3.1 GeneratingtheGraph
1.32 Creating the ElementTypes
133 TheAlgorithm
1.3.4 Execute the Algorithm

312 ScriptOutput
3.1.3 Scripting Engine APL L oo
Import and Export of Graph Documents

4111 Trivial Graph FileFormat
41111 Format Specification

41112 Example o

41.1.2 DOT Language / Graphviz Graph File Format
41121 Unsupported Features

41122 Example oo

O O 0 & 0 0 NN NN NN oo

10
10
11

12
12
12
12
13

The Rocs Handbook

5 Graph Layout
5.1 Laying out graphs automatically in Rocs
511 Force Based Layout.
51.1.1 Radial Tree Layout . . .

6 Credits and License

Abstract

Rocs is a graph theory tool by KDE.

The Rocs Handbook

Chapter 1

Introduction

This chapter provides an overview of the core features and the typical workflows. The most
important parts are Section 1.2 and chapter 3, which together should allow every new user to
directly start using Rocs.

1.1 Goals, Target Audience, and Workflows

Rocs is a Graph Theory Tool for everybody interested in designing and studying graph algo-
rithms. In particular, those are

¢ lecturers, who want to demonstrate algorithms to their students,
¢ students and researchers, who want to see how their algorithm perform, and

¢ everybody who is interested in data structures and algorithms.

For all them, Rocs provides an easy to use graphical editor for creating graphs, a powerful script-
ing engine to execute algorithms, and several helper tools for simulations, experiments, and
graph exports. The typical way of using Rocs is to create a graph, either by hand (i.e., dragging
nodes and edges to the whiteboard), or by using one of the graph generators. Graph algorithms
then can be implemented and executed on the created graph and all changes, which the algorithm
performs, are visible immediately in the graph editor.

The Rocs Handbook

x
Ay Riiing =

\
@
=
Ay

R IR i

.......

1.2 Rocs in a Nutshell

Every Rocs session is a project: when opening Rocs an empty project is created, when loadin
y pr0) P g pty proj g

some project it becomes the current project. Hereby, a project itself consists of graph documents,
scripts/algorithms, and a journal.

1.2.1 Graph Documents

A graph document represents the content of a whiteboard in the graph editor. It contains in-
formation about the user defined node and edge types, their properties, and about the already
created nodes and edges. This is, Rocs understands the set of all nodes and edges of a graph doc-
ument to form a (not necessarily connected) graph. Everything belonging to a graph document
is accessible by the script engine via the global object Document.

1.2.2 Edge Types

In some scenarios, graphs consist of different types of edges (e.g., an undirected graph plus the
tree edges computed by a breadh-first-search algorithm) that shall be handled and displayed dif-
ferently. For this, besides a default edge type, you can define arbitrary other edge types. Each
edge type has its individual visual representation, dynamic properties, and can be set to be ei-

ther undirected or directed. The scripting interface provides convenience methods to specifically
access only edges of specific types.

1.2.3 Node Types

Analog to edge types, you can define different types of nodes of a graph (e.g., to give some nodes
special roles). Each node type has its own visual representation and dynamic properties.

The Rocs Handbook

1.2.4 Properties

Every (node or edge) element can have properties. Those properties must be setup at the cor-
responding node or edge type. Properties are identified and accessed by their names and can
contain any value. To create new or change existing properties, use the Element Types sidebar

and use the £ Properties button to open the property dialog.

You can also use the scripting engine to access registered properties and change their values. In
the following example we assume that the property “weight” is registered for the default edge
type.

var nodes = Document.nodes ()
for (var i = 0; i < nodes.length; ++1i){
nodes[i].weight = 1i;
}
for (var i = 0; i < nodes.length; ++1i){
Console.log ("weight of node " + i1 + ": " + nodes[i].weight);

1.3 Tutorial

In this section we want to create an example project to explore some of the most important func-
tions of Rocs. The goal is to create a graph and a script that illustrates a simple 2-approximate
algorithm for the minimum vertex cover problem. The minimum vertex cover problem is the prob-
lem to find a subset of graph nodes C of minimal size such that each graph edge is connected to
at least one node in C. This problem is known to be NP-hard and we want to illustrate how to
find an approximation of factor 2 by computing a matching in the given graph.

Our goal is to visualize the relationship of the matching and the minimum vertex cover. For
this, we want to specify two edge types, one to display matching edges and one type to display
“ordinary” edges, as well as two node types that we use to distinguish nodes contained in C and
those not contained in C.

1.3.1 Generating the Graph

For creating the graph, we use a default graph generator provided by Rocs. This can be found
in the main menu at Graph Document — Tools — Generate Graph. There, we select a Random
Graph with 30 nodes, 90 edges, and with seed 1 (the seed is the starting seed for the random
graph generator; using the same seed multiple times results in same and reproducible graphs).

1.3.2 Creating the Element Types

We use the Element Types and create a second node type as well as a second edge type. For both
new types we open the properties dialog by using the respective Properties buttons and set the
IDs to 2. Furthermore, we change the colors of elements of these two new types (to distinguish
them from the default types). Finally, we set all edge types to be bidirectional, and the IDs of the
default types to 1.

1.3.3 The Algorithm

At last we have to implement the approximation algorithm. For this we use the following imple-
mentation:

The Rocs Handbook

for (var 1=0; i < Document.nodes.length; i++) {
Document .nodes[i].type = 1;

for (var 1i=0; i < Document.edges.length; i++) {
Document .edges[i].type = 1;

var E = Document.edges (); // set of unprocessed edges
var C = new Array(); // matching edges
while (E.length > 0) {
var e = E[0]; // we take first edge e={u,v}
var u = e.from();
var v = e.to();
e.type = 2; // set edge to be a matching edge
E.shift (); // remove e (i.e., E[0]) from edge list
C.push (u); // add u to C
C.push (v); // add v to C

// mark u,v as nodes in C
u.type = 2;
v.type = 2;

// remove from E all edges incident to u or v

var adjacent = u.edges|();
for (var 1i=0; 1 < adjacent.length; i++) {
var index = E.indexOf (adjacent[i]); // find the index
if (index != -1) {
E.splice(index, 1); // remove it if really found
}
}
var adjacent = v.edges();
for (var 1=0; i < adjacent.length; i++) {
var index = E.indexOf (adjacent[i]); // find the index
if (index !'= -1) {
E.splice(index, 1); // remove it if really found
}
}
}
Console.log ("Vertex Cover contains " + C.length + " nodes.");

1.3.4 Execute the Algorithm

The algorithm can be executed by the Run button at the script control panel.

The Rocs Handbook

Chapter 2

The Rocs User Interface

2.1 Main Elements of the User Interface

The user interface is divided into several logical parts as presented at the screenshot below.

- S - :
_ _ — 2
al s
f’f ' e o
/ m
e i
S G(\} Graph Editor %
0
. S¢ript Editor - | Script Output

Graph Editor

The editor provides a whiteboard at that nodes and edges can be placed. Double-clicking
at any of its elements opens a corresponding property menu. You can use the tools from
the Graph Editor Toolbar to create and modify graphs.

Graph Editor Toolbar
The toolbar provides the O Create Node or ‘/9 Create Edge tools, for creating
new elements on the whiteboard. Note the extra-toolbar for selecting the respective node

or edge type that becomes visible of one of these tools is selected. Also tools for selecting
and moving as well as deleting elements are available here. For details see Section 2.2.

10

The Rocs Handbook

Side Bar
At the right, you can find the side bar that provides several tools for your workflow:

¢ Element Types: This widget gives you direct access to the available edge and node types.

¢ Journal: Each project has its own journal that can be used to, e.g. note tasks, results, or
observations.

® Scripting API: To get direct access to the script documentation, you can open this widget.

Script Editor

In this text editor you can write algorithms as explained in detail in chapter 3. You can
work on several script documents simultaneously by using several tabs.

Script Output

This text area either shows debug information or the script output of your algorithm, de-
pending on the toggled setting at the top of this widget. If the script throws an error, auto-
matically the debug output is presented.

Controls

Here you can find the controls for executing scripts. You can execute the script that is cur-
rently open at the script editor by pressing Run. While the script is executed, it is possible
to stop execution by pressing the Stop button.

2.2 Graph Editor Toolbar

This toolbar consists of the following actions. Clicking at an action means that your mouse
pointer applies this action at the graph editor whiteboard:

k Select and Move: To select elements, either click at unused space at the whiteboard,
keep the mouse pressed and draw a rectangle that contains some data elements and/or edges
to select these elements or otherwise directly click at an unselected element to select this ele-
ment. If you click at a selected element or a set of selected elements, respectively, by keeping
the mouse pressed and moving around you can move these elements. Moving selected ele-
ments is also possible with the arrow keys.

o O Create Node: Click at an arbitrary position at the graph editor whiteboard to create a
new data element that belongs to the currently selected data structure. By keeping the mouse
pointer pressed at the button, a menu shows up at which the data type of the new created data
elements can be selected (only if different data types exist).

o 4 Create Edge: Click at one data element, keep the mouse pressed and draw a line to
another data element to which the edge shall point. This action is only successful if the current
graph allows to add this edge (e.g., in an undirected graph you are not allowed to add mul-
tiple edges between two data elements). By keeping the mouse pointer pressed at the button,
a menu shows up at which the edge type of the new created edges can be selected (only if
different edge types exist).

U E Delete: Click at an element to delete it. If you delete a node, all adjacent edges are also
deleted.

11

The Rocs Handbook

Chapter 3
Scripting

3.1 Executing Algorithms in Rocs

Rocs internally uses the QtScript Java Script engine. This means, all algorithms that you imple-
ment must use Java Script. In the following, we explain how to access and change elements of
a graph document from the scripting engine. It is important to note that changes done by the
scripting engine are directly reflected at the properties at the graph editor elements.

3.1.1 Control Script Execution

There are different execution modes for your algorithms:

e — Run: Execute the script until it finishes.

- Stop: Stop script execution (only available while a script is executed).

3.1.2 Script Output

During the execution of an algorithm, debug and program output is displayed in the Debug
& Script Output. 1f the scripting engine detects a syntax error in your script, the error is also
displayed as debug message. Note that all program messages are also displayed at the debug
output (displayed as bold text).

You can control the text that is displayed at the script output by the following functions:

Console.log(string message); // displays the message as <+
script output

Console.debug(string message); // displays the message as <
debug output

Console.error (string message); // displays the message as <

error output

12

The Rocs Handbook

3.1.3 Scripting Engine API

The different parts of Rocs each provide a static element that can be accessed by the scripting
engine. These are:

¢ Document for the graph document

* Console for the console log output

For the explicit API use and for a method reference, please see the inline help at the Rocs side bar.

13

The Rocs Handbook

Chapter 4

Import and Export

4.1 Exchange Rocs Projects

Rocs projects can be imported and exported as archived .tar. gz files. These archives can be used
to exchange projects. Import and Export can be done with Graph Document — Import Graph
and Graph Document — Export Graph as, respectively.

4.1.1 Import and Export of Graph Documents
Rocs currently supports import and export of the following file formats:

e DOT files, also known as Graphviz files

e GML files

¢ Trivial Graph Format files

¢ Keyhole Markup Language Format

41.1.1 Trivial Graph File Format

The Trivial Graph Format (TGF) is a simple text-based file format for describing graphs. A TGF
file consists of a list of node definitions, that map the node IDs to labels, followed by a list of the
edges. In this format it is only possible to have one label per node and one value per edge. Rocs
interprets imported graphs as undirected graphs. Exported graphs will contain two edges per
connection if connections are bidirectional.

4.1.1.1.1 Format Specification

¢ The file starts with a list of nodes (one node per line), followed by a line with the only character
“#”, followed by a list of edges (one edge per line).

¢ A node consists of an integer (identifier), followed by a space, followed by an arbitrary string.

* An edge consists of two integers (identifiers) separated by a space, followed by a space, fol-
lowed by an arbitrary string. It is assumed that the directed edge points from the first identifier
to the second identifier.

14

The Rocs Handbook

41.1.1.2 Example

1 starting node
2 transmitter
3 sink

1 2 blue
2 1 red
2 3 green

41.1.2 DOT Language / Graphviz Graph File Format

The DOT language is a plain text graph description language that allows both,a good human
readable representation of graphs as well as an efficient processing by graph layout programs.
DOT is the default file format for the Graphviz graph visualization suite, but is also widely used
by other graph tools. The usual file extensions for DOT are .gv and .dot.

4.1.1.2.1 Unsupported Features

Rocs can parse every graph file that contains a graph specified according to the DOT language
specification!. The support of language features is complete, despite of the following exceptions:

e subgraph: Due to the lack of a subgraph concept in Rocs, subgraphs are only imported as a
set of date elements and connections. Especially, connections to or from subgraphs are not
imported.

e HTML and XML attributes: Attributes (like labels) that contain HTML or XML syntax are read
unchanged. Especially, not adjustment of fonts and styles are read from those attributes.

4.1.1.2.2 Example

digraph myGraph {
a -> b -> c;
b -> d;

! http:/ /www.graphviz.org/content/dot-language

15

The Rocs Handbook

Chapter 5

Graph Layout

5.1 Laying out graphs automatically in Rocs

Rocs can lay out graphs automatically. The Rocs graph layout tool can be found in the main
menu at Graph Document — Tools — Graph Layout. There are two different layout algorithms
that can be applied: Force Based Layout and Radial Tree Layout. To apply one of them, select the
corresponding tab of the graph layout tool, choose the desired parameters and execute the algo-
rithm by clicking on the OK button. Details that are specific to each one of the layout algorithms
are provided in the next sections.

5.1.1 Force Based Layout

The Force Based Layout can be applied to any graph. Intuitively, this algorithm simulates forces
acting in each node. There are repelling forces between pairs of nodes and attraction forces be-
tween pairs of nodes that are neighbours. The magnitude of these forces can be specified by
moving the corresponding sliders in the user interface.

Graph Layout — Rocs

Force Based Layout | Radial Tree Layout

Area factor: ————
Repelling force: — eo—
Attraction force: e
" OK & Cancel

16

The Rocs Handbook

Another parameter that can be controlled is the Area Factor. This parameter controls how the
nodes are spread. Layouts generated with high values of Area Factor have a tendency of having
large distances between nodes.

5.1.1.1 Radial Tree Layout

The Radial Tree Layout can only be applied to trees. Any attempt to apply this layout algorithm
to other kinds of graph will produce an error message. Parameters for the Radial Tree Layout can
be selected using the provided user interface.

Graph Layout — Rocs

Force Based Layout | Radial Tree Layout

Center/Root: Automatic selection v
Node separation: e——

Tree type: ® Free free

Rooted tree

| " 0K | &) Cancel

The tree type parameter selects between a free tree layout and a rooted tree layout. In a free tree
layout, nodes are placed freely without any apparent hierarchy between them. In a rooted tree
layout, the root node is placed at the top and sub-trees are laid out below it, giving an idea of a
hierarchy between nodes.

The center/root parameter defines which node is going be used as root for the rooted tree layout
or as center for the free tree layout. The center of a free tree layout is the first node to be placed
by the algorithm. All other nodes are placed on circles centered at the center node. A center/root
can be selected automatically by the layout algorithm.

The node separation parameter controls the distance between nodes. Increasing the value of this
parameter will cause the distance between nodes to increase. Similarly, decreasing the value of
this parameter will cause the distance between nodes to decrease.

17

The Rocs Handbook

Chapter 6

Credits and License

Rocs

Program Copyright:

¢ Copyright 2008 Ugo Sangiori (ugorox AT gmail.com)

* Copyright 2008-2012 Tomaz Canabrava (tcanabrava AT kde.org)

* Copyright 2008-2012 Wagner Reck (wagner.reck AT gmail.com)

* Copyright 2011-2015 Andreas Cord-Landwehr (cordlandwehr AT kde.org)

Documentation Copyright:

¢ Documentation copyright 2009 Anne-Marie Mahfouf annma@kde.org
* Documentation copyright 2009 Tomaz Canabrava (tcanabrava AT kde.org)
* Documentation copyright 2011-2015 Andreas Cord-Landwehr (cordlandwehr AT kde.org)

This documentation is licensed under the terms of the GNU Free Documentation License.
This program is licensed under the terms of the GNU General Public License.

18

mailto:annma@kde.org
fdl-license.html
gpl-license.html

	Introduction
	Goals, Target Audience, and Workflows
	Rocs in a Nutshell
	Graph Documents
	Edge Types
	Node Types
	Properties

	Tutorial
	Generating the Graph
	Creating the Element Types
	The Algorithm
	Execute the Algorithm

	The Rocs User Interface
	Main Elements of the User Interface
	Graph Editor Toolbar

	Scripting
	Executing Algorithms in Rocs
	Control Script Execution
	Script Output
	Scripting Engine API

	Import and Export
	Exchange Rocs Projects
	Import and Export of Graph Documents
	Trivial Graph File Format
	Format Specification
	Example

	DOT Language / Graphviz Graph File Format
	Unsupported Features
	Example

	Graph Layout
	Laying out graphs automatically in Rocs
	Force Based Layout
	Radial Tree Layout

	Credits and License

