
The KTurtle Handbook

Cies Breijs
Anne-Marie Mahfouf
Mauricio Piacentini

The KTurtle Handbook

2

Contents

1 Introduction 7
1.1 What is TurtleScript? . 7

1.2 Features of KTurtle . 7

2 Using KTurtle 9

2.1 The Editor . 9
2.2 The Canvas . 10
2.3 The Inspector . 10

2.4 The Toolbar . 10
2.5 The Menubar . 10

2.5.1 The File Menu . 10
2.5.2 The Edit Menu . 11
2.5.3 The Canvas Menu . 12
2.5.4 The Run Menu . 12
2.5.5 The Tools Menu . 13
2.5.6 The Settings Menu . 13

2.5.7 The Help Menu . 14

2.6 The Statusbar . 14

3 Getting Started 15

3.1 First steps with TurtleScript: meet the Turtle! . 15

3.1.1 The Turtle Moves . 15
3.1.2 More examples . 16

4 TurtleScript Programming Reference 18

4.1 The Grammar of TurtleScript . 18

4.1.1 Comments . 18
4.1.2 Commands . 19
4.1.3 Numbers . 19
4.1.4 Strings . 19

4.1.5 Boolean (true/false) values . 19

4.2 Mathematical, boolean and comparing operators . 20

4.2.1 Mathematical operators . 20

The KTurtle Handbook

4.2.2 Boolean (true/false) operators . 20

4.2.2.1 Some more advanced examples . 21

4.2.3 Comparing operators . 21

4.3 Commands . 22
4.3.1 Moving the turtle . 22

4.3.2 Where is the turtle? . 24
4.3.3 The turtle has a pen . 24

4.3.4 Commands to control the canvas . 25
4.3.5 Commands to clean up . 25

4.3.6 The turtle is a sprite . 26

4.3.7 Can the turtle write? . 26
4.3.8 Mathematical commands . 27
4.3.9 Input and feedback through dialogs . 28

4.4 Assignment of variables . 29

4.5 Controlling execution . 29

4.5.1 Have the turtle wait . 30
4.5.2 Execute ´́ if´́ . 30
4.5.3 If not, in other words: ´́ else´́ . 30

4.5.4 The ´́ while´́ loop . 31

4.5.5 The ´́ repeat´́ loop . 31

4.5.6 The ´́ for´́ loop, a counting loop . 31

4.5.7 Leave a loop . 32

4.5.8 Stop executing your program . 32

4.5.9 Checking assertions at runtime . 32

4.6 Create your own commands with ‘learn’ . 32

5 Glossary 34

6 Translator’s Guide to KTurtle 37

7 Credits and License 38

8 Index 39

4

The KTurtle Handbook

List of Tables

4.1 Types of questions . 22

5.1 Different types of code and their highlight color . 36

5.2 Often used RGB combinations . 36

5

Abstract

KTurtle is an educational programming environment that aims to make learning how to
program as easy as possible. To achieve this KTurtle makes all programming tools available
from the user interface. The programming language used is TurtleScript which allows its com-
mands to be translated.

The KTurtle Handbook

Chapter 1

Introduction

KTurtle is an educational programming environment that uses TurtleScript, a programming lan-
guage loosely based on and inspired by Logo. The goal of KTurtle is to make programming as
easy and accessible as possible. This makes KTurtle suitable for teaching kids the basics of math,
geometry and... programming. One of the main features of TurtleScript is the ability to translate
the commands into the speaking language of the programmer.

KTurtle is named after ‘the turtle’ that plays a central role in the programming environment. The
student will usually instruct the turtle, using the TurtleScript commands, to make a drawing on
the canvas.

1.1 What is TurtleScript?

TurtleScript, the programming language used in KTurtle, is inspired by the Logo family of pro-
gramming languages. The first version of Logo was created by Seymour Papert of MIT Artificial
Intelligence Laboratory in 1967 as an offshoot of the LISP programming language. From then
many versions of Logo have been released. By 1980 Logo was gaining momentum, with versions
for MSX, Commodore, Atari, Apple II and IBM PC systems. These versions were mainly for
educational purposes. The MIT is still maintains a website on Logo containing a list of several
popular implementation of the language.

TurtleScript shares a feature found in many other implementations of Logo: the ability to trans-
late the commands to suit the native language of the student. This feature makes it easier for
students that have no or little understanding of English to get started. Besides this feature KTur-
tle has many other features aimed at easing the students initial experience with programming.

1.2 Features of KTurtle

KTurtle has some nice features that make starting to program a breeze. See here some of the
highlights of KTurtle feature set:

• An integrated environment with TurtleScript interpreter, editor, canvas and other tools all in
one application (no extra dependencies).

• The ability to translate the TurtleScript commands using the translation framework of KDE.

• TurtleScript supports user defined functions, recursion and dynamic type switching.

• The execution can be slowed down, paused or stopped at any time.

7

http://el.media.mit.edu/logo-foundation/

The KTurtle Handbook

• A powerful editor featuring intuitive syntax highlighting, line numbering, error markers, vi-
sual execution and more.

• The canvas, where the turtle draws, can be printed or saved either as an image (PNG) or a
drawing (SVG).

• Context help: help where you need it. Just press F2 (or see Help→Help on: ...) to get help on
the piece of code currently under your cursor.

• An error dialog that links the error messages to the mistakes in the program and marks them
red.

• Simplified programming terminology.

• Integrated example programs to make it easy to get started. These examples are translated
using KDE translation framework.

8

The KTurtle Handbook

Chapter 2

Using KTurtle

The main window of KTurtle has three main parts: the editor (1) on the left where you type the
TurtleScript commands, the the canvas (2) on the right where the turtle make your drawing, and
the inspector (3) which gives you information when your program executes. Besides these you
find the menu bar (5) from where all the actions can be reached, the toolbar (4) that allows you to
quickly select the most used actions, the Console, that you can use to enter a one line command
to test it, and the statusbar (along the bottom of the window) where you will find feedback on
the state of KTurtle.

2.1 The Editor

In the editor you type the TurtleScript commands. Most of functions of the editor can be found
in the File and Edit menus. The editor can be docked on each border of the main window or it
can be detached and placed anywhere on your desktop.

You have several ways to get some code in the editor. The easiest way is to use an example:
choose File→ Examples in the File menu and select an example. The file example you choose
will be opened in the the editor, you can then use Run→Run from the menubar or the Run from
the toolbar to run the code if you like.

You can open TurtleScript files by choosing File→Open....

9

The KTurtle Handbook

The third way is to directly type your own code in the editor or to copy/paste some code.

2.2 The Canvas

The canvas is the domain of the turtle, here the turtle draws according to the commands it gets.
After getting some code in the Editor and executing it, two things can happen: either the code
executes fine, and will you most likely see something change on the canvas; or you have made an
error in your code in that case the error tab will appear explaining you what mistake you made.

You can zoom in and out the canvas with your mouse wheel.

2.3 The Inspector

The inspector informs you about the variables, the learned functions and show the code tree
while the program is running.

The inspector can be docked on each border of the main window or it can be detached and placed
anywhere on your desktop.

2.4 The Toolbar

Here you can quickly reach the most used actions. The Toolbar also contains the Console where
you can quickly invoke commands, this might be useful in case you want to test a command
without modifying the content of the Editor.

You can configure the toolbar using Settings→ Configure Toolbars... to better fit your prefer-
ences.

2.5 The Menubar

In the menubar you find all the actions of KTurtle. They are in the following groups: File, Edit,
Canvas, Run, Tools, Settings, and Help. This section describes them all.

2.5.1 The File Menu

File→New (Ctrl-N)
Creates a new, empty TurtleScript file.

File→Open... (Ctrl-O)

Opens a TurtleScript file.

File→Open Recent

Opens a TurtleScript file that has been opened recently.

10

The KTurtle Handbook

File→ Examples

Open example TurtleScript programs. The examples are in your favorite language that you
can choose in Settings→ Script Language.

File→Get more examples...

Open the get Hot New Stuff dialog to download additional TurtleScript files from the In-
ternet.

File→ Save (Ctrl-S)
Saves the currently opened TurtleScript file.

File→ Save As... (Ctrl-Shift-S)
Saves the currently opened TurtleScript file on a specified location.

File→ Export to HTML...

Exports the current content of the Editor as an HTML file that includes highlighting colors.

File→ Print... (Ctrl-P)
Prints the current code in the editor.

File→Quit (Ctrl-Q)
Quits KTurtle.

2.5.2 The Edit Menu

Edit→Undo (Ctrl-Z)
Undoes the last change to code. KTurtle has unlimited undos.

Edit→ Redo (Ctrl-Shift-Z)
Redoes an undone change to the code.

Edit→ Cut (Ctrl-X)
Cuts the selected text from the editor to the clipboard.

Edit→ Copy (Ctrl-C)

Copies the selected text from the editor to the clipboard.

11

The KTurtle Handbook

Edit→ Paste (Ctrl-V)
Pastes the text from the clipboard to the editor.

Edit→ Select All (Ctrl-A)
Selects all the text from the editor.

Edit→ Find... (Ctrl-F)
With this action you can find phrases in the code.

Edit→ Find Next (F3)
Use this to find the next occurrence of the phrase you searched for.

Edit→ Find Previous (Shift-F3)
Use this to find the previous occurrence of the phrase you searched for.

Edit→Overwrite Mode (Ins)
Toggle between the ’insert’ and ’overwrite’ mode.

2.5.3 The Canvas Menu

Canvas→ Export to Image (PNG)...

Exports the current content of the Canvas as a raster image of the PNG (Portable Network
Graphics) type.

Canvas→ Export to Drawing (SVG)...

Exports the current content of the Canvas as a vector drawing of the SVG (Scalable Vector
Graphics) type.

Canvas→ Print Canvas...
Prints the current content of the Canvas.

2.5.4 The Run Menu

Run→ Run (F5)
Starts the execution of the commands in the editor.

Run→ Pause (F6)
Pauses the execution. This action is only enabled when the commands are actually execut-
ing.

12

The KTurtle Handbook

Run→Abort (F7)
Stops the execution. This action is only enabled when the commands are actually executing.

Run→ Run Speed

Present a list of possible execution speeds, consisting of: Full Speed (no highlighting and
inspector), Full Speed, Slow, Slower, Slowest and Step-by-Step. When the execution
speed is set to Full Speed (default) we can barely keep up with what is happening. Some-
times this behavior is wanted, but sometimes we want to keep track of the execution. In the
latter case you want to set the execution speed to Slow, Slower or Slowest. When one of
the slow modes is selected the current position of the executor will be shown in the editor.
Step-by-Step will execute one command at a time.

2.5.5 The Tools Menu

Tools→Direction Chooser...
This action opens the direction chooser dialog.

Tools→ Color Picker...
This action opens the color picker dialog.

2.5.6 The Settings Menu

Settings→ Script Language

Choose the language for the code.

Settings→ Show Editor (Ctrl-E)

Show or hide the Editor.

Settings→ Show Inspector (Ctrl-I)

Show or hide the inspector.

Settings→ Show Errors

Show or hide the Error tab with a list of errors resulting from running the code. If this
option is enabled, click on Canvas to see the turtle again.

Settings→ Show Line Numbers (F11)

With this action you can show the line numbers in the editor. This can be handy for finding
errors.

13

The KTurtle Handbook

Settings→ Show Toolbar

Toggle the Main Toolbar

Settings→ Show Statusbar

Toggle the Statusbar

Settings→ Configure Shortcuts...

Standard KDE dialog to configure the shortcuts.

Settings→ Configure Toolbars...

The standard KDE dialog for configuring the toolbars.

2.5.7 The Help Menu

KTurtle has a default KDE Help menu as described in the KDE Fundamentals with one additional
entry:

Help→Help on: ... (F2)

This is a very useful function: it provides help on the code where the cursor in the editor is
at. So, e.g., you have used the print command in your code, and you want to read and to
know what the handbook says on this command. You just move your cursor so it is in the
print command and you press F2. The handbook will then show all info on the print
command.
This function can prove to be useful while learning TurtleScript.

2.6 The Statusbar

On the status bar you get feedback of the state of KTurtle. On the left side it shows the feed-
back on the last action. On the right side you find the current location of the cursor (line and
column numbers). In the middle of the status bar is indicated the current language used for the
commands.

14

help:/fundamentals/ui.html#menus-help

The KTurtle Handbook

Chapter 3

Getting Started

When you start KTurtle you will see something like this:

In this Getting Started guide we assume that the language of the TurtleScript commands is En-
glish. You can change this language with Settings→ Script Language. Be aware that the lan-
guage you set here for KTurtle is the one you use to type the TurtleScript commands, not the
language used by KDE on your computer and used to display the KTurtle interface and menus.

3.1 First steps with TurtleScript: meet the Turtle!

You must have noticed the turtle in the middle of the canvas: you are just about to learn how to
control it using commands in the editor.

3.1.1 The Turtle Moves

Let us start by getting the turtle moving. Our turtle can do 3 types of moves, (1) it can move
forwards and backwards, (2) it can turn left and right and (3) it can go (jump) directly to a position
on the screen. Try this for example:

15

The KTurtle Handbook

forward 100
turnleft 90

Type or copy-paste the code to the editor and execute it (using Run→ Run) to see the result.

When you typed and executed the commands like above in the editor you might have noticed
one or more of the following things:

1. That — after executing the commands — the turtle moves up, draws a line, and then turns
a quarter turn to the left. This because you have used the forward and the turnleft
commands.

2. That the color of the code changed while you where typing it: this feature is called intuitive
highlighting — different types of commands are highlighted differently. This makes reading
large blocks of code more easy.

3. That the turtle draws a thin black line.

4. Maybe you got an error message. This could simply mean two things: you could have
made a mistake while copying the commands, or you should still set the correct language
for the TurtleScript commands (you can do that by choosing Settings→ Script Language).

You will likely understand that forward 100 instructed the turtle to move forward leaving a
line, and that turnleft 90 instructed the turtle to turn 90 degrees to the left.

Please see the following links to the reference manual for a complete explanation of the new
commands: forward, backward, turnleft, and turnright.

3.1.2 More examples

The first example was very simple, so let us go on!

reset

canvassize 200,200
canvascolor 0,0,0
pencolor 255,0,0
penwidth 5

go 20,20
direction 135

forward 200
turnleft 135
forward 100
turnleft 135
forward 141
turnleft 135
forward 100
turnleft 45

go 40,100

Again you can type or copy-paste the code to the editor or open the arrow example in the Ex-
amples menu and execute it (using Run→ Run) to see the result. In the next examples you are
expected to know the drill.

You might have noticed that this second example uses a lot more code. You have also seen a
couple of new commands. Here a short explanation of all the new commands:

16

The KTurtle Handbook

After a reset command everything is like is was when you had just started KTurtle.

canvassize 200,200 sets the canvas width and height to 200 pixels. The width and the height
are equal, so the canvas will be a square.

canvascolor 0,0,0 makes the canvas black. 0,0,0 is a RGB-combination where all values
are set to 0, which results in black.

pencolor 255,0,0 sets the color of the pen to red. 255,0,0 is a RGB-combination where only
the red value is set to 255 (fully on) while the others (green and blue) are set to 0 (fully off). This
results in a bright shade of red.

If you do not understand the color values, be sure to read the glossary on RGB-combination.

penwidth 5 sets the width (the size) of the pen to 5 pixels. From now on every line the turtle
draw will have a thickness of 5, until we change the penwidth to something else.

go 20,20 commands the turtle to go to a certain place on the canvas. Counted from the upper
left corner, this place is 20 pixels across from the left, and 20 pixels down from the top of the
canvas. Note that using the go command the turtle will not draw a line.

direction 135 set the turtle’s direction. The turnleft and turnright commands change
the turtle’s angle starting from its current direction. The direction command changes the
turtle’s angle from zero, and thus is not relative to the turtle previous direction.

After the direction command a lot of forward and turnleft commands follow. These com-
mand do the actual drawing.

At last another go command is used to move the turtle aside.

Make sure you follow the links to the reference. The reference explains each command more
thoroughly.

17

The KTurtle Handbook

Chapter 4

TurtleScript Programming Reference

This is the reference for KTurtle’s TurtleScript. In the first section of this chapter have a look at
some aspects of the grammar of TurtleScript programs. The second section deals exclusively with
mathematical operators, boolean (true/false) operators and comparison operators. The third
section is basically a giant list of all commands explaining them one-by-one. Section four explains
how to assign values to variables. Finally we explain how to arrange the execution of commands
with execution controlling statements in section five and how to create you own commands with
learn in section six.

4.1 The Grammar of TurtleScript

As in any language, TurtleScript has different types of words and symbols. In English we dis-
tinguish verbs (like ’to walk’ or ’to sing’) and nouns (like ’sister’ or ’house’), they are used for
different purposes. TurtleScript is a programming language, it is used to instruct KTurtle what to
do.
In this section some of TurtleScript’s different types of words and symbols are briefly explained.
We explain comments, commands and the three different kinds of literals: numbers, strings and
boolean (true/false) values.

4.1.1 Comments

A program consists instructions that are executed when the program is run and so called com-
ments. Comments are not executed, KTurtle simply ignores them when executing your program.
Comment are there for other programmers to make them understand your program better. Ev-
erything that follows on a # symbol is considered a comment in TurtleScript. For example this
little program that does nothing:

this little program does nothing , it is only a comment!

It is a bit useless but it explain the matter well.

Comments get very useful when the program gets a little bit more complex. It can help to give
some advice to other programmers. In the following program you see comments being used
together with the print command.

this program has been made by Cies Breijs.
print "this text will get printed on the canvas"
the previous line is not a comment , but the next line is:
print "this text will not get printed!"

18

The KTurtle Handbook

The first line describes the program. The second line is executed by KTurtle and prints this tex
t will get printed on the canvas on the canvas. The third line is a comment. And the
forth line is a comment that contains a piece of TurtleScript, if the # symbol would be removed
on the fourth line the print statement will we executed by KTurtle. Programmers say: the print
statement on the fourth line is ’commented out’.
Commented lines are highlighted with light gray in the code editor.

4.1.2 Commands

Using commands you tell the turtle or KTurtle to do something. Some commands need input,
some give output.

forward is a command that needs input , in this case the number 100:
forward 100

The first line is a comment. The second line contains the forward command and the number
100. The number is not part of command, it is considered ’input’ for the command.

Some commands like e.g. go need more than one input value. Multiple values have to be sepa-
rated using the , character (comma).

For a detailed overview of all commands that KTurtle supports go here. Built-in commands are
highlighted in dark blue

4.1.3 Numbers

Most likely you already know quite a bit about numbers. The way numbers are used in KTurtle
is not much different from spoken language, or math.

We have the so called natural numbers: 0, 1, 2, 3, 4, 5, etc. The negative numbers: -1, -2, -3,
etc. And the numbers with decimals, or dot-numbers, for example: 0.1, 3.14, 33.3333, -5.05,
-1.0. The . character (dot) is used as decimal separator.

Numbers can be used in mathematical operators and comparison operators. They can also be
stored in variables. Numbers are highlighted in dark red.

4.1.4 Strings

First an example:

print "Hello , I’m a string."

In this example print is a command where ´´Hello, I’m a string.´´ is a string. Strings
start and end with the ´´ mark, by these marks KTurtle knows it is a string.

Strings can be put in variables, just like numbers. Yet, unlike numbers, strings cannot be used in
mathematical operators or comparison operators. Strings are highlighted with red.

4.1.5 Boolean (true/false) values

There are only two boolean values: true and false. Sometimes they are also called: on and
off, yes and no, one and zero. But in TurtleScript we call them, always, true and false. Have a
look at this piece of TurtleScript:

$a = true

19

The KTurtle Handbook

If you look in the inspector you can see that the variable $a is set to true, and has the boolean
type.

Often boolean values are the result of a comparison operator, like in the following piece of Turtle-
Script:

$answer = 10 > 3

The variable $answer is set to true because 10 is larger than 3.

Boolean values, true and false, are highlighted with dark red.

4.2 Mathematical, boolean and comparing operators

The title of this section might sound very difficult, yet it is not as difficult as it sound.

4.2.1 Mathematical operators

These are the basic math symbols known as: add (+), subtract (-), multiply (*), divide (/) and
power (ˆ).

Here a small example of the mathematical operators you can use in TurtleScript:

$add = 1 + 1
$subtract = 20 - 5
$multiply = 15 * 2
$divide = 30 / 30
$power = 2 ^ 2

The values resulting from the mathematical operations get assigned to various variables. Using
the inspector you can see the values.

If you just want a simple calculation to be done you can do something like this:

print 2010-12

Now an example with parentheses:

print ((20 - 5) * 2 / 30) + 1

The expressions inside parentheses will be calculated first. In this example, 20-5 will be calcu-
lated, then multiplied by 2, divided by 30, and then 1 is added (giving 2). Parentheses can also
be used in other cases.
KTurtle also has more advanced mathematical features in the form of commands. Have a look
at the following commands but be aware that it concerns advanced operations: round, random,
sqrt , pi, sin, cos, tan, arcsin, arccos, arctan.

4.2.2 Boolean (true/false) operators

Where mathematical operators are mainly for numbers, boolean operators are for boolean values
(true and false). There are only three boolean operators, namely: and, or, and not. The
following piece of TurtleScript shows how to use them:

20

The KTurtle Handbook

$and_1_1 = true and true # -> true
$and_1_0 = true and false # -> false
$and_0_1 = false and true # -> false
$and_0_0 = false and false # -> false

$or_1_1 = true or true # -> true
$or_1_0 = true or false # -> true
$or_0_1 = false or true # -> true
$or_0_0 = false or false # -> false

$not_1 = not true # -> false
$not_0 = not false # -> true

Using the inspector you can see the values, yet we also supply these results as little comments at
the end of the lines. and evaluates true only if both sides are true. or evaluates true if either
side is true. And not turns a true into false and a false into true.
Boolean operators are highlighted with pink.

4.2.2.1 Some more advanced examples

Consider the following example with and:

$a = 1
$b = 5
if (($a < 10) and ($b == 5)) and ($a < $b) {

print "hello"
}

In this piece of TurtleScript the result of three comparing operators are merged using and opera-
tors. This means that all three have to evaluate ´́ true´́ in order for the ´́ hello´́ to be printed.

An example with or:

$n = 1
if ($n < 10) or ($n == 2) {

print "hello"
}

In this piece of TurtleScript the left side of the or is evaluating to ’true’, the right side to ’false’.
Since one of the two sides of the or operator is ’true’, the or operator evaluates ’true’. That
means ´́ hello´́ gets printed.

And finally an example with not which changes ’true’ into ’false’ and ’false’ into ’true’. Have a
look:

$n = 1
if not ($n == 3) {

print "hello"
} else {

print "not hello ;-)"
}

4.2.3 Comparing operators

Consider this simple comparison:

21

The KTurtle Handbook

$answer = 10 > 3

Here 10 is compared to 3 with the ’greater than’ operator. The result of this comparison, the
boolean value true is stored in the variable $answer.

All numbers and variables (that contain numbers) can be compared to each other with comparing
operators.

Here are all possible comparing operators:

$A == $B equals answer is ‘true’ if $A equals
$B

$A != $B not-equals answer is ‘true’ if $A does
not equal $B

$A > $B greater than answer is ‘true’ if $A is
greater than $B

$A < $B smaller than answer is ‘true’ if $A is
smaller than $B

$A >= $B greater than or equals answer is ‘true’ if $A is
greater than or equals $B

$A <= $B smaller than or equals answer is ‘true’ if $A is
smaller than or equals $B

Table 4.1: Types of questions

Please note that $A and $B have to be numbers or variables that contain numbers.

4.3 Commands

Using commands you tell the turtle or KTurtle to do something. Some commands need input,
some give output. In this section we explain all the built-in commands of KTurtle. Alternatively,
using learn, you can create your own commands. Built-in commands we discuss here are high-
lighted with dark blue.

4.3.1 Moving the turtle

There are several commands to move the turtle over the screen.

forward (fw)

forward X

forward moves the turtle forward by the amount of X pixels. When the pen is down the
turtle will leave a trail. forward can be abbreviated to fw

backward (bw)

backward X

22

The KTurtle Handbook

backward moves the turtle backward by the amount of X pixels. When the pen is down
the turtle will leave a trail. backward can be abbreviated to bw.

turnleft (tl)

turnleft X

turnleft commands the turtle to turn an amount of X degrees to the left. turnleft can
be abbreviated to tl.

turnright (tr)

turnright X

turnright the turtle to turn an amount of X degrees to the right. turnright can be
abbreviated to tr.

direction (dir)

direction X

direction set the turtle’s direction to an amount of X degrees counting from zero, and
thus is not relative to the turtle’s previous direction. direction can be abbreviated to
dir.

getdirection

getdirection

getdirection returns the turtle’s direction as an amount of degrees counting from zero,
where zero is the direction when the turtle is pointing upwards.

center

center

center moves the turtle to the center on the canvas.

go

go X,Y

go commands the turtle to go to a certain place on the canvas. This place is X pixels from
the left of the canvas, and Y pixels from the top of the canvas.

gox

gox X

23

The KTurtle Handbook

gox using this command the turtle will move to X pixels from the left of the canvas whilst
staying at the same height. gox can be abbreviated to gx.

goy

goy Y

goy using this command the turtle will move to Y pixels from the top of the canvas whilst
staying at the same distance from the left border of the canvas. goy can be abbreviated to
gy.

NOTE
Using the commands go, gox, goy and center the turtle will not draw a line, no matter if the pen is
up or down.

4.3.2 Where is the turtle?

There are two commands which return the position of the turtle on the screen.

getx

getx returns the number of pixels from the left of the canvas to the current position of the
turtle.

gety

gety returns the number of pixels from the top of the canvas to the current position of the
turtle.

4.3.3 The turtle has a pen

The turtle has a pen that draws a line when the turtle moves. There are a few commands to
control the pen. In this section we explain these commands.

penup (pu)

penup

penup lifts the pen from the canvas. When the pen is ‘up’ no line will be drawn when the
turtle moves. See also pendown. penup can be abbreviated to pu.

pendown (pd)

pendown

pendown presses the pen down on the canvas. When the pen is press ‘down’ on the canvas
a line will be drawn when the turtle moves. See also penup. pendown can be abbreviated
to pd.

24

The KTurtle Handbook

penwidth (pw)

penwidth X

penwidth sets the width of the pen (the line width) to an amount of X pixels. penwidth
can be abbreviated to pw.

pencolor (pc)

pencolor R,G,B

pencolor sets the color of the pen. pencolor takes an RGB combination as input. penc
olor can be abbreviated to pc.

4.3.4 Commands to control the canvas

There are several commands to control the canvas.

canvassize (cs)

canvassize X,Y

With the canvassize command you can set the size of the canvas. It takes X and Y as
input, where X is the new canvas width in pixels, and Y is the new height of the canvas in
pixels. canvassize can be abbreviated to cs.

canvascolor (cc)

canvascolor R,G,B

canvascolor set the color of the canvas. canvascolor takes an RGB combination as
input. canvascolor can be abbreviated to cc.

4.3.5 Commands to clean up

There are two commands to clean up the canvas after you have made a mess.

clear (ccl)

clear

With clear you can clean all drawings from the canvas. All other things remain: the
position and angle of the turtle, the canvascolor, the visibility of the turtle, and the canvas
size.

reset

reset

reset cleans much more thoroughly than the clear command. After a reset command
everything is like is was when you had just started KTurtle. The turtle is positioned at the
middle of the screen, the canvas color is white, the turtle draws a black line on the canvas
and the canvassize is set to 400 x 400 pixels.

25

The KTurtle Handbook

4.3.6 The turtle is a sprite

First a brief explanation of what sprites are: sprites are small pictures that can be moved around
the screen, like we often see in computer games. Our turtle is also a sprite. For more info see the
glossary on sprites.

Next you will find a full overview on all commands to work with sprites.

[The current version of KTurtle does not yet support the use of sprites other than the turtle. With
future versions you will be able to change the turtle into something of your own design]

spriteshow (ss)

spriteshow

spriteshow makes the turtle visible again after it has been hidden. spriteshow can be
abbreviated to ss.

spritehide (sh)

spritehide

spritehide hides the turtle. This can be used if the turtle does not fit in your drawing.
spritehide can be abbreviated to sh.

4.3.7 Can the turtle write?

The answer is: ‘yes’. The turtle can write: it writes just about everything you command it to.

print

print X

The print command is used to command the turtle to write something on the canvas. pri
nt takes numbers and strings as input. You can print various numbers and strings using
the ‘+’ symbol. See here a small example:

$year = 2003
$author = "Cies"
print $author + " started the KTurtle project in " + $year + " and ←↩

still enjoys working on it!"

fontsize

fontsize X

fontsize sets the size of the font that is used by print. fontsize takes one input which
should be a number. The size is set in pixels.

26

The KTurtle Handbook

4.3.8 Mathematical commands

The following commands are KTurtle’s more advanced mathematical commands.

round

round(x)

round the given number to the nearest integer.

print round(10.8)
forward 20
print round(10.3)

With this code the turtle will print the numbers 11 and 10.

random (rnd)

random X,Y

random is a command that takes input and gives output. As input are required two num-
bers, the first (X) sets the minimum output, the second (Y) sets the maximum. The output is
a randomly chosen number that is equal or greater than the minimum and equal or smaller
than the maximum. Here a small example:

repeat 500 {
$x = random 1,20
forward $x
turnleft 10 - $x

}

Using the random command you can add a bit of chaos to your program.

mod

mod X,Y

The mod returns remainder of the division of first number by the second number.

sqrt

sqrt X

The sqrt command is sued to find the square root of a number, X.

pi

pi

This command returns the constant Pi, 3.14159.

27

The KTurtle Handbook

sin, cos, tan

sin X
cos X
tan X

These three commands represent the world famous trigoniometrical functions sin, cos
and tan. The input argument of these commands, X, is a number.

arcsin, arccos, arctan

arcsin X
arccos X
arctan X

These commands are the inverse functions of sin, cos and tan. The input argument of these
commands, X, is a number.

4.3.9 Input and feedback through dialogs

A dialog is a small pop-up window that provides some feedback or asks for some input. KTurtle
has two commands for dialogs, namely: message and ask

message

message X

The message command takes a string as input. It shows a pop-up dialog containing the
text from the string.

message "Cies started KTurtle in 2003 and still enjoys working on it!"

ask

ask X

ask takes a string as input. It shows this string in a pop-up dialog (similar to message),
along with an input field. After the user has entered a number or a string into this, the
result can be stored in a variable or passed as an argument to a command. For example:

$in = ask "What is your year of birth?"
$out = 2003 - $in
print "In 2003 you were " + $out + " years old at some point."

If the user cancels the input dialog, or does not enter anything at all, the variable is empty.

28

The KTurtle Handbook

4.4 Assignment of variables

First we have a look at variables, then we look at assigning values to those variables.

Variables are words that start with a ‘$’, in the editor they are highlighted with purple.

Variables can contain any number, string or boolean (true/false) value. Using the assignment, =,
a variable is given its content. It will keep that content until the program finishes executing or
until the variable is reassigned to something else.

You can use variables, once assigned, just as if they are their content. For instance in the following
piece of TurtleScript:

$x = 10
$x = $x / 3
print $x

First the variable $x is assigned to 10. Then $x is reassigned to itself divided by 3 — this effec-
tively means $x is reassigned to product of 10 / 3. Finally $x is printed. In line two and three
you see that $x is used as if it is its contents.

Variables have to be assigned in order to be used. For example:

print $n

Will result in an error message.

Please consider the following piece of TurtleScript:

$a = 2004
$b = 25

the next command prints "2029"
print $a + $b
backward 30
the next command prints "2004 plus 25 equals 2029"
print $a + " plus " + $b + " equals " + ($a + $b)

In the first two lines the variables $a and $b are set to 2004 and 25. Then in two print commands
with a backward 30 in between are executed. The comments before the print commands
explain what they are doing. The command backward 30 is there to make sure every output is
on a new line. As you see variables can be used just as if their where what they contain, you can
use them with any kind of operators or give them as input when invoking commands.

One more example:

$name = ask "What is your name?"
print "Hi " + $name + "! Good luck while learning the art of programming ←↩

..."

Pretty straight forward. Again you can see that the variable $name, treated just like a string.

When using variables the inspector is very helpful. It shows you the contents of all variables that
are currently in use.

4.5 Controlling execution

The execution controllers enable you — as their name implies — to control execution.

Execution controlling commands are highlighted with dark green in a bold font type. The brack-
ets are mostly used together with execution controllers and they are highlighted with black.

29

The KTurtle Handbook

4.5.1 Have the turtle wait

If you have done some programming in KTurtle you have might noticed that the turtle can be
very quick at drawing. This command makes the turtle wait for a given amount of time.

wait

wait X

wait makes the turtle wait for X seconds.

repeat 36 {
forward 5
turnright 10
wait 0.5

}

This code draws a circle, but the turtle will wait half a second after each step. This gives the
impression of a slow-moving turtle.

4.5.2 Execute ´́ if´́

if

if boolean { ... }

The code that is placed between the brackets will only be executed if the boolean value
evaluates ‘true’.

$x = 6
if $x > 5 {

print "$x is greater than five!"
}

On the first line $x is set to 6. On the second line a comparing operator is used to evaluate
$x > 5. Since this evaluates ‘true’, 6 is larger than 5, the execution controller if will allow
the code between the brackets to be executed.

4.5.3 If not, in other words: ´́ else´́

else

if boolean { ... } else { ... }

else can be used in addition to the execution controller if. The code between the brackets
after else is only executed if the boolean evaluates ‘false’.

reset
$x = 4
if $x > 5 {

print "$x is greater than five!"
} else {

print "$x is smaller than six!"
}

The comparing operator evaluates the expression $x > 5. Since 4 is not greater than 5
the expression evaluates ‘false’. This means the code between the brackets after else gets
executed.

30

The KTurtle Handbook

4.5.4 The ´́ while´́ loop

while

while boolean { ... }

The execution controller while is a lot like if. The difference is that while keeps repeating
(looping) the code between the brackets until the boolean evaluates ‘false’.

$x = 1
while $x < 5 {

forward 10
wait 1
$x = $x + 1

}

On the first line $x is set to 1. On the second line $x < 5 is evaluated. Since the answer to
this question is ‘true’ the execution controller while starts executing the code between the
brackets until the $x < 5 evaluates ‘false’. In this case the code between the brackets will
be executed 4 times, because every time the fifth line is executed $x increases by 1.

4.5.5 The ´́ repeat´́ loop

repeat

repeat number { ... }

The execution controller repeat is a lot like while. The difference is that repeat keeps
repeating (looping) the code between the brackets for as many times as the given number.

4.5.6 The ´́ for´́ loop, a counting loop

for

for variable = number to number { ... }

The for loop is a ‘counting loop’, i.e. it keeps count for you. The first number sets the
variable to the value in the first loop. Every loop the number is increased until the second
number is reached.

for $x = 1 to 10 {
print $x * 7
forward 15

}

Every time the code between the brackets is executed the $x is increased by 1, until $x
reaches the value of 10. The code between the brackets prints the $x multiplied by 7. After
this program finishes its execution you will see the times table of 7 on the canvas.
The default step size of a loop is 1, you can use an other value with

for variable = number to number step number { ... }

31

The KTurtle Handbook

4.5.7 Leave a loop

break

break

Terminates the current loop immediately and transfers control to the statement immedi-
ately following that loop.

4.5.8 Stop executing your program

exit

exit

Finishes the execution of your program.

4.5.9 Checking assertions at runtime

assert

assert boolean

Can be used to reason about program or input correctness.

$in = ask "What is your year of birth?"
the year must be positive
assert $in > 0

4.6 Create your own commands with ‘learn’

learn is special as it is used to create your own commands. The commands you create can take
input and return output. Let us take a look at how a new command is created:

learn circle $x {
repeat 36 {

forward $x
turnleft 10

}
}

The new command is called circle. circle takes one input argument, to set the size of the cir-
cle. circle returns no output. The circle command can now be used like a normal command
in the rest of the code. See this example:

32

The KTurtle Handbook

learn circle $X {
repeat 36 {

forward $X
turnleft 10

}
}

go 200,200
circle 20

go 300,200
circle 40

In the next example, a command with a return value is created.

learn faculty $x {
$r = 1
for $i = 1 to $x {

$r = $r * $i
}
return $r

}

print faculty 5

In this example a new command called faculty is created. If the input of this command is 5
then the output is 5*4*3*2*1. By using return the output value is specified and the execution
is returned.
Commands can have more than one input. In the next example, a command that draws a rectan-
gle is created:

learn box $x, $y {
forward $y
turnright 90
forward $x
turnright 90
forward $y
turnright 90
forward $x
turnright 90

}

Now you can run box 50, 100 and the turtle will draw a rectangle on the canvas.

33

The KTurtle Handbook

Chapter 5

Glossary

In this chapter you will find an explanation of most of the ‘uncommon’ words that are used in
the handbook.

degrees

Degrees are units to measure angles or turns. A full turn is 360 degrees, a half turn 180
degrees and a quarter turn 90 degrees. The commands turnleft, turnright and dire
ction need an input in degrees.

input and output of commands

Some commands take input, some commands give output, some commands take input and
give output and some commands neither take input nor give output.
Some examples of commands that only take input are:

forward 50
pencolor 255,0,0
print "Hello!"

The forward command takes 50 as input. forward needs this input to know how many
pixels it should go forward. pencolor takes a color as input and print takes a string (a
piece of text) as input. Please note that the input can also be a container. The next example
illustrates this:

$x = 50
print $x
forward 50
$str = "hello!"
print $str

Now some examples of commands that give output:

$x = ask "Please type something and press OK... thanks!"
$r = random 1,100

The ask command takes a string as input, and outputs the number or string that is entered.
As you can see, the output of ask is stored in the container x. The random command also
gives output. In this case it outputs a number between 1 and 100. The output of the random
is again stored in a container, named r. Note that the containers x and r are not used in the
example code above.
There are also commands that neither need input nor give output. Here are some examples:

34

The KTurtle Handbook

clear
penup

intuitive highlighting

This is a feature of KTurtle that makes coding even easier. With intuitive highlighting the
code that you write gets a color that indicates what type of code it is. In the next list you
will find the different types of code and the color they get in the editor.

regular commands dark blue The regular commands
are described here.

execution controlling
commands black (bold)

These special commands
control execution, read
more on them here.

comments gray

Lines that are commented
start with a comment
characters (#). These lines
are ignored when the
code is executed.
Comments allow the
programmer to explain a
bit about his code or can
be used to temporarily
prevent a certain piece of
code from executing.

brackets {, } dark green (bold)

Brackets are used to
group portions of code.
Brackets are often used
together with execution
controllers.

the learn command light green (bold)
The learn command is
used to create new
commands.

strings red

Not much to say about
(text) strings either, except
that they always start and
end with the double
quotes (´́).

numbers dark red Numbers, well not much
to say about them.

boolean values dark red
There are exactly two
boolean values, namely:
true and false.

variables purple
Start with a ’$’ and can
contain numbers, strings
or boolean values.

mathematical operators gray
These are the
mathematical operators:
+, -, *, / and ˆ.

comparison operators light blue (bold)
These are the comparison
operators: ==, !=, <, >, <=
and >=.

35

The KTurtle Handbook

boolean operators pink (bold)
These are the boolean
operators: and, or and
not.

regular text black
Table 5.1: Different types of code and their highlight color

pixels

A pixel is a dot on the screen. If you look very close you will see that the screen of your
monitor uses pixels. All images on the screen are built with these pixels. A pixel is the
smallest thing that can be drawn on the screen.
A lot of commands need a number of pixels as input. These commands are: forward,
backward, go, gox, goy, canvassize and penwidth.
In early versions of KTurtle the canvas was essentially a raster image, yet for recent versions
the canvas is a vector drawing. This means that the canvas can be zoomed in and out,
therefore a pixel does not necessarily have to translate to one dot on the screen.

RGB combinations (color codes)
RGB combinations are used to describe colors. The ‘R’ stand for ‘red’, the ‘G’ stands for
‘green’ and the ‘B’ stands for ‘blue’. An example of an RGB combination is 255,0,0: the
first value (‘red’) is 255 and the others are 0, so this represents a bright shade of red. Each
value of an RGB combination has to be in the range 0 to 255. Here a small list of some often
used colors:

0,0,0 black
255,255,255 white
255,0,0 red
150,0,0 dark red
0,255,0 green
0,0,255 blue
0,255,255 light blue
255,0,255 pink
255,255,0 yellow

Table 5.2: Often used RGB combinations

Two commands need an RGB combination as input: these commands are canvascolor
and pencolor.

sprite

A sprite is a small picture that can be moved around the screen. Our beloved turtle, for
instance, is a sprite.
Note: with this version of KTurtle the sprite cannot be changed from a turtle into something
else. Future versions of KTurtle will be able to do this.

36

The KTurtle Handbook

Chapter 6

Translator’s Guide to KTurtle

As you probably already know KTurtle’s programming language, TurtleScript, allows to be trans-
lated. This takes away a barrier for some, especially younger students, on their effort to under-
stand the basics of programming.

When translating KTurtle to a new language you will find, in addition to the GUI strings, the
programming commands, the examples and the error messages are included in the standard .pot
files as used for translation in KDE. Everything is translated using the regular translation method
found in KDE, yet you are strongly advised to learn a little on how to translate these (as you will
also read in the translator comments).

Please look at http://edu.kde.org/kturtle/translator.php for more information about the trans-
lation process. Thanks a lot for your work! KTurtle depends heavily on its translations.

37

http://edu.kde.org/kturtle/translator.php

The KTurtle Handbook

Chapter 7

Credits and License

KTurtle
Software copyright 2003-2007 Cies Breijs cies AT kde DOT nl

Documentation copyright 2004, 2007, 2009

• Cies Breijs cies AT kde DOT nl

• Anne-Marie Mahfouf annma AT kde DOT org

• Some proofreading changes by Philip Rodrigues phil@kde.org

• Updated translation how-to and some proofreading changes by Andrew Coles andrew_coles
AT yahoo DOT co DOT uk

This documentation is licensed under the terms of the GNU Free Documentation License.
This program is licensed under the terms of the GNU General Public License.

38

mailto:cies AT kde DOT nl
mailto:cies AT kde DOT nl
mailto:annma AT kde DOT org
mailto:phil@kde.org
mailto:andrew_coles AT yahoo DOT co DOT uk
mailto:andrew_coles AT yahoo DOT co DOT uk
fdl-license.html
gpl-license.html

The KTurtle Handbook

Chapter 8

Index

A
and, 20
arccos, 28
arcsin, 28
arctan, 28
ask, 28
assert, 32

B
backward (bw), 22
break, 32

C
canvascolor (cc), 25
canvassize (cs), 25
center, 23
clear (ccl), 25
cos, 28

D
direction (dir), 23

E
else, 30
exit, 32

F
false, 19
fontsize, 26
for, 31
forward (fw), 22

G
getdirection, 23
getx, 24
gety, 24
go, 23
gox (gx), 23
goy (gy), 24

I
if, 30

L
learn, 32

M
message, 28
mod, 27

N

not, 20

O
or, 20

P
pencolor (pc), 25
pendown (pd), 24
penup (pu), 24
penwidth (pw), 25
pi, 27
print, 26

R
random (rnd), 27
repeat, 31
reset, 25
return, 33
round, 27

S
sin, 28
spritehide (sh), 26
spriteshow (ss), 26
sqrt, 27
step, 31

T
tan, 28
to, 31
true, 19
turnleft (tl), 23
turnright (tr), 23

W
wait, 30
while, 31

39

	Introduction
	What is TurtleScript?
	Features of KTurtle

	Using KTurtle
	The Editor
	The Canvas
	The Inspector
	The Toolbar
	The Menubar
	The File Menu
	The Edit Menu
	The Canvas Menu
	The Run Menu
	The Tools Menu
	The Settings Menu
	The Help Menu

	The Statusbar

	Getting Started
	First steps with TurtleScript: meet the Turtle!
	The Turtle Moves
	More examples

	TurtleScript Programming Reference
	The Grammar of TurtleScript
	Comments
	Commands
	Numbers
	Strings
	Boolean (true/false) values

	Mathematical, boolean and comparing operators
	Mathematical operators
	Boolean (true/false) operators
	Some more advanced examples

	Comparing operators

	Commands
	Moving the turtle
	Where is the turtle?
	The turtle has a pen
	Commands to control the canvas
	Commands to clean up
	The turtle is a sprite
	Can the turtle write?
	Mathematical commands
	Input and feedback through dialogs

	Assignment of variables
	Controlling execution
	Have the turtle wait
	Execute ˝if˝
	If not, in other words: ˝else˝
	The ˝while˝ loop
	The ˝repeat˝ loop
	The ˝for˝ loop, a counting loop
	Leave a loop
	Stop executing your program
	Checking assertions at runtime

	Create your own commands with `learn'

	Glossary
	Translator's Guide to KTurtle
	Credits and License
	Index

