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Abstract

KDevelop is an Integrated Development Environment to be used for a wide variety of pro-
gramming tasks.
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Chapter 1

What is KDevelop?

KDevelop is a modern integrated development environment (IDE) for C++ (and other languages)
that is one of many KDE applications. As such it runs on Linux® (even if you run one of the other
desktops, such as GNOME) but it is also available for most other variants of UNIX® and for
Windows as well.
KDevelop offers all amenities of modern IDEs. For large projects and applications, the most im-
portant feature is that KDevelop understands C++: it parses the entire source base and remembers
which classes have which member functions, where variables are defined, what their types are,
and many other things about your code. For example, let’s say one of your project’s header files
declares a class

class Car {
// ...
public:

std::string get_color () const;
};

and later on in your program you have

Car my_ride;
// ...do something with this variable...
std::string color = my_ride.ge

it will have remembered that my_ride in the last line is a variable of type Car and offer you to
complete ge as get_color() since this is the only member function of the Car class that starts
like this. Instead of continuing to type you just hit Enter to get the full word; this saves typing,
avoids typos, and doesn’t require you to remember the exact names of the hundreds or thousands
of functions and classes that make up large projects.

As a second example, assume you have code like this:

double foo ()
{

double var = my_func();
return var * var;

}
double bar ()
{

double var = my_func();
return var * var * var;

}
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If you hover the mouse over the symbol var in function bar you get the option to see all uses of
this symbol. Clicking on it will only show you the uses of this variable in function bar because
KDevelop understands that the variable var in function foo has nothing to do with it. Similarly,
right clicking on the variable name allows you to rename the variable; doing so will only touch
the variable in bar but not the one with the same name in foo.
But KDevelop is not just an intelligent code editor; there are other things KDevelop does well.
Obviously, it highlights the source code in different colors; it has a customizable indenter; it
has an integrated interface to the GNU debugger gdb; it can show you the documentation for a
function if you hover the mouse over a use of this function; it can deal with different kinds of
build environments and compilers (e.g. with make and cmake-based project), and many other
neat things that are discussed in this manual.
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Chapter 2

Sessions and projects: The basics of
KDevelop

In this section, we will go over some of the terminology of how KDevelop sees the world and how
it structures work. In particular, we introduce the concept of sessions and projects and explain how
you can set up the projects you want to work on in KDevelop.

2.1 Terminology

KDevelop has the concept of sessions and projects. A session contains all projects that have some-
thing to do with each other. For the examples that follow, assume you are the developer of both a
library and an application that uses it. You can think of the core KDE libraries as the former and
KDevelop as the latter. Another example: Let’s say you are a Linux® kernel hacker but you are
also working on a device driver for Linux® that hasn’t been merged into the kernel tree yet.

So taking the latter as an example, you would have a session in KDevelop that has two projects:
the Linux® kernel and the device driver. You will want to group them into a single session (rather
than having two sessions with a single project each) because it will be useful to be able to see the
kernel functions and data structures in KDevelop whenever you write source code for the driver
— for example so that you can get kernel function and variable names auto-expanded, or so that
you can see kernel function documentation while hacking on the device driver.

Now imagine you also happen to be a KDE developer. Then you would have a second session
that contains KDE as a project. You could in principle have just one session for all of this, but there
is no real reason for this: in your KDE work, you don’t need to access kernel or device driver
functions; and you don’t want KDE class names autoexpanded while working on the Linux®

kernel. Finally, building some of the KDE libraries is independent of re-compiling the Linux®

kernel (whereas whenever you compile the device driver it would also be good to re-compile the
Linux® kernel if some of the kernel header files have changed).

Finally, another use for sessions is if you work both on the current development version of a
project, as well as on a branch: in that case, you don’t want KDevelop to confuse classes that
belong to mainline and the branch, so you’d have two sessions, with the same set of projects but
from different directories (corresponding to different development branches).
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2.2 Setting up a session and importing an existing project

Let’s stick with the Linux® kernel and device driver example — you may want to substitute your
own set of libraries or projects for these two examples. To create a new session that contains these
two projects go to the Session → Start new session menu at the top left (or, if this is the first time
you use KDevelop: simply use the default session you get on first use, which is empty).

We next want to populate this session with projects that for the moment we assume already exist
somewhere (the case of starting projects from scratch is discussed elsewhere in this manual). For
this, there are essentially two methods, depending on whether the project already is somewhere
on your hard drive or whether it needs to be downloaded from a server.

2.2.1 Option 1: Importing a project from a version control system server

Let’s first assume that the project we want to set up — the Linux® kernel — resides in some
version control system on a server, but that you haven’t checked it out to your local hard drive
yet. In this case, go to the Project menu to create the Linux® kernel as a project inside the current
session and then follow these steps:

• Go to Project → Fetch Project to import a project

• You then have multiple options to start a new project in the current session, depending on
where the source files should come from: You can just point KDevelop at an existing directory
(see option 2 below), or you can ask KDevelop to get the sources from a repository.

• Assuming you don’t already have a version checked out:

– In the dialog box, under Select Source, choose to use From File System, Subversion, Git,
GitHub, or KDE

– Choose a working directory as destination into which the sources should be checked out
– Choose an URL for the location of the repository where the source files can be obtained
– Hit Get. This can take quite a long while; depending on the speed of your connection and the

size of the project. Unfortunately, in KDevelop 4.2.x the progress bar does not actually show
anything, but you can track progress by periodically looking at the output of the command
line command

du -sk /path/to/KDevelop/project

to see how much data has already been downloaded.

NOTE
The problem with the progress bar has been reported as KDevelop bug 256832.

NOTE
In this process, I also get the error message You need to specify a valid location for the project which
can be safely ignored.

• It asks you to select a KDevelop project file in this directory. Since you probably don’t have
one yet, simply hit Next

• Hit Next again
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• KDevelop will then ask you to choose a project manager. If this project uses standard UNIX®

make files, choose the custom makefile project manager

• KDevelop will then start to parse the entire project. Again, it will take quite a while to go
through all files and index classes etc. At the bottom right of the main window, there is a
progress bar that shows how long this process has come along. (If you have several processor
cores, you can accelerate this process by going to the Settings → Configure KDevelop menu
item, then selecting Background parser on the left, and increasing the number of threads for
background parsing on the right.)

2.2.2 Option 2: Importing a project that is already on your hard drive

Alternatively, if the project you want to work with already exists on your hard drive (for example,
because you have downloaded it as a tar file from an FTP server, because you already checked
out a version of the project from a version control system, or because it is your own project that
exists only on your own hard drive), then use Projects → Open/Import project and in the dialog
box choose the directory in which your project resides.

2.3 Setting up an application as a second project

The next thing you want to do is set up other projects in the same session. In the example above,
you would want to add the device driver as the second project, which you can do using exactly
the same steps.

If you have multiple applications or libraries, simply repeat the steps to add more and more
projects to your session.

2.4 Creating projects from scratch

There is of course also the possibility that you want to start a new project from scratch. This can
be done using the Projects → New from Template... menu item, which presents you with a tem-
plate selection dialog. Some project templates are provided with KDevelop, but even more are
available by installing the KAppTemplate application. Choose the project type and programming
language from the dialog, enter a name and location for you project, and click Next.
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The second page of the dialog allows you to set up a version control system. Choose the system
you wish the use, and fill in the system-specific configuration if needed. If you do not wish to use
a version control system, or want to set it up manually later, choose None. When you are happy
with your choice, press Finish.

Your project is now created, so you can try building or installing it. Some templates will include
comments within the code, or even a separate README file, and it is recommended that you
read those first. Then, you can start working on your project, by adding whatever features you
want.
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Chapter 3

Working with source code

Besides debugging, reading through and writing source code is what you will spend the most
time with when developing software. To this end, KDevelop offers you many many different
ways to explore source codes and to make writing it more productive. As discussed in more detail
in the following sections, KDevelop is not just a source editor — rather, it is a source management
system that gives you different views of extracted information on the files that collectively make
up your session’s source code.

3.1 Tools and views

In order to work with projects, KDevelop has the concept of tools. A tool provides a particular
view of the source, or an action that can be taken with it. Tools are represented by buttons around
the perimeter of your window (in vertical text along the left and right margins, or horizontally
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along the bottom margin). If you click on them, they expand to a subwindow — a view — within
the main window; if you click on the tool button again, the subwindow disappears again.

To make a subwindow disappear, you can also click at the x at the top right of the subwindow

The picture above shows a particular selection of tools, aligned on the left and right margins; in
the picture, the Classes tool is open on the left and the Snippets tool on the right, along with an
editor for a source file in the middle. In practice, most of the time you will probably only have
the editor and maybe the Classes or Code Browser tool open at the left. Other tool view will
likely only be open temporarily as you use the tool, leaving more space for the editor most of the
time.
When you run KDevelop the first time, you should already have the Projects tool button. Click
on it: it will open a subwindow that shows the projects you have added to the session at the
bottom, and a file system view of the directories of your projects at the top.

There are many other tools you can use with KDevelop, not all of which are initially present as
buttons on the perimeter. To add some, go to the Windows → Add tool view menu entry. Here
are some that you will likely find useful:

• Classes: A complete list of all classes that are defined in one of the projects or your session
with all of their member functions and variables. Clicking on any of the members opens a
source editor window at the location of the item you clicked on.

• Documents: Lists some of the more recently visited files, by kind (e.g. source files, patch files,
plain text documents).

• Code Browser: Depending on your cursor position in a file, this tool shows things that are
related. For example, if you are on an #include line, it shows information about the file you
are including such as what classes are declared in that file; if you are on an empty line at file
scope, it shows the classes and functions declared and defined in the current file (all as links:
clicking on them brings you to the point in the file where the declaration or definition actually
is); if you are in a function definition, it shows where the declaration is and offers a list of
places where the function is used.

• File system: Shows you a tree view of the file system.

• Documentation: Allows you to search for man pages and other help documents.

• Snippets: This provides sequences of text that one uses over an over and doesn’t want to write
every time. For example, in the project from which the picture above was created, there is a
frequent need to write code like

for (typename Triangulation < dim >::active_cell_iterator cell
= triangulation.begin_active();

cell != triangulation.end();
++cell)

This is an awkward expression but it will look almost exactly like this every time you need such
a loop — which would make it a good candidate for a snippet.

• Konsole: Opens a command line window inside KDevelop’s main window, for the occasional
command you may want to enter (e.g. to run ./configure).

A complete list of tools and views is given here.

For many programmers, vertical screen space is the most important. To this end, you can arrange
your tool views at the left and right margin of the window: to move a tool, click on its symbol
with the right mouse button and select a new position for it.
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3.2 Exploring source code

3.2.1 Local information

KDevelop understands source code, and as a consequence it is really good at providing you in-
formation about variables or functions that may appear in your program. For example, here is a
snapshot of working with a piece of code and hovering the mouse over the symbol cell in line
1316 (if you are working keyboard oriented, you can achieve the same effect by holding down
the Alt key for a while):

KDevelop shows me a tooltip that includes the type of the variable (here: DoFHandler<dim>acti
ve_cell_iterator), where this variable is declared (the container, which here is the surrounding
function get_maximal_velocity since it is a local variable), what it is (a variable, not a function,
class or namespace) and where it is declared (in line 1314, just a few lines up in the code).

In the current context, the symbol over which the mouse was hovering has no associated docu-
mentation. In this example, had the mouse hovered over the symbol get_this_mpi_process in
line 1318, the outcome would have been this:
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Here, KDevelop has cross-referenced the declaration from an entirely different file (utilities.h,
which in fact even resides in a different project of the same session) together with the doxygen-
style comment that accompanies the declaration there.

What makes these tooltips even more useful is that they are dynamic: I can click on the container
to get information about the context in which the variable is declared (i.e. about the namespace
System, such as where it is declared, defined, used, or what its documentation is) and I can click
on the blue links that will reset the cursor position to the location of the declaration of the Symbol
(e.g. in utilities.h, line 289) or give me a list of places where this symbol is used in the current
file or throughout all the projects of the current session. The latter is often useful if you want to
explore how, for example, a particular function is used in a large code basis.
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NOTE
The information in a tooltip is fleeting — it depends on you holding the Alt key down or hovering your
mouse. If you want a more permanent place for it, open the Code Browser tool view in one of the
sub-windows. For example, here the cursor is on the same function as in the example above, and the
tool view on the left presents the same kind of information as in the tooltip before:

Moving the cursor around on the right changes the information presented on the left. What’s more,
clicking on the Lock current view button at the top right allows you to lock this information, making it
independent of the cursor movement while you explore the information presented there.

NOTE
This sort of context information is available in many other places in KDevelop, not just in the source
editor. For example, holding down the Alt key in a completion list (e.g. when doing a quick-open) also
yields context information about the current symbol.

3.2.2 File scope information

The next level up is to obtain information about the entire source file you are currently working
on. To this end, position the cursor at file scope in the current file and look at the what the Code
Browser tool view shows:
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Here, it shows a list of namespaces, classes and functions declared or defined in the current file,
giving you an overview of what’s happening in this file and a means to jump directly to any
of these declarations or definitions without scrolling up and down in the file or searching for a
particular symbol.

NOTE
The information shown for file scope is the same as presented in the ‘Outline’ mode discussed below
for navigating source code; the difference is that outline mode is only a temporary tooltip.

3.2.3 Project and session scope information

There are many ways to obtain information about an entire project (or, in fact, about all projects
in a session). This sort of information is typically provided through various tool views. For ex-
ample, the Classes tool view provides a tree structure of all classes and surrounding namespaces
for all projects in a session, together with the member functions and variables of each of these
classes:

17



KDevelop Handbook

Hovering over an entry provides again information about the symbol, its location of declaration
and definition, and its uses. Double-clicking on an entry in this tree view opens an editor window
at the location where the symbol is declared or defined.

But there are other ways of looking at global information. For example, the Documents tool pro-
vides a view of a project in terms of the kinds of files or other documents this project is comprised
of:
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3.2.4 Rainbow color highlighting explained

KDevelop uses a variety of colors to highlight different objects in source code. If you know what
the different colors mean, you can very quickly extract a lot of information from source code just
by looking at the colors, without reading a single character. The highlighting rules are as follows:

• Objects of type Class / Struct, Enum (the values and the type), (global) functions, and class
members each have their own color assigned (classes are green, enums are dark red, and mem-
bers are dark yellow or violet, (global) functions are always violet).

• All global variables are colored in dark green.

• Identifiers which are typedefs for another type are colored in teal.

• All declarations and definitions of objects are in bold.

• If a member is accessed from within the context where it is defined (base or derived class) it
appears in yellow, otherwise it appears in violet.

• If a member is private or protected, it gets colored in a slightly darker color when used.

• For variables local to a function body scope, rainbow colors are picked based on a hash of the
identifier. This includes the parameters to the function. An identifier always will have the
same color within its scope (but the same identifier will get a different color if it represents a
different object, i.e. if it is redefined in a more nested scope), and you will usually get the same
color for the same identifier name in different scopes. Thus, if you have multiple functions
taking parameters with the same names, the arguments will all look the same color-wise. These
rainbow colors can be turned off separately from the global coloring in the settings dialog.

• Identifiers for which KDevelop could not determine the corresponding declaration are colored
in white. This can sometimes be caused by missing #include directives.

• In addition to that coloring, the normal editor syntax highlighting will be applied, as known
from Kate. KDevelop’s semantic highlighting will always override the editor highlighting if
there is a conflict.

3.3 Navigating in source code

In the previous section, we have discussed exploring source code, i.e. getting information about
symbols, files and projects. The next step is then to jump around your source base, i.e. to navigate
in it. There are again various levels at which this is possible: local, within a file, and within a
project.

NOTE
Many of the ways to navigate through code are accessible from the Navigate menu in the KDevelop
main window.

3.3.1 Local navigation

KDevelop is much more than an editor, but it is also a source editor. As such, you can of course
move the cursor up, down, left or right in a source file. You can also use the PageUp and Page-
Down keys, and all the other commands you are used from any useful editor.
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3.3.2 File scope navigation and outline mode

At the file scope, KDevelop offers many possible ways to navigate through source code. For
example:

• Outline: You can get an outline of what’s in the current file in at least three different ways:

– Clicking into the Outline textbox at the top right of the main window, or hitting Alt-Ctrl-N
opens a drop-down menu that lists all function and class declarations:

You can then just select which one to jump to, or — if there are a lot — start typing any
text that may appear in the names shown; in that case, as you keep typing, the list becomes
smaller and smaller as names are removed that don’t match the text already typed until you
are ready to select one of the choices.

– Positioning the cursor at file scope (i.e. outside any function or class declarations or defini-
tions) and having the Code Browser tool open:
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This also provides you an outline of what is happening in the current file, and allows you to
select where you want to jump to.

– Hovering the mouse over the tab for one of the open files also yields an outline of the file in
that tab.

• Source files are organized as a list of function declarations or definitions. Hitting Alt-Ctrl-
PgUp and Alt-Ctrl-PgDown jumps to the previous or next function definition in this file.

3.3.3 Project and session scope navigation: Semantic navigation

As mentioned in other places, KDevelop does not usually consider individual source files but
rather looks at projects as a whole (or, rather, at all projects that are part of the current session).
As a consequence, it offers many possibilities for navigating through entire projects. Some of
these are derived from what we have already discussed in the section on Exploring source code
while others are genuinely different. The common theme is that these navigation features are
based on a semantic understanding of the code, i.e. they offer you something that requires parsing
entire projects and connecting data. The following list shows some ways how to navigate through
source code that is scattered throughout a potentially very large number of files:

• As seen in the section on Exploring source code, you can get a tooltip explaining individual
namespace, class, function or variable names by hovering your mouse over it or keeping the
Alt key pressed for a while. Here is an example:
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Clicking on the links for the declaration of a symbol or expanding the list of uses allows you
to jump to these locations, if necessary opening the respective file and placing the cursor at the
corresponding location. A similar effect can be achieved by using the Code Browser tool view
also discussed previously.

• A quicker way to jump to the declaration of a symbol without having to click on the links in the
tooltip is to temporary enabling Source Browse Mode by holding down the Alt or Ctrl key. In
this mode, it is possible to directly click on any symbol in the editor to jump to its declaration.

• Quick open: A very powerful way of jumping to other files or locations is to use the various
quick open methods in KDevelop. There are four versions of these:

– Quick open class (Navigate → Quick open class or Alt-Ctrl-C): You will get a list of all
classes in this session. Start typing (a part of) the name of a class and the list will continue to
whittle down to only those that actually match what you’ve typed so far. If the list is short
enough, select an element using the up and down keys and KDevelop will get you to the
place where the class is declared.

– Quick open function (Navigate →Quick open function or Alt-Ctrl-M): You will get a list of
all (member) functions that are part of the projects in the current session, and you can select
from it in the same way as above. Note that this list may include both function declarations
and definitions.

– Quick open file (Navigate → Quick open file or Alt-Ctrl-O): You will get a list of all files
that are part of the projects in the current session, and you can select from it in the same way
as above.

– Universal quick open (Navigate → Quick open or Alt-Ctrl-Q): If you forget which key
combination is bound to which of the above commands, this is the universal swiss army
knife — it simply presents you with a combined list of all files, functions, classes, and other
things from which you can select.

• Jump to declaration/definition: When implementing a (member) function, one often needs to
switch back to the point where a function is declared, for example to keep the list of function
arguments synchronised between declaration and definition, or to update the documentation.
To do so, place the cursor onto the function name and select Navigation → Jump to declaration
(or hit Ctrl-.) to get to the place where the function is declared. There are multiple ways to get
back to the original place:
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– Selecting Navigation → Jump to definition (or hitting Ctrl-,).
– Selecting Navigation → Previous visited context (or hit Meta-Left), as described below.

NOTE
Jumping to the declaration of a symbol is something that does not only work when placing the cursor
on the name of the function you are currently implementing. Rather, it also works for other symbols:
Putting the cursor on a (local, global, or member) variable and jumping to its declaration also transports
you to its location of declaration. Similarly, you can place the cursor on the name of a class, for example
in a variable of function declaration, and jump to the location of its declaration.

• Switch between declaration/definition: In the example above, to jump to the site of the decla-
ration of the current function, you need to first place the cursor on the function name. To avoid
this step, you can select Navigation → Switch definition/declaration (or hit Shift-Ctrl-C) to
jump to the declaration of the function within which the cursor currently is. Selecting the same
menu entry a second time transports you back to the place where the function is defined.

• Previous/Next use: Placing the cursor on the name of a local variable and selecting Navigation
→ Next use (or hitting Meta-Shift-Right) transports you to the next use of this variable in the
code. (Note that this doesn’t just search for the next occurrence of the variable name but in fact
takes into account that variables with the same name but in different scopes are different.) The
same works for the use of function names. Selecting Navigation → Previous use (or hitting
Meta-Shift-Left) transports you to the previous use of a symbol.

NOTE
To see the list of all uses of a name through which these commands cycle, place the cursor onto it and
open the Code Browser tool view or press and hold the Alt button. This is explained in more detail in
the section on Exploring code.

• The context list: Web browsers have this feature where you can go backward and forward in
the list of most recently visited web pages. KDevelop has the same kind of features, except
that instead of web pages you visit contexts. A context is the current location of the cursor,
and you change it by navigating away from it using anything but cursor commands — for
example, by clicking on a location provided by a tooltip, in the Code Browser tool view, one
of the options given in the Navigation menu, or any other navigation command. Using the
Navigation → Previous Visited Context (Meta-Left) and Navigation → Next Visited Context
(Meta-Right) transports you along this list of visited contexts just like the back and forward
buttons of a browser transports you to the previous or next webpage in the list of visited pages.

• Finally, there are tool views that allow you to navigate to different places in your code base. For
example, the Classes tool provides you with a list of all namespaces and classes in all projects
of the current session, and allows you to expand it to see member functions and variables of
each of these classes:
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Double-clicking on an item (or going through the context menu using the right mouse button)
allows you to jump to the location of the declaration of the item. Other tools allow similar
things; for example, the Projects tool view provides a list of files that are part of a session:

Again, double-clicking on a file opens it.
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3.4 Writing source code

Because KDevelop understands your projects’ source code, it can assist in writing more code.
The following outlines some of the ways in which it does that.

3.4.1 Auto-completion

Probably the most useful of all features in writing new code is auto-completion. Consider, for
example, the following piece of code:

class Car {
// ...
public:

std::string get_color () const;
};
void foo()
{

Car my_ride;
// ...do something with this variable...
std::string color = my_ride.ge

In the last line, KDevelop will remember that the variable my_ride is of type Car, and will au-
tomatically offer to complete the name of the member function ge as get_color. In fact, all you
have to do is to keep typing until the auto-completion feature has reduced the number of matches
to one, and then hit the Enter key:

Note that you can click on the tool-tip to get more information about the function apart from its
return type and whether it is public:
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Auto-completion can save you a lot of typing if your project uses long variable and function
names; furthermore, it avoids mis-spelling names (and the resulting compiler errors) and it
makes it much simpler to remember the exact names of functions; for example, if all of your
getters start with get_, then the auto-completion feature will be able to only present you a list
of possible getters when you have typed the first four letters, likely reminding you in the pro-
cess which of the functions is the correct one. Note that for auto-completion to work, neither the
declaration of the Car class nor of the my_ride variable need to be in the same file as where you
are currently writing code. KDevelop simply has to know that these classes and variables are
connected, i.e. the files in which these connections are made need to be part of the project you
are currently working on.

NOTE
KDevelop doesn’t always know when to assist you in completing code. If the auto-completion tooltip
doesn’t automatically open, hit Ctrl-Space to open a list of completions manually. In general, in order
for auto-completion to work, KDevelop needs to parse your source files. This happens in the back-
ground for all files that are part of the projects of the current session after you start KDevelop, as well
as while after you stop typing for a fraction of a second (the delay can be configured).

NOTE
KDevelop only parses files that it considers source code, as determined by the MIME-type of the file.
This type isn’t set before the first time a file is saved; consequently, creating a new file and starting to
write code in it will not trigger parsing for auto-completion until after it is saved for the first time.

NOTE
As in the previous note, for auto-completion to work, KDevelop must be able to find declarations in
header files. For this, it searches in a number of default paths. If it doesn’t automatically find a header
file, it will underline the name of a header file in red; in that case, right click on it to tell KDevelop
explicitly where to find these files and the information they provide.
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NOTE
Configuring auto-completion is discussed in this section of this manual.

3.4.2 Adding new classes and implementing member functions

KDevelop has an assistant for adding new classes. The procedure is described in Creating a new
class. A simple C++ class can be created by choosing the Basic C++ template from the Class
category. In the assistant, we can choose some predefined member functions, for example an
empty constructor, a copy constructor and a destructor.

After completing the assistant, the new files are created and opened in the editor. The header
file already has include guards and the new class has all the member functions we selected. The
next two steps would be to document the class and its member functions and to implement
them. We will discuss aids for documenting classes and functions below. To implement the
special functions already added, simply go to the bus.cpp tab where the skeleton of functions are
already provided:

To add new member functions, go back to the bus.h tab and add the name of a function. For
example, let us add this:
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Note how I have already started with the implementation. However, in many coding styles, the
function shouldn’t be implemented in the header file but rather in the corresponding .cpp file. To
this end, locate the cursor on the name of the function and select Code → Move to source or hit
Ctrl-Alt-S. This remove the code between curly braces from the header file (and replaces it by a
semicolon as necessary to terminate the function declaration) and moves it into the source file:

Note how I have just started typing and that I meant to imply that the students variable should
probably be a member variable of class Bus but that I haven’t yet added it. Note also how KDe-
velop underlines it to make clear that it doesn’t know anything about the variable. But this
problem can be solved: Clicking on the variable name yields the following tooltip:
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(The same can be achieved by right clicking on it and selecting Solve: Declare As.) Let me select
‘3 - private unsigned int’ (either by mouse, or by hitting Alt-3) and then see how it comes out in
the header file:

It is worth noting that KDevelop extracts the type of the variable to be declared from the ex-
pression used to initialize it. For example, if we had written the addition in the following rather
dubious way, it would had suggested to declare the variable as type double:
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As a final point: The method using Code → Move to source does not always insert the new
member function where you may want it. For example, you may want it to be marked as inline
and place it at the bottom of the header file. In a case like this, write the declaration and the start
writing the definition of the function like this:

KDevelop automatically offers all possible completions of what might come here. Selecting one
of the two add_students entries yields the following code that already fills in the complete argu-
ment list:
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NOTE
In the example, accepting one of the choices the auto-completion tool offers yields the correct signature
but unfortunately deletes the inline marker already written. This has been reported as KDevelop Bug
274245.

3.4.3 Documenting declarations

Good code is well documented, both at the level of the implementation of algorithms within in
functions as well as at the level of the interface — i.e., classes, (member and global) functions,
and (member or global) variables need to be documented to explain their intent, possible values
of arguments, pre- and postconditions, etc. As far as documenting the interface is concerned,
doxygen has become the de facto standard for formatting comments that can then be extracted
and displayed on searchable webpages.

KDevelop supports this style of comments by providing a short cut to generate the framework
of comments that document a class or member function. For example, assume you have already
written this code:

class Car {
public:

std::string get_color () const;
};

You now want to add documentation to both the class and the member function. To this end,
move the cursor onto the first line and select Code → Document Declaration or hit Alt-Shift-D.
KDevelop will respond with the following:
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The cursor is already in the grayed out area for you to fill in the short description (after the
doxygen keyword @brief) of this class. You can then continue to add documentation to this
comment that gives a more detailed overview of what the class does:

While the editor is inside the comment, the comment text is highlighted in green (the highlighting
disappears once you move the cursor out of the comment). When you get to the end of a line, hit
Enter and KDevelop will automatically start a new line that starts with an asterisk and place the
cursor one character indented.
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Now let’s document the member function, again by putting the cursor on the line of the declara-
tion and selecting Code → Document Declaration or hitting Alt-Shift-D:

Again, KDevelop automatically generates the skeleton of a comment, including documentation
for the function itself, as well as its return type. In the current case, the name of the function
is pretty much self-explanatory, but oftentimes function arguments may not be and should be
documented individually. To illustrate this, let’s consider a slightly more interesting function
and the comment KDevelop automatically generates:
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Here, the suggested comment already contains all the Doxygen fields for the individual parame-
ters, for example.

3.4.4 Renaming variables, functions and classes

Sometimes, one wants to rename a function, class or variable. For example, let’s say we already
have this:

We then realize that we’re unhappy with the name remove_students and would have rather
called it, say, throw_out_students. We could do a search-replace for the name, but this has two
drawbacks:

• The function may be used in more than one file.

• We really only want to rename this function and not touch functions that may have the same
name but are declared in other classes or namespaces.

Both these problems can be solved by moving the cursor on any of the occurrences of the name
of the function and selecting Code → Rename declaration (or right clicking on the name and
selecting Rename Bus::remove_students). This brings up a dialog box where you can enter the
new name of the function and where you can also see all the places where the function is actually
used:
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3.4.5 Code snippets

Most projects have pieces of code that one frequently has to write in source code. Examples are:
for compiler writers, a loop over all instructions; for user interface writers, checks that user input
is valid and if not to open an error box; in the project of the author of these lines, it would be code
of the kind

for (typename Triangulation::active_cell_iterator
cell = triangulation.begin_active();

cell != triangulation.end(); ++cell)
... do something with the cell ...

Rather than typing this kind of text over and over again (with all the concomitant typos one
introduces), the Snippets tool of KDevelop can help here. To this end, open the tool view (see
Tools and views if the corresponding button isn’t already on the perimeter of your window).
Then click on the ‘Add repository’ button (a slight misnomer — it allows you to create a named
collection of snippets for source codes of a particular kind, e.g. C++ sources) and create an empty

repository. Then click to add a snippet, to get a dialog like the following:
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NOTE
The name of a snippet may not have spaces or other special characters because it must look like a
normal function or variable name (for reasons that will become clear in the next paragraph).

To use a snippet so defined, when you are editing code, you can just type the name of the snippet
like you would any other function or variable name. This name will become available for auto-
completion — which means that there is no harm in using a long and descriptive name for a
snippet such as the one above — and when you accept the suggestion of the auto-completion
tooltip (for example by just hitting Enter), the already entered part of the snippets’ name will be
replaced by the full expansion of the snippet and will be properly indented:
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Note that for this to work, the Snippets tool view need not be open or visible: you only ever need
the tool view to define new snippets. An alternative, if less convenient, way to expand a snippet
is to simply click on it in the respective tool view.

NOTE
Snippets are much more powerful than just explained. For a full description of what you can do with
them, see the detailed documentation of the Snippets tool.

3.5 Modes and working sets

If you’ve gotten this far, take a look at the upper right of the KDevelop main window: As shown
in the picture, you will see that there are three modes KDevelop can be in: Code (the mode we
discuss in the current chapter on working with source code), Debug (see Debugging programs)
and Review (see Working with version control systems).
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Each mode has its own set of tools that are stacked around the perimeter, and each mode also
has a working set of currently open files and documents. Furthermore, each such working set is
associated with a current session, i.e. we have the relationship shown above. Note that the files
in the working set come from the same session, but they may come from different projects that
are part of the same session.

If you open KDevelop the first time, the working set is empty — there are no open files. But
as you open files for editing (or debugging, or reviewing in the other modes) your working set
grows. The fact that your working set is non-empty is indicated by a symbol in the tab, as shown
below. You will notice that whenever you close KDevelop and later start it again, the working set
is saved and restored, i.e. you get the same set of open files.

If you hover your mouse over the symbol for the working set, you get a tooltip that shows you
which files are currently open in this working set (here: the step-32.cc and step-1.cc files).
Clicking on the red minus sign closes the tab for the corresponding file. Maybe more importantly,
clicking on the correspondingly named button allows you to close the entire working set at once
(i.e. to close all currently open files). The point about closing a working set, however, is that it
doesn’t just close all files, it actually saves the working set and opens a new, still empty one. You
can see this here:
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Note the two symbols to the left of the three mode tabs (the heart and the unidentifiable symbol
to its left). Each of these two symbols represents a saved working set, in addition to the currently
open working set. If you hover your mouse over the heart symbol, you’ll get something like this:

It shows you that the corresponding working set contains two files and their corresponding
project names: Makefile and changes.h. Clicking Load will close and save the current working
set (which as shown here has the files tria.h and tria.cc open) and instead open the selected
working set. You can also permanently delete a working set, which removes it from the set of
saved working sets.

3.6 Some useful keyboard shortcuts

KDevelop’s editor follows the standard keyboard shortcuts for all usual editing operations. How-
ever, it also supports a number of more advanced operations when editing source code, some of
which are bound to particular key combinations. The following are frequently particularly help-
ful:

Jumping around in code

Ctrl-Alt-O

Quick open file: enter part of a filename
and select among all the files in the current
session’s projects’ directory trees that match
the string; the file will then be opened

Ctrl-Alt-C

Quick open class: enter part of a class name
and select among all class names that
match; the cursor will then jump to the
class declaration

Ctrl-Alt-M

Quick open function: enter part of a
(member) function name and select among
all names that match; note that the list
shows both declarations and definitions
and the cursor will then jump to the
selected item

Ctrl-Alt-Q
Universal quick open: type anything (file
name, class name, function name) and get a
list of anything that matches to select from

Ctrl-Alt-N
Outline: Provide a list of all things that are
happening in this file, e.g. class declarations
and function definitions

Ctrl-, Jump to definition of a function if the
cursor is currently on a function declaration

Ctrl-.
Jump to declaration of a function or
variable if the cursor is currently in a
function definition

Ctrl-Alt-PageDown Jump to next function
Ctrl-Alt-PageUp Jump to previous function
Ctrl-G Goto line
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Searching and replacing
Ctrl-F Find
F3 Find next
Ctrl-R Replace
Ctrl-Alt-F Find-Replace in multiple files

Other things

Ctrl-_
Collapse one level: remove this block from
view, for example if you want to focus on
the bigger picture within a function

Ctrl-+ Expand one level: undo the collapsing
Ctrl-D Comment out selected text or current line
Ctrl-Shift-D Comment in selected text or current line

Alt-Shift-D

Document the current function. If the
cursor is on a function or class declaration
then hitting this key will create a
doxygen-style comment pre-populated
with a listing of all parameters, return
values, etc.

Ctrl-T Transpose the current and the previous
character

Ctrl-K
Delete the current line (note: this is not just
emacs’ ‘delete from here to the end of the
line’)
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Chapter 4

Code generation with templates

KDevelop uses templates for generating source code files and to avoid writing repeatable code.

4.1 Creating a new class

The most common use for code generation is probably writing new classes. To create a new class
in an existing project, right click on a project folder and choose Create from Template.... The
same dialog can be started from the menu by clicking File → New from Template..., but using
a project folder has the benefit of setting a base URL for the output files. Choose Class in the
category selection view, and the desired language and template in the other two views. After
you have selected a class template, you will have to specify the details of the new class.

First you have to specify an identifier for the new class. This can be a simple name (like Bus) or
a complete identifier with namespaces (like Transportation::Bus). In the latter case, KDevelop
will parse the identifier and correctly separate the namespaces from the actual name. On the
same page, you can add base classes for the new class. You may notice that some templates
choose a base class on their own, you are free to remove it and/or add other bases. You should
write the full inheritance statement here, which is language-dependent, such as public QObject
for C++, extends SomeClass for PHP or simply the name of the class for Python.
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In the next page, you are offered a selection of virtual methods from all inherited classes, as
well as some default constructors, destructors and operators. Checking the check box next to a
method signature will implement this method in the new class.

Clicking Next brings up a page where you can add members to a class. Depending on the selected
template, these may appear in the new class as member variables, or the template may create
properties with setters and getters for them. In a language where variable types have to be
declared, such as C++, you have to specify both the type and the name of the member, such as in
t number or QString name. In other languages, you may leave out the type, but it is good practice
to enter it anyway, because the selected template could still make some use of it.

In the following pages, you can choose a license for you new class, set any custom options re-
quired by the selected template, and configure output locations for all the generated files. By
clicking Finish, you complete the assistant and create the new class. The generated files will be
opened in the editor, so you can start adding code right away.

After creating a new C++ class, you will be given an option of adding the class to a project target.
Choose a target from the dialog page, or dismiss the page and add the files to a target manually.

If you chose the Qt Object template, checked some of the default methods, and added two mem-
ber variables, the output should look like on the following picture.
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You can see that data members are converted into Qt properties, with accessor functions and
the Q_PROPERTY macros. Arguments to setter functions are even passed by const-reference,
where appropriate. Additionally, a private class is declared, and a private pointer created with
Q_DECLARE_PRIVATE. All this is done by the template, choosing a different template in the
first step could completely change the output.

4.2 Creating a new unit test

Even though most testing frameworks require each test to also be a class, KDevelop includes a
method to simplify the creation of unit tests. To create a new test, right click on a project folder
and choose Create from Template.... In the template selection page, choose Test as the category,
then choose your programming language and template and click Next.

You will be prompted for the test name and a list of test cases. For the test cases, you only have
to specify a list of names. Some unit testing frameworks, such as PyUnit and PHPUnit, require
that test cases start with a special prefix. In KDevelop, the template is responsible for adding the
prefix, so you do not have to prefix the test cases here. After clicking Next, specify the license
and output locations for the generated files, and the test will be created.

Unit tests created this way will not be added to any target automatically. If you are using CTest
or some other testing framework, make sure to add the new files to a target.

4.3 Other files

While classes and unit tests receive special attention when generating code from templates, the
same method can be used for any kind of source code files. For example, one could use a tem-
plate for a CMake Find module or a .desktop file. This can be done by choosing Create from
Template..., and selecting the wanted category and template. If the selected category is neither C
lass nor Test, you will only have the option of choosing the license, any custom options specified
by the template, and the output file locations. As with classes and tests, finishing the assistant
will generate the files and open them in the editor.

43



KDevelop Handbook

4.4 Managing templates

From the File → New from Template... assistant, you can also download additional file tem-
plates by clicking the Get more Templates... button. This opens a Get Hot New Stuff dialog,
where you can install additional templates, as well as update or remove them. There is also
a configuration module for templates, which can be reached by clicking Settings → Configure
KDevelop → Templates. From there, you can manage both file templates (explained above) and
project templates (used for creating new projects).

Of course, if none of the available template suit your project, you can always create new ones.
The easiest way is probably to copy and modify an existing template, while a short tutorial and
a longer specification document are there to help you. To copy an installed template, open the
template manager by clicking Settings → Configure KDevelop... → Templates, select the tem-
plate you wish to copy, then click the Extract Template button. Select a destination folder, then
click OK, and the contents of the template will be extracted into the selected folder. Now you can
edit the template by opening the extracted files and modifying them. After you are done, you
can import your new template into KDevelop by opening the template manager, activating the
appropriate tab (either Project Templates or File Templates) and clicking Load Template. Open
the template description file, which is the one with the suffix either .kdevtemplate or .desktop.
KDevelop will compress the files into a template archive and import the template.

NOTE
When copying an existing template, make sure you rename it before importing it again. Otherwise,
you will either overwrite the old template, or will end up with two templates with identical names. To
rename a template, rename the description file to something unique (but keep the suffix), and change
the Name entry in the description file.

If you want to write a template from scratch, you can start with a sample C++ class template by
creating a new project and selecting the C++ Class Template project in category KDevelop.
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Chapter 5

Building (compiling) projects with
custom Makefiles

Many projects describe how source files have to be compiled (and which files have to be recom-
piled once a source or header file changes) using Makefiles that are interpreted by the make
program (see, for example, GNU make). For simple projects, it is often very easy to set up such
a file by hand. Larger projects often integrate their Makefiles with the GNU autotools (autoconf,
autoheader, automake). In this section, let us simply assume that you have a Makefile for your
project and you want to teach KDevelop how to interact with it.

NOTE
KDevelop 4.x doesn’t know about the GNU autotools at the time this section is written. If your project
uses them, you will have to run ./configure or any of the other related commands by hand on a
command line. If you want to do this within KDevelop, open the Konsole tool (if necessary add it to
the perimeter of the main window using the menu Windows → Add tool view) that gives you a shell
window view and run ./configure from the command line in this view.

The first step is to teach KDevelop about targets in your Makefiles. There are two ways to do
that: selecting individual Makefile targets, and choosing a set of targets you may want to build
frequently. For both approaches, open the Projects tool by clicking on the Projects button on the
perimeter of KDevelop’s main window (if you don’t have this button see above how to add a
tool’s button there). The Projects tool window has two parts: the top half — titled Projects —
lists all of your projects and let’s you expand the underlying directory trees. The bottom half —
titled Project Selection — lists a subset of those projects that will be built if you choose the menu
item Project → Build selection or hit F8; we’ll come back to this part below.

5.1 Building individual Makefile targets

In the top part of the project view, expand the sub-tree for one project, let’s say the one for which
you want to run a particular Makefile target. This will give you icons for (i) directories under
this project, (ii) files in the top-level directory for this project, (iii) Makefile targets KDevelop
can identify. These categories are shown in the picture at right. Note that KDevelop understands
Makefile syntax to a certain degree and therefore can offer you targets defined in this Makefile
(though this understanding has its limits if targets are composed or implicit).
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To build any of the targets listed there, click on it with the right mouse button and select Build.
For example, doing this with the ‘clean’ target will simply execute ‘make clean’. You can see this
happening in the subwindow titled Build that opens up, showing the command and the output.
(This window corresponds to the Build tool, so you can close and later re-open the window using
the Build tool button on the perimeter of the main window. It is shown at the bottom right of the
picture.)

5.2 Selecting a collection of Makefile targets for repeated build-
ing

Right-clicking on individual Makefile targets every time you want to build something will
quickly get old. Rather, we’d like to have individual targets for one or more of the projects in
the session that we can repeatedly build without much mouse work. This is where the concept of
‘Build target selections’ comes in: it is a collection of Makefile targets that are built one-after-the-
other whenever you hit the Build selection button in the button list at the top, select the Project
→ Build selection menu item, or hit the F8 function key.

The list of selected Makefile targets is shown in the bottom half of the Projects tool view.

By default, the selection contains all projects, but you can change that. For example, if your list
of projects contains three projects (a base library L and two applications A and B), but you’re
currently only working on project A, then you may want to remove project B from the selection

by highlighting it in the selection and hitting the button. Furthermore, you probably want
to make sure that the library L is built before project A by moving entries in the selection up and
down using the buttons to the right of the list. You can also get a particular Makefile target into
the selection by right-clicking onto it and selecting Add to buildset, or just highlighting it and

hitting the button just above the list of selected targets.

KDevelop allows you to configure what to do whenever you build the selection. To this end, use
the menu item Project → Open configuration. There, you can for example select the number of
simultaneous jobs ‘make’ should execute — if your computer has, say, 8 processor cores, then
entering 8 in this field would be a useful choice. In this dialog, the Default make target is a
Makefile target used for all targets in the selection.
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5.3 What to do with error messages

If the compiler encounters an error message, simply click on the line with the error message
and the editor will jump to the line (and if available column) where the error was reported.
Depending on the error message, KDevelop may also offer you several possible actions to fix
the error, for example by declaring a previously undeclared variable if an unknown symbol was
found.
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Chapter 6

Running programs in KDevelop

Once you have built a program, you will want to run it. To do this, need to configure Launches for
your projects. A Launch consists of the name of an executable, a set of command line parameters,
and an execution environment (such as ‘run this program in a shell’, or ‘run this program in the
debugger’).

6.1 Setting up launches in KDevelop

To set this up go to menu item Run → Configure launches, highlight the project you want to

add a launch for, and click on the button. Then enter the name of the executable, and
the path where you want to run the program. If running the executable depends on building
the executable and/or other libraries first, then you may want to add them to the list at the

bottom: select Build from the dropdown menu, then hit the symbol to the right of the
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textbox and select whatever target you want to have built. In the example above, I have selected
the target all from project 1.deal.II and step-32 from project 1.step-32 to make sure both
the base library and the application program have been compiled and are up to date before the
program is actually executed. While you’re there, you may as well also configure a debug launch
by clicking on the Debug symbol and adding the name of the debugger program; if this is the
system’s default debugger (e.g. gdb on Linux®), then you don’t need to do this step.

You can now try to run the program: Select Run → Execute Launch from KDevelop’s main win-
dow menu (or hit Shift-F9) and your program should run in a separate subwindow of KDevelop.
The picture above shows the result: The new Run tool subwindow at the bottom shows the out-
put of the program that is being run, in this case of the step-32 program.

NOTE
If you have configured multiple launches, you can choose which one should run when you hit Shift-F9
by going to Run → Current Launch Configuration. There is a non-obvious way to edit the name of
a configuration, however: in the dialog box you get when you select Run → Current Launch Config-
uration, double-click on the name of the configuration in the tree view on the left, which will allow you
to edit the configuration’s name.

6.2 Some useful keyboard shortcuts

Running a program
F8 Build (call make)
Shift-F9 Run

Alt-F9

Run program in the debugger; you may
want to set breakpoints beforehand, for
example by right-clicking with the mouse
on a particular line in the source code
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Chapter 7

Debugging programs in KDevelop

7.1 Running a program in the debugger

Once you have a launch configured (see Running programs), you can also run it in a debugger:
Select the menu item Run → Debug Launch, or hit Alt-F9. If you are familiar with gdb, the effect
is the same as starting gdb with the executable specified in the launch configuration and then
saying Run. This means that if the program calls abort() somewhere (e.g. when you run onto
a failing assertion) or if there is a segmentation fault, then the debugger will stop. On the other
hand, if the program runs to the end (with or without doing the right thing) then the debugger
will not stop by itself before the program is finished. In the latter case, you will want to set a
breakpoint on all those lines of your code base where you want the debugger to stop before you
run the debug launch. You can do that by moving the cursor on such a line and selecting the menu
item Run → Toggle breakpoint, or right-clicking on a line and selecting Toggle Breakpoint from
the context menu.

Running a program in the debugger will put KDevelop in a different mode: it will replace all the
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‘Tool’ buttons on the perimeter of the main window by ones that are appropriate for debugging,
rather than for editing. You can see which of the mode you are in by looking at the top right of
the window: there are tabs named Review, Debug, and Code; clicking on them allows you to
switch back and forth between the three modes; each mode has a set of tool views of its own,
which you can configure in the same way as we configured the Code tools in the section Tools
and views.
Once the debugger stops (at a breakpoint, or a point where abort() is called) you can inspect a
variety of information about your program. For example, in the image above, we have selected
the Frame Stack tool at the bottom (roughly equivalent to gdb’s ‘backtrace’ and ‘info threads’
commands) that shows the various threads that are currently running in your program at the left
(here a total of 8) and how execution got to the current stopping point at the right (here: main()
called run(); the list would be longer had we stopped in a function called by run() itself). On the
left, we can inspect local variables including the current object (the object pointed to by the this
variable).

From here, there are various possibilities you can do: You can execute the current line (F10, gdb’s
‘next’ command), step into the functions (F11, gdb’s ‘step’ command), or run to the end of the
function (F12, gdb’s ‘finish’ command). At every stage, KDevelop updates the variables shown
at the left to their current values. You can also hover the mouse over a symbol in your code,
e.g. a variable; KDevelop will then show the current value of that symbol and offer to stop the
program during execution the next time this variable’s value changes. If you know gdb, you can
also click on the GDB tool button at the bottom and have the possibility to enter gdb commands,
for example in order to change the value of a variable (for which there doesn’t currently seem to
be another way).

7.2 Attaching the debugger to a running process

Sometimes, one wants to debug a program that’s already running. One scenario for this is de-
bugging parallel programs using MPI, or for debugging a long running background process. To
do this, go to the menu entry Run → Attach to Process, which will open a window like the one
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above. You will want to select the program that matches your currently open project in KDevelop
- in my case that would be the step-32 program.

This list of programs can be confusing because it is often long as in the case shown here. You
can make your life a bit easier by going to the dropdown box at the top right of the window. The
default value is User processes, i.e. all programs that are run by any of the users currently logged
into this machine (if this is your desktop or laptop, you’re probably the only such user, apart
from root and various service accounts); the list doesn’t include processes run by the root user,
however. You can limit the list by either choosing Own processes, removing all the programs run
by other users. Or better still: Select Programs only, which removes a lot of processes that are
formally running under your name but that you don’t usually interact with, such as the window
manager, background tasks and so on that are unlikely candidates for debugging.

Once you have selected a process, attaching to it will get you into KDevelop’s debug mode, open
all the usual debugger tool views and stop the program at the position where it happened to be
when you attached to it. You may then want to set breakpoints, viewpoints, or whatever else is
necessary and continue program execution by going to the menu item Run → Continue.

7.3 Some useful keyboard shortcuts

Debugging
F10 Step over (gdb’s ‘next’)
F11 Step into (gdb’s ‘step’)
F12 Step out of (gdb’s ‘finish’)
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Chapter 8

Working with version control
systems

If you are working with larger projects, chances are that the source code is managed by a version
control system such as subversion or git. The following description is written with subversion
in view but will be equally true if you use git or any other supported version control system.

First not that if the directory in which a project is located is under version control, KDevelop
will automatically notice. In other words: It is not necessary that you tell KDevelop to check out
a copy itself when setting up your project; it is ok to point KDevelop at a directory into which
you have previously checked out a copy from the repository. If you have such a directory under
version control, open the Projects tool view. There are then a number of things you can do:

• If your directory has become outdated, you can update it from the repository: Click on the
project name with the right mouse button, go to the menu Subversion and select Update. This
will bring all files that belong to this project up to date with respect to the repository.

• If you want to restrict this action to individual subdirectories or files, then expand the tree
view of this project to the level you want and right click on a subdirectory or file name, then
do the same as above.
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• If you’ve edited one or more files, expand the view of this project to the directory in which
these files are located and right click on the directory. This gives you a menu item Subversion
that offers you different choices. Choose Compare to base to see the differences between the
version you have edited and the version in the repository you had previously checked out (the
revision ‘base’). The resulting view will show the ‘diffs’ for all files in this directory.

• If you only edited a single file, you can also get the Subversion menu for this file by simply
right clicking on the corresponding file name in the project view. Even simpler, just right
clicking into the Editor view in which you have opened this file will also give you this menu
option.

• If you want to check in one or more edited files, right click either on an individual file, sub-
directory, or whole project and select Subversion → Commit. This will get you into Review
mode, the third mode besides Code and Debug as you can see in the top right corner of the
KDevelop main window. The picture on the right shows you how this looks. In Review mode,
the top part shows you diffs for the entire subdirectory/project and each individual changed
file with changes highlighted (see the various tabs on this part of the window). By default,
all changed files are in the changeset you are about to commit, but you can unselect some of
the files if their modifications are unrelated to what you want to commit. For example, in the
example on the right I have unselected step-32.cc and step-32.prm because the changes in
these files have nothing to do with the other ones I made to this project and I don’t yet want
to check them in yet (I may later want to do so in a separate commit). After reviewing the
changes you can enter a commit message into the text box and hit Commit on the right to send
things off.

• As with seeing differences, if you want to check in a single file you can also just right click into
the editor window to get the Subversion → Commit menu item.
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Chapter 9

Customizing KDevelop

There are times when you want to change the default appearance or behavior of KDevelop, for
example because you are used to different keyboard shortcuts or because your project requires a
different indenting style for source code. In the following sections, we briefly discuss the various
ways how KDevelop can be customized for these needs.

9.1 Customizing the editor

There are a number of useful things one can configure in and around KDevelop’s built-in editor.
Of more universal use is to switch on line numbering using the menu entry Editor → View →
Show line numbers, making it easier to match compiler error messages or debug messages with
locations in the code. In the same submenu you may also want to switch on the Icon border - a
column to the left of your code in which KDevelop will show icons such as whether there is a
breakpoint on the current line.

9.2 Customizing code indentation

Many of us like code formatted in a particular way. Many projects also enforce a particular
indentation style. Neither may match KDevelop’s default indentation style. However, this can
be customized: Go to the Settings → Customize KDevelop menu item, then click on Source
Formatter on the left. You can choose one of the predefined indentation styles that are widely in
use, or define your own one by adding a new style and then editing it. There may not be a way
to exactly re-create the style in which your project’s sources have been indented in the past, but
you can come close by using the settings for a new style; an example is shown in the two pictures
below.

56



KDevelop Handbook

57



KDevelop Handbook

NOTE
With KDevelop 4.2.2, you can create a new style for a particular mimetype (e.g. for C++ header files)
but this style does not show up among the list of possible styles for other mimetypes (e.g. for C++
source files) although it would of course be useful to use the same style for both kinds of files. You
will therefore have to define the style twice, once for header and once for source files. This has been
reported as KDevelop bug 272335.

9.3 Customizing keyboard shortcuts

KDevelop has an almost boundless list of keyboard shortcuts (some of them are listed in the
‘Useful keyboard shortcuts sections’ of several chapters in this manual) that can be changed to
your taste through the menu Settings → Configure Shortcuts. At the top of the dialog you can
enter a searchword and it only shows those commands that match; you can then edit which key
combination is bound to this command.
Two that have been found to be very useful to change are to set Align to the Tab key (many
people don’t usually enter tabs by hand and rather prefer if the editor chooses the layout of code;
with the changed shortcut, hitting Tab makes KDevelop indent/outdent/align the code). The
second one is putting Toggle Breakpoint on Ctrl-B since this is quite a frequent operation.

9.4 Customizing code auto-completion

Code completion is discussed in this manual’s section on writing source code. In KDevelop, it
comes from two sources: the editor, and the parse engine. The editor (Kate) is a component of
the larger KDE environment and offers auto-completion based on words it has already seen in
other parts of the same document. Such auto-completions can be identified in the tooltip by the
icon that precedes it:

The editor’s code completion can be customized via Settings → Configure Editor → Editing →
Auto Completion. In particular, you can select how many characters you need to type in a word
before auto-completion kicks in.

On the other hand, KDevelop’s own auto-completion is much more powerful as it takes into
account semantic information about the context. For example, it knows which member functions
to offer when you type object., etc., as shown here:
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This context information comes from various language support plugins, which can be used after
a given file has been saved (so it can check the filetype and use the correct language support).

KDevelop’s completion is set to appear as you type, right away, pretty much everywhere that it
could possibly complete something. This is configurable in Settings → Configure KDevelop →
Language Support. If it isn’t already set (as it should, by default), make sure Enable Automatic
Invocation is set.
KDevelop has two ways to show a completion: Minimal Automatic Completion shows just the
basic information in completion tooltips (i.e. the namespace, class, function, or variable name).
This will look similar to Kate completion (except for the icons).

On the other hand, Full completion will additionally show the type for each entry, and in the
case of functions, also the arguments they take. Also, if you are currently filling in the arguments
to a function, full completion will have an additional info-box above the cursor that will show
you the current argument you are working on.

KDevelop’s code completion should also bring-to-top and highlight in green any completion
items that match the currently expected type in both minimal and full completion, known as
‘best-matches’.
The three possible choices for the completion level in the configuration dialog are:

• Always minimal completion: Never show ‘Full Completion’

• Minimal automatic completion: Only show ‘Full Completion’ when auto-completion has
been triggered manually (i.e., whenever you hit Ctrl-Space)

• Always full completion: Always show ‘Full Completion’

59



KDevelop Handbook

Chapter 10

Credits and License

Documentation Copyright see the UserBase KDevelop4/Manual page history

This documentation is licensed under the terms of the GNU Free Documentation License.
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